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Abstract
Most existing large-scale academic search engines are built to retrieve text-based information. However, there are no large-
scale retrieval services for scientific figures and tables. One challenge for such services is understanding scientific fig-
ures’ semantics, such as their types and purposes. A key ob- stacle is the need for datasets containing annotated scientific
figures and tables, which can then be used for classification, question-answering, and auto-captioning. Here, we develop a
pipeline that extracts figures and tables from the scientific lit- erature and a deep-learning-based framework that classifies
scientific figures using visual features. Using this pipeline, we built the first large-scale automatically annotated corpus,
ACL-FIG consisting of 112,052 scientific figures extracted from ≈ 56K research papers in the ACL Anthology. The ACL-FIG-
PILOT dataset contains 1,671 manually labeled scientific figures belonging to 19 categories. The dataset is ac- cessible at
https://huggingface.co/datasets/citeseerx/ACL-fig under a CC BY-NC license.
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1. Introduction
Figures are ubiquitous in scientific papers illustrating
experimental and analytical results. We refer to these
figures as scientific figures to distinguish them from nat-
ural images, which usually contain richer colors and
gradients. Scientific figures provide a compact way to
present numerical and categorical data, often facilitating
researchers in drawing insights and conclusions. Ma-
chine understanding of scientific figures can assist in
developing effective retrieval systems from the hundreds
of millions of scientific papers readily available on the
Web [1]. The state-of-the-art machine learning models
can parse captions and shallow semantics for specific
categories of scientific figures. [2] However, the task of
reliably classifying general scientific figures based on
their visual features remains a challenge.
Here, we propose a pipeline to build categorized and

contextualized scientific figure datasets. Applying the
pipeline on 55,760 papers in the ACL Anthology (down-
loaded from https://aclanthology.org/ in mid-2021), we
built two datasets: ACL-Fig andACL-Fig-pilot. ACL-Fig
consists of 112,052 scientific figures, their captions, inline
references, and metadata. ACL-Fig-pilot (Figure 1) is a
subset of unlabeled ACL-Fig, consisting of 1671 scientific
figures, which were manually labeled into 19 categories.
The ACL-Fig-pilot dataset was used as a benchmark
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Figure 1: Example figures of each type in ACL-Fig-pilot.

for scientific figure classification. The pipeline is open-
source and configurable, enabling others to expand the
datasets from other scholarly datasets with pre-defined
or new labels.

2. Related Work
Scientific Figures Extraction Automatically extract-
ing figures from scientific papers is essential for many
downstream tasks, and many frameworks have been de-
veloped. A multi-entity extraction framework called
PDFMEF incorporating a figure extraction module was
proposed [3]. Shared tasks such as ImageCLEF [4] drew
attention to compound figure detection and separation.
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Table 1
Scientific figure classification datasets.

Dataset Labels #Figures Image Source

Deepchart 5 5,000 Web Image
Figureseer1 5 30,600 Web Image
Prasad et al. 5 653 Web Image
Revision 10 2,000 Web Image
FigureQA3 5 100,000 Synthetic figures

DeepFigures 2 1,718,000 Scientific Papers
DocFigure2 28 33,000 Scientific Papers
ACL-Fig-pilot 19 1,671 Scientific Papers
ACL-Fig (inferred)4 - 112,052 Scientific Papers

1 Only 1000 images are public.
2 Not publicly available.
3 Scientific-style synthesized data.
4 ACL-Fig does not contain human-assigned labels.

Clark and Divvala [5] proposed a framework called PDF-
Figures that extracted figures and captions in research
papers. The authors extended their work and built a more
robust framework called PDFFigures2 [6]. DeepFigures
was later proposed to incorporate deep neural network
models [2].

Scientific Figure Classification Scientific figure clas-
sification [7, 8] aids machines in understanding figures.
Early work used a visual bag-of-words representation
with a support vector machine classifier [7]. Zhou and
Tan applied hough transforms to recognize bar charts in
document images. Siegel et al. [10] used handcrafted fea-
tures to classify charts in scientific documents. Tang et al.
[11] combined convolutional neural networks (CNNs)
and the deep belief networks, which showed improved
performance compared with feature-based classifiers .

Figure classification Datasets There are several ex-
isting datasets for figure classification such as DocFigure
[12], FigureSeer [10], Revision [7], and datasets presented
by Karthikeyani and Nagarajan [13] (Table 1). FigureQA
is a public dataset that is similar to ours, consisting of
over one million question-answer pairs grounded in over
100,000 synthesized scientific images [14] with five styles.
Our dataset is different from FigureQA because the fig-
ures were directly extracted from research papers. Espe-
cially, the training data of DeepFigures are from arXiv
and PubMed, labeled with only “figure” and “table”, and
does not include fine-granular labels. Our dataset con-
tains fine-granular labels, inline context, and is compiled
from a different domain.

DeepFigures

Automatic 
annotation

PDFFigures2
Figure 

Extraction Figures, captions, inline reference

Clustering

Vector Representation

Labeled figures with metadata

VGG16

Labeled figures

k-means + Silhouette

Pattern matching

Human labeling

Figure 2: Overview of the data generation pipeline.

3. Data Mining Methodology
The ACL Anthology is a sizable, well-maintained PDF
corpus with clean metadata covering papers in computa-
tional linguistics with freely available full-text. Previous
work on figure classification used a set of pre-defined
categories (e.g., [14], which may only cover some figure
types. We use an unsupervised method to determine
figure categories to overcome this limitation. After the
category label is assigned, each figure is automatically



annotated with metadata, captions, and inline references.
The pipeline includes 3 steps: figure extraction, cluster-
ing, and automatic annotation (Figure 2).

3.1. Figure Extraction
To mitigate the potential bias of a single figure extractor,
we extracted figures using pdffigures2 [6] and deep-
figures [2] which work in different ways. PDFFigures2
first identifies captions and the body text because they
are identified relatively accurately. Regions containing
figures can then be located by identifying rectangular
bounding boxes adjacent to captions that do not overlap
with the body text. DeepFigures uses the distant super-
vised learning method to induce labels of figures from
a large collection of scientific documents in LaTeX and
XML format. The model is based on TensorBox, applying
the Overfeat detection architecture to image embeddings
generated using ResNet-101 [2]. We utilized the publicly
available model weights1 trained on 4M induced figures
and 1M induced tables for extraction. The model out-
puts the bounding boxes of figures and tables. Unless
otherwise stated, we collectively refer to figures and ta-
bles together as “figures”. We used multi-processing to
process PDFs. Each process extracts figures following
the steps below. The system processed, on average, 200
papers per minute on a Linux server with 24 cores.

1. Retrieve a paper identifier from the job queue.
2. Pull the paper from the file system.
3. Extract figures and captions from the paper.
4. Crop the figures out of the rendered PDFs using de-

tected bounding boxes.
5. Save cropped figures in PNG format and the metadata

in JSON format.

3.2. Clustering Methods
Next, we use an unsupervised method to label extracted
figures automatically. We extract visual features using
VGG16 [15], pretrained on ImageNet [16]. All input fig-
ures are scaled to a dimension of 224 × 224 to be compat-
ible with the input requirement of VGG16. The features
were extracted from the second last hidden (dense) layer,
consisting of 4096 features. Principal Component Analy-
sis was adopted to reduce the dimension to 1000.
Next, we cluster figures represented by the 1000-

dimension vectors using 𝑘-means clustering. We com-
pare two heuristic methods to determine the optimal
number of clusters, including the Elbow method and the
Silhouette Analysis [17]. The Elbow method examines
the explained variation, a measure that quantifies the dif-
ference between the between-group variance to the total
variance, as a function of the number of clusters. The

1https://github.com/allenai/deepfigures-open

pivot point (elbow) of the curve determines the number
of clusters.

Silhouette Analysis determines the number of clusters
by measuring the distance between clusters. It considers
multiple factors such as variance, skewness, and high-low
differences and is usually preferred to the Elbow method.
The Silhouette plot displays how close each point in one
cluster is to points in the neighboring clusters, allowing
us to assess the cluster number visually.

3.3. Linking Figures to Metadata
This module associates figures to metadata, including
captions, inline reference, figure type, figure boundary
coordinates, caption boundary coordinates, and figure
text (text appearing on figures, only available for results
from PDFFigures2). The figure type is determined in
the clustering step above. The inline references are ob-
tained using GROBID (see below). The other metadata
fields were output by figure extractors. PDFFigures2
and DeepFigures extract the same metadata fields ex-
cept for “image text” and “regionless captions” (captions
for which no figure regions were found), which are only
available for results of PDFFigures2.

An inline reference is a text span that contains a refer-
ence to a figure or a table. Inline references can help to
understand the relationship between text and the objects
it refers to. After processing a paper, GROBID outputs a
TEI file (a type of XML file), containing marked-up full-
text and references. We locate inline references using
regular expressions and extract the sentences containing
reference marks.

4. Results

4.1. Figure Extraction

PDFFigures2 DeepFigures

14283 240623 9046

Figure 3: Numbers of extracted images.

The numbers of figures extracted by PDFFigures2 and
DeepFigures are illustrated in Figure 3, which indicates
a significant overlap between figures extracted by two
software packages. However, either package extracted (≈
5%) figures that were not extracted by the other package.
By inspecting a random sample of figures extracted by
either software package, we found that DeepFigures
tended to miss cases in which two figures were vertically
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Figure 4: Figure class distribution in the ACL-Fig-pilot
dataset.

adjacent to each other. We took the union of all figures
extracted by both software packages to build the ACL-
Fig dataset, which contains a total of 263,952 figures. All
images extracted are converted to 100 DPI using standard
OpenCV libraries. The total size of the data is ∼ 25GB
before compression. Inline references were extracted
using GROBID. About 78% figures have inline references.

4.2. Automatic Figure Annotation
The extraction outputs 151,900 tables and 112,052 figures.
Only the figures were clustered using the 𝑘-means algo-
rithm. We varied 𝑘 from 2 to 20 with an increment of 1
to determine the number of clusters. The results were
analyzed using the Elbow method and Silhouette Analy-
sis. No evident elbow was observed in the Elbow method
curve. The Silhouette diagram, a plot of the number of
clusters versus silhouette score exhibited a clear turn-
ing point at 𝑘 = 15, where the score reached the global
maximum. Therefore, we grouped the figures into 15
clusters.

To validate the clustering results, 100 figures randomly
sampled from each cluster were visually inspected. Dur-
ing the inspection, we identified three new figure types:
word cloud, pareto, and venn diagram. The ACL-Fig-pilot
dataset was then built using all manually inspected fig-
ures. Two annotators manually labeled and inspected
these clusters. The consensus rate was measured using
Cohen’s Kappa coefficient, whichwas 𝜅−0.78 (substantial
agreement) for the ACL-Fig-pilot dataset. For complete-
ness, we added 100 randomly selected tables. Therefore,
the ACL-Fig-pilot dataset contains a total of 1671 figures
and tables labeled with 19 classes. The distribution of all
classes is shown in Figure 4.

5. Supervised Scientific Figure
Classification

Based on the ACL-Fig-pilot dataset, we train supervised
classifiers. The dataset was split into a training and a test
set (8:2 ratio). Three baseline models were investigated.
Model 1 is a 3-Layer CNN, trained with a categorical
cross-entropy loss function and the Adam optimizer. The
model contains three typical convolutional layers, each
followed by a max-pooling and a drop-out layer, and
three fully-connected layers. The dimensions are reduced
from 32 × 32 to 16 × 16 to 8 × 8. The last fully connected
layer classifies the encoded vector into 19 classes. This
classifier achieves an accuracy of 59%.

Model 2 was trained based on the VGG16 architecture
,except that the last three fully-connected layers in the
original network were replaced by a long short-term
memory layer, followed by dense layers for classification.
This model achieved an accuracy of ∼ 79%, 20% higher
than Model 1.
Model 3 was the Vision Transformer (ViT) [18], in

which a figure was split into fixed-size patches. Each
patch was then linearly embedded, supplemented by po-
sition embeddings. The resulting sequence of vectors was
fed to a standard Transformer encoder. The ViT model
achieved the best performance, with 83% accuracy.

6. Conclusion
Based on the ACL Anthology papers, we designed a
pipeline and used it to build a corpus of automatically
labeled scientific figures with associated metadata and
context information. This corpus, named ACL-Fig, con-
sists of ≈ 250k objects, of which about 42% are figures
and about 58% are tables. We also built ACL-Fig-pilot, a
subset of ACL-Fig, consisting of 1671 scientific figures
with 19 manually verified labels. Our dataset includes
figures extracted from real-world data and contains more
classes than existing datasets, e.g., DeepFigures and Fig-
ureQA.
One limitation of our pipeline is that it used VGG16

pre-trained on ImageNet. In the future, we will improve
figure representation by retraining more sophisticated
models, e.g., CoCa, [19], on scientific figures. Another
limitation was that determining the number of clusters
required visual inspection. We will consider density-
based methods to fully automate the clustering module.
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