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Abstract
Zebrafish is a popular model system for biomedical analysis, especially for compound screening in drug research. In this paper,
we present a comprehensive investigation aimed at enhancing the processing pipeline for segmenting zebrafish larvae images.
The emphasis is on the application of an unsupervised segmentation method for segmenting zebrafish in Optical Projection
Tomography (OPT) images. We propose a novel pipeline that integrates the Transformer and U-Net, a convolutional neural
network for bio-medical image segmentation, to achieve accurate segmentation of zebrafish larvae images. This accuracy
is critical for precise 3D reconstruction. Leveraging transfer learning, we broaden the capabilities of our trained model to
segment OPT images. This approach is intended to enhance the robustness and versatility of our pipeline, allowing it to
cater to a broad range of imaging modalities beyond traditional microscopic images. The developed processing pipeline
is then used for 3D reconstruction of the segmented areas, demonstrating its potential for advanced biomedical analysis.
Our findings confirm the efficiency and accuracy of the proposed pipeline providing robust tools for future Zebrafish-based
research, particularly in the domains of drug screening and cancer treatment.
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1. Introduction
Automatic image captioning is a challenging problem in
computer vision, and it aims to generate rich content and
human-understandable descriptions for given images [1].
The performance of image captioning models is closely
related to the quality of extracted features from images.
The power of the language model can help to generate
accurate and meaningful descriptions related to image
content. Considering the semantic relationships between
the identified objects within the image is essential in the
image caption generation task. However, identifying the
objects (i.e., the nouns in the caption) within an image
is still challenging. Moreover, finding their interaction
(i.e., the verbs in the caption) is extremely difficult. In
fact, ex-pressing object interaction by natural language
as semantic knowledge, either as verbs or adverbial com-
positions, is the core issue in image captioning.

In this paper, we develop a novel method that (1) over-
comes the limitations of CNNs, (2) generates descriptions
with a non-restricted variety of words, and (3) is capable
of describing the relationships between the objects. We
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use a novel encoder–decoder mechanism that addresses
these challenges by using a capsule network (CapsNet)
[2]. The result is a set of meaningful descriptions for
the image via a language model. CapsNet can effectively
compensate for the shortcomings of a CNN by detect-
ing tissue overlap characteristics [3]. In CapsNet, more
salient spatial features and geometrical attributes, such
as direction, size, scale, and object attributions, can be
represented for each input. This aspect of CapsNet con-
trasts with CNN since the lack of local invariance features
produces excessive variations of global discriminating
outputs [4]. In addition, our model employs an external
knowledge base, i.e., Wikipedia, aiming to accomplish
augmented textual training data to generate more mean-
ingful and diverse captions.

The main contributions of our work are as follows:

• The development of a novel parallel structure
for a capsule network can capture more compre-
hensive information about the objects within an
image by considering their relationships.

• The use of Wikipedia as an external knowledge
base for enrichment of all the textual training
information and generating out-of-domain rep-
resentation when describing the content of the
image.

• The application of our framework on the MS-
COCO large-scale dataset. Using large-scale
datasets including RGB images requires a huge
number of resources because of the architecture
of capsule networks.

• We performed a bench-marking towards a list of
existing state-of-the-art models.
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In the next section, we will consider state-of-the-art
approaches.

2. Related Work
Image captioning is a popular research topic in computer
vision and natural language processing. Generating an
accurate textual explanation that describes the content
of an image is accomplished by understanding the vi-
sual content of the image. Recently, the interest in image
captioning has broadenedwith the development of bench-
mark datasets such as MS-COCO [5], Flickr 8K [6], and
Flickr 30K [7].
Current image captioning models can be categorized

into template-based, retrieval-based, and neural network-
based models. The template-based models [8], first detect
all the image attributes using image classification and ob-
ject detection methods. These methods generate captions
by filling in predefined templates from the identified ob-
jects. This approach produces too flexible captions that
cannot correctly describe the relationships between at-
tributes [9]. Retrieval-based models [10] create a pool of
similar images in an image database rank the retrieved
images by measuring their similarities, and then change
the found image descriptions to create a new description
for the queried image. The usefulness of this strategy is
severely constrained when dealing with images that are
not in the dataset and thus not classified, i.e., unseen.

The neural network-based models are inspired by the
success of deep neural networks in machine learning
tasks and used in an encoder–decoder architecture [11].
An encoder extracts image contents by a CNN, a module
associates contents to words, and a decoder by an RNN
is used for language modeling and creating image cap-
tions. Liu et al. [12] proposed an ontology to describe the
scene construction of images. Their constructed ontology
can specify the object types and the special information
for the objects (e.g., location, velocity). This visual and
special information can be transformed into meaningful
project information for generating captions using inte-
grated computer vision and linguistic models. In [13],
authors demonstrated that a large amount of data could
lead to lower estimation variance and hence lower er-
ror with better prediction performance. However, data
quality plays an important role in the performance of the
model. The hypothesis is that more data may contain
useful information. To this aim, Hossain et al. [14], pro-
posed a method that leverages a combination of real and
synthetic data generated by the Generative Adversarial
Network (GAN). It is an efficient alternative for the tech-
niques requiring human-annotated images, as they are
labor-intensive to generate and time-consuming.

Various improvements are made to captioning models
to make the network more inventive and effective by

considering visual and semantic attention to the image.
For example, Yang and Liu [12], introduced a method
called ATT-BM-SOM to increase the readability of the
syntax and optimize the syntactic structure of captions.
This framework operates based on the attention balance
mechanism and the syntax optimization module and ef-
fectively fuses image information. Their model generates
high-quality captions, compensating for the lack of image
information selection and syntax readability. In the next
section, the structure of the image caption generation
models and the employed networks in our experiments
will be discussed in more detail.

3. Materials and Image Captioning
Methods

Following the trend of current work, we use an en-
coder–decoder framework to create the captions of im-
ages. Understanding the image requires recognizing the
objects, properties, and interactions in the encoder part.
Moreover, producing sentences to describe images in
the decoder requires understanding language syntax and
semantics.

Figure 1 illustrates the employed Knowledge Discovery
Database (KDD) of our model: images and descriptions
proceed separately in the data processing phase. Then
in the transformation phase, all the image and text data
are processed to create feature vectors for the language
model. A CNN is employed for predicting the labels from
the given image.
In the text enrichment phase, we used Wikipedia to

extract relevant information based on the predicted la-
bels of images. Then, all the data sequences are fed to the
language model in the NLP phase for tokenizing, embed-
ding, and making word vectors from the image captions
in the dataset and extracted knowledge from Wikipedia.
After which, all the information is fed into the caption
predictor in the evaluation section to produce a caption
given the input image.
The novelty of our work consists of a new variant

of the capsule network, parallelizing its basic structure
to capture more comprehensive information about the
objects within the image, thus leading to a more accurate
description of the input image. The primary structure
of capsule network works well on a simple dataset such
as MNIST, which includes images with a single object
and only one channel. However, the network efficiency
significantly decreases when applied to images with large
special dimensions and complex datasets such as MS-
COCO and Flicker.
The presence of multiple channels and objects in the

images increases the training time of the network and
leads to weak results compared to state-of-the-art [15].
This problem happens due to inefficiency in capturing



Figure 1: KDD methodology of the proposed model.

the underlying information of the image. To handle this
issue, we extended the baseline network by parallelizing
the convolutional layers and the primary capsules of the
original CapsNet, followed by a concatenation approach
to extract more complex and qualified features from the
images. On the other hand, parallelizing the convolution
layers reduces the dimensions of the fed features to the
primary capsules and accelerates the learning process.

In the proposed image captioning model, we use CNN
and CapsNet architectures to incorporate visual context
from an image, which is then used as the input of a
machine translation, such as an RNN architecture, to
generate objective sentences in the decoder part of the
framework. We applied cross-entropy loss to adjust the
model weights during the sequential model training. In
this section, the entire model flow is described in more
detail. We have applied both the Inception-V3 or VGG16
as image feature extractors. These networks are trained
on the ImageNet dataset with more than one million im-
ages of 1000 classes. Training the CapsNet is done from
scratch and based on 80 categories of objects in Category
Caps. The details of these networks are shown in Table1.

Table 1
Specific parameters of the models in the evaluation

Parameters VGG-16 Inc-v3 CapsNet

Depth 16 48 8
Image size (px) 224 × 224 299 × 299 299 × 299
Solver (opt.) SGD+M RMSProp ADAM
Loss func. cross-ent. cross-ent. MSE
Batch size 32 64 128
Learn rate 0.001 0.0001 0.001
Learn rate drop
factor

0.1 0.1 0.5

Learn rate drop
period

10 10 10

Momentum 0.9 0.9 0.9
Gradient
thresh.

L2-norm L2-norm L2-norm

3.1. Capsule Network
A capsule is a set of neurons whose activity vectors in-
dicate the posture characteristics of an entity and the

Figure 2: Capsule Network Architecture.

length of the vector denotes the chance of that entity
existing. Unlike a convolutional network, capsules save
comprehensive information about the location and pose
of an entity.
Sabour et al. [2], claimed that regardless of the high

capability of CNNs, this network has two main disadvan-
tages: 1) lack of rotation invariant and 2- using a pooling
layer. The former causes failure in recognizing spatial
relations between the objects, and the latter causes in-
formation loss due to the maximum value selection of
each region. Therefore Sabour et al. [2], proposed a
capsule network to address the issues mentioned above.
There are different concrete components in a cap-

sule net-work for learning the semantic representations
within the image (see Figure 2) These components map
construction by reconstructing the discrepancymap from
the input image.

The major components of the capsule network involve
the following:

• Primary capsules combine the features extracted
by convolutional layers in the construction phase.

• Reshaping the extracted feature maps from the
primary capsules.

• Squashing is a non-linear activation function that
squashes the weighted input vector of a particular
capsule. This function distributes the length of
the output vector be-tween 0 and 1.

• The dynamic routing layer produces output cap-
sules with high agreements by automatically
grouping input capsules. The pooling layers in
the capsule network are re-placed by a mecha-
nism called “routing by agreement” in the rooting
layer: the output of each capsule in the lower level
is sent to the parent capsules in the higher level
only if their features have a dependency.

• Category capsules with a marginal classification
loss and a reconstruction sub-network with a re-
construction loss for recovering the original im-
age from capsule representations.

The operation of all these components is explained
in this section in more detail. One important aspect of
capsule networks is their ability to identify individual
parts of objects in a single image and then represent
spatial relation-ships between those parts. For example,
in figure 2, the CapsNet has identified three different parts



of objects with-in the input image (tie, child, bin). The
output image on the right side of the figure 2 shows the
result of the reconstruction sub-network in the employed
capsule network. Figure 3 shows the construction of a
capsule and how data is routed between lower-level and
higher-level capsules.

In Figure 3a, each capsule finds the appropriate parent
in the next layer during the dynamic routing procedure
to send its output to those capsules in the above layer.
The input and output of capsules are vectors. Given 𝑢𝑖
as the prediction vector of capsule 𝑖 and 𝑢𝑗|𝑖 as the output
of parent capsule 𝑗 in higher level will be computed by
multiplying 𝑢𝑖 with a weighted matrix 𝑊𝑖𝑗:

𝑢̂𝑗|𝑖 = 𝑊𝑖𝑗 ⋅ 𝑢𝑖 (1)

The length of 𝑢𝑖, indicates the probability of predict-
ing a component in the image even after changing the
viewing angle. The direction of 𝑢𝑖 represents several
properties of that component, such as size and position.
A weighted sum over all 𝑢𝑗|𝑖, and an intermediate cou-
pling coefficient 𝑐𝑖𝑗, is calculated as the total input vector
to capsule 𝑗 by the following function:

𝑠𝑗 = ∑
𝑖
𝑐𝑖𝑗𝑢𝑗|𝑖 (2)

Here, the coupling coefficient 𝑐𝑖𝑗, are the class-specific
likelihood calculated after flattening the vectors and is
computed by a routing Soft-Max function as follows:

𝑐𝑖𝑗 =
exp(𝑏𝑖𝑗)

∑𝑘 exp(𝑏𝑖𝑘)
(3)

where 𝑏𝑖𝑗 represents the log probability of connection
between capsules 𝑖 and 𝑗. As shown in Figure 3b, the
value of 𝑐𝑖𝑗 increases when the lower-level and higher-
level capsules are consistent with their predictions and
decreases when they are inconsistent. Based on the orig-
inal paper, this parameter is initialized at 0 in the routing
by agreement procedure. Instead of applying the ReLU
activation function as in VGG16 and Inception-v3, the fol-
lowing non-linear squashing function will be calculated
over the input vector in this network:

𝑣𝑗 =
‖𝑠𝑗‖2

1 + ‖𝑠𝑗‖2
𝑠𝑗
‖𝑠𝑗‖

(4)

where 𝑠𝑗 is the input vector and 𝑣𝑗 is the normalized
output between 0 and 1. The log probability is updated
along with the routing mechanism by calculating the
agreement between 𝑣𝑖 as the output of capsule 𝑗 in the
above layer and 𝑢𝑗|𝑖, as a prediction vector.

The loss function of the network for each capsule 𝑘 is
computed as follows:

𝐿𝑘 = 𝑇𝑘max(0, 𝑙+−‖𝑣𝑘‖)2+𝜆(1−𝑇𝑘)max(0, ‖𝑣𝑘‖−𝑙−)2 (5)

Figure 3: Transferring information among the capsules from
[1...I] and high-level capsules (b) routing procedure.

where 𝐿𝑘 is loss term for one prediction, 𝑇𝑘 is a term
equal to 1 when the class 𝑘 is present; otherwise, it is 0.
The upper and lower bounds of margin loss parameters,
𝑙+ and 𝑙−, are set to 0.9 and 0.1 [2]. It means that if an
entity is present with a probability above 0.9, the loss is
zero; otherwise, the loss is not zero. Regarding capsules
that could not predict the correct label, if the predicted
probability of all those labels is below 0.1, the margin
loss is zero; otherwise, it is not zero. The parameter 𝜆 is
set at 0.5 and is used for numerical stability to control
the down weighting of the initial weights for the absent
classes. ‖ ⋅ ‖ in all the equations denotes 𝐿2 norm.

3.2. Improved capsule network
In the improved version of the capsule network architec-
ture, where we parallelized the convolution layers and
primary capsules, the input image size is 229 × 229 × 3.
The different architecture of the capsule network distin-
guishes it compared to CNN. Except for the input and
out-put layers, the capsule network consists of primary
and category capsule layers. The output of the capsules
is forward-ed to the decoder. The networks prevent over-
fitting by re-building the input image from the output
capsules by minimizing the reconstruction loss as a reg-
ularization method in the decoder [16].
The original capsule network has been tested on the

MNIST dataset with one color channel (grayscale). How-
ever, the color of objects is an important factor in object
detection and image captioning tasks. Therefore, we pro-
pose a parallelized capsule network that generates the
descriptions of the images by passing the RGB images
with three color channels through the three blocks of par-
allel convolutional layers and parallel primary capsules.
The three-color channels of RGB images can store infor-
mation and intuitively visualize content. Therefore, color
analysis is also addressed in this parallelized structure
of the capsule net-work, which makes the model more
informative and improves the descriptiveness of image
captions by extracting more qualified features from the
image [17]. Adding more convolutional layers was not
logical due to the increasing model complexity computa-



Figure 4: Our proposed model: a CNN and a CapsNet are applied to a given image to produce the visual features and predict
the attributes of the image (a–k). The textual information of each sample comprises the descriptions of the image and the
aggregated data from the external database, and a preprocessed method is applied to the text (l–n). After tokenizing and
embedding process, the visual attention of the image is fed to a GRU with three levels to generate a caption to explain the
content of the image (p–r) [9].

tional cost. The structure of the new network has been
presented in figure 4.

The model steps in Figure 4 are summarized as follows:
1. Partitioning the image set into train, validation,

and test subsets randomly
2. Applying image feature extractor models to ex-

tract visual features from the images (Figure 4a–j)
3. Extracting external knowledge for each image by

searching the predicted labels from the previous
step as a query in Wikipedia and adding it to the
captions that already exist for the images in the
dataset (Figure 4k–m)

4. Applying preprocessing methods to contextual
data before feeding it to the RNN network, i.e.,
removing the punctuation numbers and wrap-
ping each sentence around with “ssss” and “eeee”
tokens to specify the beginning and end of sen-
tences for the network (Figure 4n)

5. Transforming the textual features to the integers
vector by tokenizing and embedding operations
for training by the language model (Figure 4p)

6. Training language model for certain epochs based
on its performance on validation data. During
the training phase, the model predicts the next
word of each word in the caption (Figure 4q,r)

After the training phase, the model is ready to evaluate
test set images by extracting visual features and predict-
ing the captions using a greedy search. Greedy search
selects the word with the highest probability at each time
step and uses it as the GRU input for the following time
step until the end of the sentence is reached. In the next
section, we will dis-cuss the details of the experiments
and the obtained results by the analyzed methods.

3.3. Gated Recurrent Unit
Our image captioning framework used a three-layer RNN
network with a Gated Recurrent Unit cell (Chung et al.,
2014). This RNN is equipped with visual features in the
feature maps of CNN and CapsNet. The proposed model
generates a description for each image by maximizing the



probability of the current word predicted in the caption
according to the following formula:

𝜃∗ = argmax
𝜃

∑
(𝐼 ,𝑀)

log 𝑝(𝑀|𝐼 ; 𝜃) (6)

where 𝜃 are the parameters of the proposed model
and 𝑀 is the correct description of image 𝐼. Suppose
{𝑚0, … , 𝑚𝑁−1} is a sequence of words in transcription 𝑀
of length 𝑁, then log 𝑝(𝑀|𝐼 ) as the probability of gener-
ating a word for an image 𝐼, is as follows:

log 𝑝(𝑀|𝐼 ) =
𝑁
∑
𝑡=0

log 𝑝(𝑚𝑡|𝐼 , 𝑚0, … , 𝑚𝑁−1, 𝑐𝑡) (7)

where 𝑡 is the time step and 𝑐𝑡 is context vector. A two-
step process feeds all the text data to the RNN network.
The first step is tokenizing, and the second one is em-
bedding. All the words in the sentences are converted
into so-called integer token vectors during tokenizing.
This process is based on 10,000 most frequent and unique
words in the image captions.

4. Experiments
This section reports the details of implementations and
the results of the experiments conducted by different
variations of models.

4.1. Dataset and Implementation Details
We use the MS-COCO dataset [5], to evaluate the pro-
posed model in our experiments. MS-COCO contains
123,287 k images with five captions and 80 object cate-
gories for each image annotated by Amazon Mechanical
Turk (AMT) workers. Since there are no available an-
notations for the test set, in this work, we used publicly
available splits provided by Karpathy et al. [18]. We
use 5000 images for validation and testing and the rest
for the training set. All the models are implemented in
Python version 3.6 and using the capabilities provided by
Keras version 2.2.5 and TensorFlow version 1.15.0 deep
learning libraries. Table 1 shows the parameters set for
each network. The training was done using a machine
equipped with two GeForce RTX 2080 GPU cards with 8
GB memory. The machine was installed with two GPUs,
but for the experiments, only one was necessary.

4.2. Metrics
To compare our results to other baseline models, we mea-
sure the performance of the implemented models by the
commonly used metrics, BLEU 1–4 [19], ROUGE [20],
and METEOR [21].
BLEU is one of the popular metrics to evaluate the

correspondence between generated sentences by humans

and machines. This metric measures the maximum num-
ber of co-occurrence n-grams between reference and
candidate sentences. Here, ‘n’ takes the value of 1, 2,
3, and 4 depending on the length of sentences. Each
BLEU-N metric averages the calculated accuracy from
𝑛 = 1 to 𝑛 = 𝑁. It means that BLEU-1 is the accuracy of
the description created for the image with the reference
description based on 1-gram, BLEU-2 is the geometric
mean of the calculated accuracy based on 1-gram and
2-gram, BLEU-3 is the geometric mean of the calculated
accuracy based on 1-gram, 2-gram, and 3-gram, and so
on.

ROUGE evaluates the performance of generated sen-
tences by a machine based on their similarity to the
reference sentences. This metric finds the longest sub-
sequence of tokens between candidate and reference sen-
tences and calculates how many tokens from the human
reference summaries were duplicated in the machine-
generated summaries. Unlike BLEU, which prioritizes
precision, ROUGE is recall-oriented and can estimate
correlated n-grams better than BLEU.
METEOR is the last evaluation metric in this paper.

In this metric and the exact word match, the stemmed
and wordnet synonym tokens are taken into account
between the alignment of the candidate and the reference
sentence.

4.3. Baselines
We provide two baseline approaches to verify the effec-
tiveness of the models. The framework for the baseline
is almost the same as the model in [11] as a baseline
method, except that GRU replaces the LSTM language
model. We used inception-V3 and VGG16 as the feature
extractor method for the encoder part.

4.4. Our approaches
We assess different variations of our approach. CN +
IncV3 utilizes the extracted features from the capsule net-
work and inception-V3 as image features extractors. CN
+ VGG16 uses a VGG16 network rather than inception-V3
in the en-coder. The Wikipedia knowledge base enriches
the contextualized language model in this model. So, CN
+ IncV3 + EK and CN + VGG16 + EK are the models that
use relevant external knowledge from Wikipedia. We
also have performed additional experiments to check the
importance of the capsule network in describing the con-
tent of images. To that end, we implemented IncV3 + EK
and VGG16 + Ek methods to verify the effectiveness of
the capsule net-work for image captioning models.



5. Results and Discussions
This section discusses the results from the different imple-
mentations of our framework and then compares them
to state-of-the-art. Table 2 reports image captioning re-
sults for different implementations of our method on the
MS-COCO dataset. The results demonstrate that the CN
+ IncV3 + EK model with capsule network and inception-
V3 feature extractors can generate more human-like sen-
tences by adding external knowledge to the language
model. This model archives significantly better results
in the overall metrics.

Table 2
The experimental results of implemented models. Bold text
indicates the best overall performance.

Models B1 B2 B3 B4 R M

VGG 16 (Baseline) 0.33 0.24 0.18 0.16 0.21 0.24
IncV3 (Baseline) 0.36 0.26 0.21 0.17 0.23 0.28
CN + IncV3 0.77 0.54 0.43 0.35 0.47 0.35
CN + VGG 16 0.41 0.30 0.25 0.19 0.28 0.34
CN + IncV3 + EK 0.89 0.74 0.61 0.54 0.66 0.45
CN + VGG 16 + EK 0.59 0.44 0.37 0.29 0.31 0.38
IncV3 + EK 0.63 0.43 0.34 0.28 0.29 0.31
VGG 16 + EK 0.38 0.27 0.22 0.18 0.23 0.26

To prove the effectiveness of this model, we compare
the result of the CN + IncV3 + EK method with state-of-
the-art research. In Table 3, the bold numbers show that
Table 3 shows that our best model outperforms previously
published results on the MS-COCO “Karpathy” test split
dataset.

Table 3
Comparison of the best result to state-of-the-art.

Models B1 B2 B3 B4 R M

Ours 0.89 0.74 0.61 0.54 0.66 0.45
(Aneja et al., 2018 [22]) 0.72 0.55 0.40 0.30 0.53 0.25
(Tan et al., 2019 [23]) 0.73 0.57 0.43 0.33 0.54 0.25
(Wu et al., 2017 [11]) 0.73 0.56 0.41 0.31 0.53 0.25
(Zhang et al., 2021 [24]) 0.75 0.62 0.48 0.36 - 0.27
(J. Yu et al., 2019 [25]) 0.81 0.67 0.52 0.40 0.59 0.29
(Lu et al., 2017 [26]) 0.75 0.58 0.44 0.33 0.55 0.26
(Ande. et al., 2018 [27]) 0.80 0.64 0.49 0.37 0.57 0.27
(Jiang et al., 2018 [28]) 0.80 0.65 0.50 0.38 0.58 0.28
(Yang et al., 2020 [12]) 0.73 0.53 0.39 0.28 0.56 0.25

Compared to ourmodel, Aneja et al. [22], has proposed
an attention mechanism to leverage spatial features of
an image to find salient objects. Tan et al. [23], proposed
a tuning model with a small number of parameters in the
RNN. Their model can produce a very sparse decoder for
generating a caption preserving the performance of the
method compared to their baseline. Zhang et al. Zhang et

Figure 5: Generated examples by the best proposed model.

al. [24], implemented a cooperative learning mechanism
to combine two image caption and image retrieval mod-
ules while generating a caption. Then, during a multi-
step refining process, they refined the image-level and
object-level information to produce a meaningful caption.
Instead of using GRU as RNN, Yu et al. [25], proposed
a model which employed a multimodal transformer as
a language model in the decoder to generate a caption.
Contrary to our approach, Lu et al. [26], Anderson et
al.[27], have focused on important image regions. Lu et
al. [26]), proposed an adaptive attention framework that
could decide whether to rely on special attention to the
image and when to attend to the textual image informa-
tion. In [27], Anderson et al. extracted a set of salient
regions from the image by applying a bottom-up mecha-
nism. They also implemented a top-down mechanism to
determine the distribution of attention over the image to
compute feature weightings in different regions. Jiang et
al. [28], proposed a framework that includes a recurrent
fusion network. This fusion procedure is implemented
between the encoder and decoder to exploit interactions
among the represented features from the encoder part
for creating a new set of vectors from decoder outputs.

5.1. Qualitative Results
In this section, we present some examples to show the
performance of the CN + IncV3 + EK method as our best
model. We used the occlusion sensitivity function to vi-
sualize and localize the most important regions of the
images for the network. The occlusion function com-
putes sensitivity maps for CNNs. Figure 5 shows some
examples from our results.
As demonstrated in Figure 5, using occlusion sensi-

tivity helps us better understand features used by the
network and provide insight into the reasons for the mis-
classified images. These examples show that CN + IncV3
+ EK is the best descriptor model as it can generate more
human-like sentences for each image.



6. Conclusions
In this paper, we developed an encoder–decoder frame-
work employing a novel parallelized capsule network as a
feature extractor and the Wikipedia database as an exter-
nal knowledge provider to establish if this approach can
out-perform state-of-the-art solutions. We implemented
different architectures to produce contextual knowledge
from images to achieve this. Our novel approach demon-
strated that using a parallel capsule network as an en-
coder model provided a versatile image feature extractor.
Moreover, we have demonstrated that the use of external
knowledge further improved the results. Our best model
was trained with the capsule network and inception-V3
as a feature extractor, with caption enrichment by an
external contextual description.

References
[1] Y. Wei, L. Wang, H. Cao, M. Shao, C. Wu, Multi-

attention generative adversarial network for image
captioning, Neurocomputing 387 (2020) 91–99.

[2] S. Sabour, N. Frosst, G. E. Hinton, Dynamic routing
between capsules, Advances in neural information
processing systems 30 (2017).

[3] X. Ai, J. Zhuang, Y. Wang, P. Wan, Y. Fu, Rescaps:
an improved capsule network and its application in
ultrasonic image classification of thyroid papillary
carcinoma, Complex & Intelligent Systems (2021)
1–9.

[4] G. E. Hinton, S. Sabour, N. Frosst, Matrix capsules
with em routing, in: International conference on
learning representations, 2018.

[5] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, C. L. Zitnick, Microsoft coco:
Common objects in context, in: Computer Vision–
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, Springer, 2014, pp. 740–755.

[6] M. Hodosh, P. Young, J. Hockenmaier, Framing im-
age description as a ranking task: Data, models and
evaluation metrics, Journal of Artificial Intelligence
Research 47 (2013) 853–899.

[7] P. Young, A. Lai, M. Hodosh, J. Hockenmaier, From
image descriptions to visual denotations: New sim-
ilarity metrics for semantic inference over event
descriptions, Transactions of the Association for
Computational Linguistics 2 (2014) 67–78.

[8] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,
C. Rashtchian, J. Hockenmaier, D. Forsyth, Every
picture tells a story: Generating sentences from
images, in: Computer Vision–ECCV 2010: 11th Eu-
ropean Conference on Computer Vision, Heraklion,

Crete, Greece, September 5-11, 2010, Proceedings,
Part IV 11, Springer, 2010, pp. 15–29.

[9] S. Javanmardi, A. M. Latif, M. T. Sadeghi, M. Ja-
hanbanifard, M. Bonsangue, F. J. Verbeek, Caps
captioning: a modern image captioning approach
based on improved capsule network, Sensors 22
(2022) 8376.

[10] P. Kuznetsova, V. Ordonez, A. Berg, T. Berg, Y. Choi,
Generalizing image captions for image-text parallel
corpus, in: Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics
(Volume 2: Short Papers), 2013, pp. 790–796.

[11] Q. Wu, C. Shen, P. Wang, A. Dick, A. Van Den Hen-
gel, Image captioning and visual question answer-
ing based on attributes and external knowledge,
IEEE transactions on pattern analysis and machine
intelligence 40 (2017) 1367–1381.

[12] Z. Yang, Q. Liu, Att-bm-som: A framework of effec-
tively choosing image information and optimizing
syntax for image captioning, IEEE Access 8 (2020)
50565–50573.

[13] D. Martens, F. Provost, Pseudo-social network tar-
geting from consumer transaction data (2011).

[14] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, H. Laga,
M. Bennamoun, Text to image synthesis for im-
proved image captioning, IEEE Access 9 (2021)
64918–64928.

[15] M. K. Patrick, A. F. Adekoya, A. A. Mighty, B. Y.
Edward, Capsule networks–a survey, Journal of
King Saud University-computer and information
sciences 34 (2022) 1295–1310.

[16] B. Mandal, S. Ghosh, R. Sarkhel, N. Das, M. Nasipuri,
Using dynamic routing to extract intermediate fea-
tures for developing scalable capsule networks, in:
2019 Second International Conference on Advanced
Computational and Communication Paradigms
(ICACCP), IEEE, 2019, pp. 1–6.

[17] S. Albawi, T. A. Mohammed, S. Al-Zawi, Under-
standing of a convolutional neural network, in:
2017 international conference on engineering and
technology (ICET), Ieee, 2017, pp. 1–6.

[18] A. Karpathy, L. Fei-Fei, Deep visual-semantic align-
ments for generating image descriptions, in: Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 3128–3137.

[19] K. Papineni, S. Roukos, T. Ward, W. Zhu, A method
for automatic evaluation of machine translation”,
the Proceedings of ACL-2002, ACL, Philadelphia,
PA, July 2002 (2001).

[20] C.-Y. Lin, Rouge: A package for automatic eval-
uation of summaries, in: Text summarization
branches out, 2004, pp. 74–81.

[21] S. Banerjee, A. Lavie, Meteor: An automatic met-
ric for mt evaluation with improved correlation
with human judgments, in: Proceedings of the



acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summa-
rization, 2005, pp. 65–72.

[22] J. Aneja, A. Deshpande, A. G. Schwing, Convolu-
tional image captioning, in: Proceedings of the
IEEE conference on computer vision and pattern
recognition, 2018, pp. 5561–5570.

[23] J. H. Tan, C. S. Chan, J. H. Chuah, Image caption-
ing with sparse recurrent neural network, arXiv
preprint arXiv:1908.10797 (2019).

[24] W. Zhang, S. Tang, J. Su, J. Xiao, Y. Zhuang, Tell
and guess: cooperative learning for natural image
caption generation with hierarchical refined atten-
tion, Multimedia Tools and Applications 80 (2021)
16267–16282.

[25] J. Yu, J. Li, Z. Yu, Q. Huang, Multimodal trans-
former with multi-view visual representation for
image captioning, IEEE transactions on circuits and
systems for video technology 30 (2019) 4467–4480.

[26] J. Lu, C. Xiong, D. Parikh, R. Socher, Knowing when
to look: Adaptive attention via a visual sentinel for
image captioning, in: Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2017, pp. 375–383.

[27] P. Anderson, X. He, C. Buehler, D. Teney, M. John-
son, S. Gould, L. Zhang, Bottom-up and top-down
attention for image captioning and visual question
answering, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018,
pp. 6077–6086.

[28] W. Jiang, L. Ma, Y.-G. Jiang, W. Liu, T. Zhang, Re-
current fusion network for image captioning, in:
Proceedings of the European conference on com-
puter vision (ECCV), 2018, pp. 499–515.


	1 Introduction
	2 Related Work
	3 Materials and Image Captioning Methods
	3.1 Capsule Network
	3.2 Improved capsule network
	3.3 Gated Recurrent Unit

	4 Experiments
	4.1 Dataset and Implementation Details
	4.2 Metrics
	4.3 Baselines
	4.4 Our approaches

	5 Results and Discussions
	5.1 Qualitative Results

	6 Conclusions

