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Abstract
Infographics are often an integral component of scientific documents for reporting qualitative or quantitative findings as they
make it much simpler to comprehend the underlying complex information. However, their interpretation continues to be
a challenge for the blind, low-vision, and other print-impaired (BLV) individuals. In this paper, we propose ChartParser, a
fully automated pipeline that leverages deep learning, OCR, and image processing techniques to extract all figures from a
research paper, classify them into various chart categories (bar chart, line chart, etc.) and obtain relevant information from
them, specifically bar charts (including horizontal, vertical, stacked horizontal and stacked vertical charts) which already have
several exciting challenges. Finally, we present the retrieved content in a tabular format that is screen-reader friendly and
accessible to the BLV users. We present a thorough evaluation of our approach by applying our pipeline to sample real-world
annotated bar charts from research papers.
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1. Introduction
Academic research is advancing at an incredible pace,
with thousands of scientific documents published
monthly [1]. These documents often use figures/charts
as a medium for data representation and interpretation.
However, the blind, low-vision and other print-disabled
(BLV) individuals are often deprived of insights and un-
derstanding offered by these figures. Although these are
converted into non-visual, screen-reader friendly repre-
sentations such as alt-text, data table, etc., there is a lot
of reliance on volunteers for this conversion, making it
an extremely time-consuming process. In most cases,
even the alternate text fails to describe charts properly.
Hence, our goal in this paper is to design a fully auto-
mated pipeline to extract useful information from charts,
specifically bar charts, and convert them into accessible
data tables. Potential applications of our system include
helping authors provide meaningful captions to their fig-
ures in papers, improving search and retrieval of relevant
information in the academic domain, generating sum-
maries from charts, building query-answering systems,
developing interfaces that can provide simple and con-
venient access to complex information, making charts
accessible for BLV individuals, and helping academic
committees and publishers identify plagiarized articles.
Given the remarkable progress in analyzing natural

scene images observed in recent years, it is generally
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assumed that analyzing scientific figures is a trivial task.
However, understanding charts/infographics present a
plethora of complex challenges. Firstly, a high level of
accuracy is expected while parsing the figure plot data,
as even a small mistake in analyzing chart data can lead
to erroneous conclusions. Also, authors employ different
design conventions while structuring and formatting the
figures, resulting in high variations across different pa-
pers. It is also challenging to extract information from
charts amidst heavy clutter and deformation within the
plot area. Even though the color is an essential cue for
differentiating the plot data, it may only sometimes be
present because many figures frequently reuse similar
colors and some are even published in grayscale. Also,
figure parsing presents an additional challenge because
there is only one exemplar (the legend symbol) available
for model learning, in contrast to natural image recogni-
tion tasks where the desired amount of labeled training
data can be obtained to train models per category. Due
to these challenges, there currently needs to be a sys-
tem that can automatically parse data from scientific
figures/charts.
In this paper, we make three key contributions. First,

we propose ChartParser, a fully automated pipeline that
leverages deep learning, OCR, and image processing tech-
niques to extract all figures from a research paper, classify
them into various chart categories and retrieve useful
information from them, specifically bar charts. Second,
we address some of the key challenges present in exist-
ing systems. For example, our system can parse legend
and utilize color information for data association. It is
also robust to variations in the figure designs and has
no assumptions related to the position of axes, legend,
etc. And finally, we demonstrate the viability of our ap-
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proach by applying our pipeline to a real-world dataset
of research papers from different sources.

2. Related Work
Chart understanding in scientific literature has recently
gained much traction and there have been several at-
tempts to classify charts using heuristics and expert rules.
Various machine learning-based algorithms that rely on
handcrafted features such as histogram of oriented gradi-
ents (HOG), scale-invariant feature transform (SIFT), and
others have been proposed in the literature [2, 3]. Sev-
eral deep learning algorithms for chart and table image
classification have recently been introduced [4, 5], and
[6].

There is another line of work on interpreting text com-
ponents in chart images [7, 8, 9, 10, 11, 12]. Although
semi-automatic software solutions are available for data
extraction from charts, using them requires the user to
manually define the chart’s coordinate system, provide
metadata about the axes and data or click on the data
points [13, 14, 15].

One of the difficulties in accurately parsing bar charts
is dealing with different types of bar charts in scientific
literature. Previous work, for example, [16, 17], focused
on developing heuristic models that detect key elements
such as bars, legends, etc. Similarly, machine learning
has also been used recently to detect chart components
(e.g., bar or legend) [18]. Also, a deep learning object
detection model is trained in [19] to identify sub-figures
in compound figures. However, neither of these works
extracted data values from bar charts. Using synthetic
data produced by the matplotlib toolkit, [20] created a
model to boost the accuracy while parsing bar values.

Most of the previous methods do not parse the legend.
Some assumed that the legend was always placed below
the chart [20] or horizontally along the same line [21].
This limits the applicability of these models. Previous
work was mostly created for visualizations in grayscale,
as they did not parse color information from the legend.
Also, there has been less focus on measuring the accu-
racy of detecting the axes or label values. Quantifying
the accuracy of obtaining this semantic information is
essential for understanding the capping limits in this eval-
uation process. Even though the process of extracting
information from charts and other infographics has been
extensively explored, to our knowledge, prior work has
several shortcomings as discussed above. As a result,
we propose a fully automated system for data extraction
from bar charts which solves these existing limitations
and can be extended to other types of charts, including
line charts, scatter plots, etc.

3. Methodology
This section discusses our proposed pipeline to convert
bar charts from scientific publications into data tables.
The process is divided into three steps: First, we ex-
tract figures from research papers. Second, we detect
bar charts from the extracted figures. And finally, we
extract content from bar charts to obtain the desired data
tables. These three steps are depicted in Figure 2.

3.1. Figure Extraction
To segment all the figures from a research paper, we
use a pre-trained image segmentation model based on
Mask R-CNN architecture from Detectron2 model zoo
to decompose a document into five categories: title, text
block, list, figure, and table. The model is based on the
ResNet50 feature pyramid network (FPN) base config and
is trained on the PubLayNet dataset for document layout
analysis.

3.2. Figure Classification
Most of the figures extracted are charts including tree
diagrams, network diagrams, bubble charts, etc. This
step describes the chart classification model employed to
detect bar charts.

3.2.1. Chart Images Dataset

We create a chart dataset to train and evaluate our chart
classification model. We use the Python module google
images download to obtain charts from 13 categories
(scatter plots, bar charts, line charts, etc.), 1000 images
from each category. Then, we manually identify and
remove some incorrect samples of downloaded charts.
Finally, we obtain a ground-truth dataset of charts with
a total of approximately 12k charts, including 978 bar
charts.

3.2.2. Chart Classification Model

We try out different models pre-trained on the ImageNet
dataset and fine-tune them on the figure dataset cre-
ated. All the layers but the final convolutional layer
were frozen. The fully-connected layer uses a softmax
function to classify figures into 13 chart categories. Using
Adadelta as the optimizer, we re-train the convolutional
layer and the additional fully-connected layer for 30 it-
erations. We also add a dropout layer with a rate of 0.3
before the final fully-connected layer to avoid overfitting.
Despite similar accuracy achieved by all the baselines,
we choose MobileNet as it uses far less parameters on
ImageNet than others.



Figure 1: Illustration of the ChartParser pipeline

3.3. Content Extraction
Content Extraction from charts is a complex process
and in this step, we employ OCR and image processing
techniques to extract relevant content from bar charts
through various modules.

3.3.1. Axes Detection

We convert the image into a binary one, and then, obtain
the max-continuous ones along each row and column.
For this, we scan the matrix vertically and horizontally
to trace the continuity of black pixels within the adjacent
columns and rows. Finally, the y-axis is the first column
where the max-continuous 1s fall in the region [max
- threshold, max + threshold], where a predetermined
threshold (=10) is assumed. Similarly, for the x-axis, the
last row is chosen based on where the maximum con-
tinuous 1s fall within the range [max - threshold, max +
threshold].

3.3.2. Text Detection

We apply Azure Cognitive Service (ACS) Optical Charac-
ter Recognition (OCR) to detect text within a chart and
extract all the rectangular bounding boxes of the detected
text.

3.3.3. Axes Ticks Detection

We filter all the text boxes below the x-axis and to the
right of the y-axis. Further, we run a sweeping line from
the x-axis to the bottom of the image and the line which
intersects with the maximum number of text boxes pro-
vides the bounding boxes for all the x-axis ticks. A similar
algorithm is used for detecting y-axis ticks using a verti-
cal sweeping line.

3.3.4. Axes Label Detection

We filter the text boxes present below the x-axis ticks and
again, run a sweeping line from the x-axis ticks to the
bottom of the image. While doing so, the line intersecting
with the maximum number of text boxes provides us with
all the bounding boxes for the x-axis label. Similarly, we
also obtain the y-axis label using a vertical sweeping line.

3.3.5. Legend Detection

Firstly, we remove the axes labels and ticks bounding
boxes. Then, we also remove boxes containing only a
single ”I” character because these are typically read as
error bars and finally, we also remove text boxes with
numeric values placed above bars. This implies that only
legend names and color boxes are found in the remaining



text boxes. We combine the bounding boxes with dis-
tances under 10px into a single legend name because the
legend names might have multiple words. We organize
these bounding boxes into groups where each member
is either horizontally or vertically aligned with at least
one other member. Finally, the maximum length group
gives the bounding boxes for all the legends.

3.3.6. Legend Color Estimation

The color boxes are assumed to be on the left or right
side, depending on the placement of text bounding box
within the legend extracted in the previous module. Pix-
els within a box should ideally all have the same pixel
value. Since, these values could change for several rea-
sons (such as image compression, scanning, etc.), we
start a new group with a random pixel and gradually add
pixels whose R, G, and B values are no higher than 5
compared to the average of all the pixels in the group.
The color of a legend label is determined by taking the
average of all the pixels in the largest group of the R, G,
and B channels. Later, bars matching a specific legend
are identified using these colors.

3.3.7. Data Extraction

The bounding boxes for each legend are whitened, and
we eliminate all the white pixels from the original chart
image. The colors decided upon in the previous module
serve as the initial clusters as all of the image’s pixel
values are further divided into clusters. Then, we divide
the given plot into multiple plots, one for each cluster.
In other words, by clustering, we break down a stacked
bar chart into several simpler plots. Then, we obtain
all contours within the plot and subsequently, pick the
closest bounding rectangle for each label. Further, we
require a mapping function to map pixel values to actual
values in the chart. Hence, we use the value-tick ratio (𝛼)
to estimate the height of each bar. To find this ratio, we
divide the average of the actual y-label ticks (𝑁𝑡 𝑖𝑐𝑘𝑠) by
the average distance between ticks in pixels (Δ𝑑).

𝛼 = 𝑁𝑡 𝑖𝑐𝑘𝑠/Δ𝑑 (1)

Finally, the bar chart’s y values are defined as y value =
𝛼 × H, where H is the bar’s height. After getting all the
relevant information, we create a data table using the
same as shown in Figure 2 (e.).

4. Results
This section focuses on creating a test dataset of bar
charts from research papers and evaluating various com-
ponents of our pipeline on this dataset to demonstrate
the viability of our approach.

Table 1
Content extraction accuracy

Component Accuracy (%)
X-axis 97
Y-axis 94

X-axis label 95
Y-axis label 91
X-axis ticks 89
Y-axis ticks 84
Legend 87

Legend color 87
Data association 76

4.1. Test Dataset
We sample research papers from two data sources: arXiv
and PubLayNet. From the arXiv dataset published on
Kaggle [22], we obtained research paper PDFs published
in the years 2019-2021 and the resulting dataset consisted
of around 10,024 papers. Also, we use a subset of the Pub-
LayNet dataset [23] and obtain approximately 15k docu-
ment images from the same. Then, we apply the first two
steps of our fully automated pipeline to these research
papers, as mentioned in the previous section 3. First,
we extract approximately 51k figures from the research
papers dataset using our image segmentation model, and
then, on applying our chart classification model to these
figures, we obtain approximately 2,112 bar charts. To
evaluate our system, we sample 100 bar charts and manu-
ally annotate the relevant data, including axes, axes label,
axes tick’s values, legend, legend color, and the textual
bounding boxes.

4.2. Chart Classification
The accuracy of our chart classification model is calcu-
lated using stratified five-fold cross validation. Here, we
use 20% of the chart images dataset, created using google
images download API, as our validation set and the cate-
gory wise performance (average accuracy) of our model
is presented in Table 4.2. We observe that for bar charts,
our model achieves an accuracy of 97.8%.

4.3. Text Recognition
We use the Intersection Over Union (IoU) metric to assess
our text detection module. This metric determines the
bounding boxes that most closely match the predicted
and actual ones, calculates the area of the intersecting
region divided by the area of the union region for each
match, and considers the prediction successful if the IoU
measure is higher than the threshold, for example, 0.5.We
achieve an F1-score of 0.935 with an IoU threshold of
0.5 and this demonstrates that our module detects text
bounding boxes within the plot area fairly well.



Category Accuracy (%)
Bar Chart 97.8
Line Chart 96.86
Scatter Plot 92.00
Pareto chart 84.20
Pie Chart 91.52

Venn Diagram 87.88
Box Plot 94.56

Network Diagram 68.97
Map 79.26

Tree Diagram 69.09
Area Graph 88.00
Flow Chart 75.54
Bubble Chart 92.20

Table 2
Category wise average accuracy of the chart classification
model

4.4. Content Extraction
The performance of the final content extraction process
depends on the sequential performance of each module,
i.e., axis detection, axis tick values extraction, label ex-
traction, legend detection, and so on. First, we apply
the OCR and image processing techniques to the test
dataset and extract relevant content. Then, we compare
the outcome with the manually annotated data and ob-
tain module-wise evaluation metrics presented in Table
1.

5. Limitations and Future Work
This sectionmentions the existing limitations of our fully-
automated pipeline and also proposes future works for
improvement.
Currently, there is a problem with our proposed

pipeline that prevents it from successfully parsing the
plotted data when there is a lot of clutter. We can employ
vascular tracking methods like those described in [24] to
solve this.
Also, our pipeline fails to recognize axes when there

is no solid line indicating the y-axis. In this scenario, the
y-axis can be identified by recognizing bounding boxes
along a vertical line in the bar chart. Also, when the x-
axis is at the top of the graphic, x-axis detection may fail.
This case can be handled by employing a bidirectional
sweeping line with heuristic rules.
We also realize that the axes, legend, and data extrac-

tion modules are currently modeled and trained inde-
pendently in our figure analysis approach. It can be an
exciting approach to jointly model and train them to-
gether within an end-to-end deep network.

In our future work, wewill extend our pipeline to other
types of charts as well including line charts, scatter plots,
etc. which have an L-shaped axis, similar to bar charts

and also, follow a similar algorithm for extraction of chart
elements such as axes, labels, ticks, legends, etc. Instead
of simply presenting the raw data in tabular form, we
can also generate insights from the data by employing
reasoning on chart images at a high level by finding
relationships between various chart elements.

6. Conclusion
In this paper, we present our ongoing work in making
scientific documents accessible to the blind, low-vision,
and print-disabled individuals. Our work focuses on the
problem of poor accessibility of infographics/charts in
research papers. We propose an end-to-end pipeline to
extract all figures from a research paper, classify them
into various chart categories, obtain relevant informa-
tion from them, specifically bar charts and present the
retrieved content into accessible data tables. Finally, we
apply our pipeline to a test dataset of research papers
from two different sources: arXiv and PMC to demon-
strate the viability of our approach. We continue to work
towards making charts fully accessible to print-impaired
individuals by overcoming the existing limitations of our
work.
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