
Exploiting Contextual Embeddings to Extract Topic
Genealogy from Scientific Literature
Alfio Ferrara1, Stefano Montanelli1, Sergio Picascia1,∗ and Davide Riva1,∗

1Università degli Studi di Milano
Department of Computer Science
Via Celoria, 18 - 20133 Milano, Italy

Abstract
Modeling the evolution of topics and forecast future trends is a crucial task when analyzing scientific papers. In this work we
propose tASKE (temporal Automated System for Knowledge Extraction), a dynamic topic modeling approach which exploits
zero-shot classification and contextual embeddings in order to track topic evolution through time. The approach is evaluated
against a corpus of data science papers, assessing the ability of tASKE to correctly classify documents and retrieving relevant
derivation relationships between older and new topics in time.
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1. Introduction
With the amount of published scientific literature increas-
ing each year, keeping track of newly formulated topics
and their derivation process becomes a challenge for re-
searchers, scholars, and publishers. The problem lies in
the fact that the total amount of definitions, theorems,
properties, tasks, and subdomains tends to grow expo-
nentially, since several of them may be conceived start-
ing from a single one or the interaction of a few ones.
For instance, in the domain of Machine Learning, the
idea of neural networks gave rise to that of deep learning,
which has then been applied to problems such as image
reconstruction and partial differential equations, and was
further deepened with topics such as attention, which
in turn provided the intuition behind transformers and a
basis for explainability.
Referring to definitions, theorems, properties, tasks,

subdomains and the like with the generic label of “top-
ics”, abstract objects a text refers to, it is possible to study
“topic genealogy” in a diachronic corpus, i.e. the descent
of topics from older ones over time. The task of extract-
ing topic genealogy falls within the scope of Knowledge
Extraction (KE), and it consists of two main sub-tasks: i)
topic extraction, by which we aim to retrieve topics that
are important in a written document, possibly in a timely
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manner in order to discover topics when they actually ap-
pear, and ii) genealogy reconstruction, in which extracted
topics are placed in a tree structure representing their
lineage in the history of the discipline.
In this paper, we present tASKE, a method to extract

topics from a diachronic corpus of scientific papers and
reconstruct their genealogy in a completely unsupervised
way. Our method is developed upon our Automated
System for Knowledge Extraction (ASKE) framework [1],
which relies on pre-trained contextual embeddingmodels
to represent documents and topics in the same vector
space and on a cyclical term extraction and clustering
phase to extract new topics. Besides presenting tASKE
as a time-aware extension of ASKE, we introduce an
evaluation framework and a case study on a corpus of
abstracts of scientific papers related to the Data Science
domain, with the goal of demonstrating the effectiveness
of tASKE both for topic extraction and for extracting
topic-to-topic derivation relationships.
The work is organized as follows: Section 2 Related

Work reports on the literature about topic modeling as
well as the technology underlying our method. Section 3
Methodology presents the methodology and techniques
enforced in tASKE. Section 4 Case Study and Evaluation
presents the case study on a Data Science Literature
corpus, on which the evaluation was conducted. Sec-
tion 5 Concluding Remarks draws some conclusions and
sketches some future work.

2. Related Work
The task of classifying large amounts of textual docu-
ments without relying on labeled data and presenting la-
tent features of texts, such as hidden topics, is commonly
addressed employing topic modeling techniques. Latent
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Figure 1: The tASKE Conceptual Graph.

Semantic Analysis (LSA) [2] was one of the first proposed
approaches, exploiting Singular Value Decomposition
(SVD) in order to reduce the number of dimensions of
a document-term matrix and to easily compute similar-
ity between document vector representations. LSA was
soon followed by Latent Dirichlet Allocation (LDA) [3],
which employs Bayesian analysis in order to optimize
the distributions of documents belonging to topics, and
of words defining these topics. The majority of recent
works in topic modeling takes its inspiration from the
original LDA with several variations proposed, such as
Correlated Topic Modeling [4] and Hierarchical Topic
Modeling [5].

Common topic modeling methods are not able to cap-
ture the changes of topics over time. For this reason,
techniques of Dynamic Topic Modeling (DTM) are em-
ployed when dealing with diachronic corpora. Since the
first approach (Dynamic LDA [6]) was proposed, the field
has been attracting attention among researchers. Among
the possible applications of the designed methods, the
study of scientific papers, also known as “Scientometrics”,
was addressed with the aim to assess past and present
trends in a specific discipline [7] or to forecast possible
future subareas of research interest [8].

Later studies have been taking into consideration the
integration between DTM and word embeddings [9] so to
further capture the semantic aspect of the analyzed doc-
uments [10]. Embedding techniques are vastly employed
in the field of Natural Language Processing (NLP), in or-
der to represent textual data in a vector space. Several
models capable of computing contextual token embed-
dings have been released since the presentation of BERT

[11], each of them being tailored to specific tasks, such
as semantic similarity [12] and zero-shot learning [13].
Zero-Shot Learning (ZSL) is a problem setup in the

field of machine learning, where a classifier is required
to predict labels of examples extracted from classes that
were never observed in the training phase. It was firstly
referred to as dataless classification in 2008 [14] and has
quickly become a subject of interest, particularly in the
field of NLP. The great advantage of this approach con-
sists in the resulting classifier being able to operate effi-
ciently in a partially or totally unlabeled environment.
tASKE aims at dynamically modeling the presence

and evolution of latent topics in a diachronic corpus of
documents. It exploits zero-shot learning and contextual
embeddings not only to perform the classification task,
but also to extract relevant knowledge from textual data.

3. Methodology
The objective of tASKE is to extract a genealogy of topics
from a diachronic corpus of documents. Every piece of in-
formation is stored in a graph-based data structure called
tASKE Conceptual Graph (ACG), whose architecture is
illustrated in Figure 1.

The nodes in the ACG model belong to three different
categories:

• document chunks 𝐾: the object of the analysis,
they are small portions of the original documents
extracted through the application of tokenization
techniques. They are tuples of the form (𝑘,k),
where 𝑘 is the text of the document chunk and k
is its vector representation;
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Figure 2: The tASKE cycle at time 𝑡.

• topics 𝐶: they represent the abstract objects to
which documents chunks are assigned and, in
practice, they are clusters of related terms. They
are tuples of the form (𝑐, c), where 𝑐 is the label
given to the topic and c is its vector representa-
tion;

• terms 𝑊: they are extracted from document
chunks and clustered together in order to form
topics. They are triplets of the form (𝑤𝑠, 𝑤𝑑,w),
where 𝑤𝑠 is the label of the term, 𝑤𝑑 is a short
sentence giving the term definition, and w is the
term vector representation.

The vector representations k of document chunks and
w of terms are computed by an embedding model which
maps a text into a vector space: for k, the embedding
model is applied over the document chunk text 𝑘, while
forw, it is applied over the term definition 𝑤𝑑. The vector
representation c of topics is computed as the mean of the
vectors w𝑖 of all the terms 𝑤𝑖 belonging to 𝑐. The label of
each topic corresponds to the label 𝑤𝑠 of the term 𝑤 that
is the closest to c.
At the beginning of the analysis (i.e., time 0) the user

is required to define a set of initial topics 𝐶(0) of interest.
Each topic 𝑐(0)𝑖 ∈ 𝐶(0) is associated with a set of corre-

sponding terms𝑊 (0)
𝑖 , whose definitions are also provided

by the user. At each subsequent time 𝑡, tASKE performs
one or more iterations of the cycle depicted in Figure
2. As a first step, tASKE extracts the set of document
chunks 𝐾 (𝑡) from the subset 𝐷(𝑡) ∈ 𝐷 belonging to that
period. Such document chunks are classified with re-
spect to the topics discovered up to the previous time
period 𝑡←, 𝐶(𝑡

←). Moreover, tASKE extracts new terms

𝑊 (𝑡) from the document chunks and assigns them to the
topics 𝐶(𝑡

←), finally updating the set of current topics
𝐶(𝑡).

As a consequence of this process, in ACG a topic 𝑐(𝑡
←)

𝑗
can have multiple relations with the other components of
ACG. In particular, for 𝑐(𝑡

←)
𝑗 , we have i) relation classifica-

tion with document chunks 𝐾 (𝑡); ii) a relation derivation
with terms 𝑊 (𝑡)

𝑗 discovered from document chunks asso-

ciated with 𝑐(𝑡
←)

𝑗 ; iii) a relation belonging with terms 𝑊𝑗

in its cluster; iv) a relation derivation with a new topic 𝑐(𝑡)𝑙
formed by some of the terms in 𝑊𝑗. It can happen that

topic 𝑐(𝑡
←)

𝑘 is not associated with any document chunk at

time 𝑡. This means 𝑐(𝑡
←)

𝑘 is no longer a useful topic with
respect to the documents of time 𝑡. In this case, the topic
𝑐(𝑡

←)
𝑘 becomes inactive, together with the set of terms 𝑊𝑘
belonging to it, and it will not be able to form new topics.
This can be interpreted as the disappearance of interest
towards a certain topic, which emerged in past periods
𝑡← but has lost its relevance in the current corpus, 𝐾 (𝑡).
In the remaining part of this section, we will discuss

each phase in Figure 2, explaining in deeper details how
each of the aforementioned relations is discovered.

3.1. Data Preprocessing
Preprocessing is the starting point of the tASKE cycle. At
each time period 0, … , 𝑡, the model retrieves documents
from the period-specific subcorpus 𝐷(𝑡).
Documents are first split into document chunks 𝐾 (𝑡),

each of which can fit into the maximum input length of a
contextual embedding model. In this case, we employed



Sentence-BERT [12], a modification of the original BERT
model, which exploits siamese and triplets networks, be-
ing able to derive semantically meaningful sentence em-
beddings in form of numeric vectors. Such a model is
employed in order to extract the semantic features of
term definitions and document chunks and map them
into the same vector space.

3.2. Zero-Shot Classification
In the zero-shot classification phase, document-topic clas-
sification relationships are defined. Given the coexistence
of topics and document chunk embeddings in the same
vector space, it is possible to perform a zero-shot clas-
sification, 𝑓 ∶ 𝐾 (𝑡) → 𝐶(𝑡

←), without having the model
exposed to training examples. A similarity measure 𝜎
(e.g., cosine similarity) between the embedding vector
k(𝑡)𝑗 of each document chunk 𝑘(𝑡)𝑗 in 𝐾 (𝑡) and the embed-

ding vector c(𝑡
←)

𝑖 of each topic 𝑐(𝑡
←)

𝑖 in 𝐶(𝑡
←) is computed

and, eventually, the two are associated if their similarity
is higher than a predefined threshold 𝛼:

𝑓𝐶(𝑡←)(𝑘(𝑡)𝑗 ) = {𝑐(𝑡
←)

𝑖 ∈ 𝐶(𝑡
←) ∶ 𝜎(k(𝑡)𝑗 , c(𝑡

←)
𝑖 ) ≥ 𝛼}

Tuning hyperparameter 𝛼 is crucial since it may re-
markably affect the classification output: for example,
choosing a high value of 𝛼 could result in a highly precise
classification, despite potentially finding only a small set
of document chunks for each topic (low recall).
Finally, classification relationships are stored in ACG

by considering documents as the simple concatenation
of their chunks, so that a document 𝑑𝑗 is labelled with all
topics its chunks are labelled with.

For example, the document chunk

[...] graphical representations of causation
have been used for at least seventy years,
and the modern development of directed
acyclic graphs to portray causal systems
continues the trend. It is sometimes difficult
to understand, however, what it is about
these diagrams that is causal [...]

is classified by tASKE with the topic ‘causality’ with a
similarity score of 0.652.

3.3. Terminology Enrichment

For each topic 𝑐(𝑡
←)

𝑖 in the ACG, tASKE retrieves the set of

lemmatized terms 𝑊 (𝑡)
𝑖 appearing in the subset of docu-

ment chunks 𝐾 (𝑡)
𝑖 associated with 𝑐(𝑡

←)
𝑖 by a classification

relation. These terms vectors are placed in the same
semantic space, together with K and c, retrieving their
definition 𝑤𝑑 from an external knowledge base, such as
WordNet [15], and computing its vector representationw

by the aforementioned embedding model. This approach
addresses the problem of sense disambiguation, since
it maps distinct senses of polysemic words to different
embedding vectors.

For each retrieved term sense, the same similarity mea-
sure 𝜎 used for classification is exploited in order to com-
pute the similarity between w and the vectors represent-
ing topics and document chunks. The terms whose sum
of similarities is greater than the hyperparameter 𝛽 be-
come candidates for enriching the terminology of the
topic 𝑐(𝑡

←)
𝑖 :

𝑔(𝑐(𝑡
←)

𝑖 , 𝑊 (𝑡)
𝑖 , 𝐾 (𝑡)

𝑖 ) = {𝑤 (𝑡) ∈ 𝑊 (𝑡)
𝑖 ∶

𝜎(w(𝑡), c(𝑡
←)

𝑖 ) + 𝜎(w(𝑡),k(𝑡)𝑖 ) ≥ 𝛽}

where k(𝑡)𝑖 is the centre of the embeddings of chunks

in 𝐾 (𝑡)
𝑖 .

The set of candidate terms is sorted in descending
order according to the similarity score. In addition, one
can also define a learning rate 𝛾, which represents the
maximum number of terms that can be associated to
a certain topic at each iteration. Applying the bounds
𝛽 and 𝛾 ensures that, at each iteration, the process of
terminology enrichment will include only a small set of
terms that are supposed to be meaningful with respect
to the topic at hand.

Taking as example the topic mentioned in the previous
section, ‘causality’, it has been associated, among others,
with the following terms and similarity scores: ‘causality’
(0.773), ‘etiologic’ (0.741), ‘noncausal’ (0.737).

3.4. Topic Formation
Finally, tASKE may generate new topics in a topic forma-
tion phase. In this phase a clustering algorithm, such as
Affinity Propagation [16], is applied over the embedding
vectors w of the terms 𝑊 (𝑡)

𝑖 related to each topic 𝑐(𝑡
←)

𝑖 .
According to the results, a different operation is enforced:

• derivation: if new clusters, different from 𝑐(𝑡
←)

𝑖
are formed, each of them becomes a new topic,
derived from 𝑐(𝑡

←)
𝑖 , whose label is set equal to the

term 𝑤 closer to the cluster center;
• conservation: if no new cluster is formed, the
original topic 𝑐(𝑡

←)
𝑖 is preserved, represented by

the cluster in which the term 𝑤 corresponding to
the concept label of 𝑐(𝑡

←)
𝑖 is present;

• pruning: if a new cluster 𝑐(𝑡)𝑗 is formed but all

its member terms belong also to 𝑐(𝑡
←)

𝑖 , the newer
topic is absorbed by the older one.

In the end, term-topic belonging relationships and
topic-topic derivation relationships are stored in the ACG



together with document-topic classification relationships
defined in the zero-shot classification phase, building up
the topic genealogy. Topics 𝐶(𝑡) defined in this phase will
serve as input for the next iteration.

Considering the topic ‘causality’, consisting of the fol-
lowing set of terms {‘causality’, ‘etiologic’, ‘noncausal’,
‘event’, ‘issue’, ‘circumstance’, ‘interpretation’, ‘explanan-
dum’}, the tASKE model has formed three topics with
the corrisponding sets of terms: ‘causality’ = {‘causal-
ity’, ‘etiologic’, ‘noncausal’}, ‘event’ = {‘event’, ‘issue’, ‘cir-
cumstance’}, ‘interpretation’ = {‘interpretation’, ‘explanan-
dum’}.

4. Case Study and Evaluation
tASKE is here evaluated on a case study on Data Science
literature. The evaluation framework has to account for
three targets:

1. correctness of extracted topics,
2. correctness of the time of extraction,
3. correctness of topic-topic derivation relation-

ships.

First, a “Data Science in Scopus” corpus (hereon Sco-
pusDS Corpus), made of abstract of journal papers rang-
ing from January 2000 to December 2021, is constructed.
Then keywords defined by authors of each paper are ex-
ploited to generate a ground truth for all three targets,
and our method is evaluated against the ground truth.
Finally we perform a brief qualitative analysis of results,
which is complementary to quantitative evaluation.

4.1. Corpus Construction
The ScopusDS corpus has been retrieved from Elsevier
Scopus by downloading publications in the time inter-
val from January 2000 to December 2021 according to
selected subject areas that are concerned with the “data
science” subject. For each publication, eid, year, title, ab-
stract, document type, and author-assigned keywords have
been downloaded. Furthermore, additional metadata are
retrieved (e.g., author name and affiliation, journal/con-
ference name, ISSN, publication type). The corpus con-
tent is described in Table 1 in terms of considered subject
areas and corresponding number of retrieved publica-
tions.

Besides the paper abstract, two pieces ofmetadatawere
taken into account in the analysis: the publication date and
the list of keywords provided by the author(s). We selected
only documents of type “article” that are accompanied
by at least 3 keywords and are at least 30 words long,
finally amounting to 766,867 documents. Figure 3 shows
the number of documents and keywords per year.

ID Scopus Subject area # of pub.
1702 Artificial Intelligence 1,024,703
1800 General Decision Sciences 65,254
1801 Decision Sciences (miscellaneous) 39,058
1802 Information Systems andManage-

ment
377,259

1803 Management Science and Opera-
tions Research

258,898

1804 Statistics, Probability and Uncer-
tainty

168,219

2613 Statistics and Probability 426,341
Total 2,359,732

Table 1
Composition of the ScopusDS corpus used for evaluation

Figure 3: Number of documents and keywords per year in
ScopusDS corpus.

4.2. Definition of a Ground Truth
Keywords provided by the authors of each paper are natu-
ral candidates to form a ground truth for topic modelling
of scientific papers. Exact matching between keywords
and extracted topics, however, would yield no significant
result, because topics are defined as sets of terms whereas
keywords are strings, and author-assigned keywordsmay
not be linked to terms in the external knowledge base
employed in tASKE. Hencewe define an alternative evalu-
ation methodology which makes use of a non-contextual
word embedding model to compute the similarity be-
tween keywords and extracted topics.

For target (1), we compare clusters extracted by tASKE
with the set of keywords at each time 𝑡.

For target (2), we are interested in knowing whether
the topics were extracted at the correct time, so we com-
pare clusters extracted at each time with the entire set of
keywords. A comparison of the resulting metrics with
the ones obtained for target (1) provides an indicator of
the timeliness of tASKE extraction: if a topic 𝑐, extracted
by tASKE at time 𝑡 is more similar to keywords from time
𝑡′ ≠ 𝑡 than to the ones from 𝑡, then 𝑐 can be deemed more
appropriate to describe the subcorpus at time 𝑡′ and was
extracted either “too soon” or “too late”.



Defining target (3) is more complicated, since no ge-
nealogical structure is inherently defined on paper key-
words. We must first define a set of heuristics to derive
a ground truth from the keyword lists assigned to docu-
ments. Specifically, we say that a subsequent keyword
𝑤 ′ is derived from an antecedent keyword 𝑤 at time 𝑡 if:

• 𝑤 was associated to any document at any time
𝑡← < 𝑡;

• 𝑤 ′ has never been associated to any document at
any 𝑡← < 𝑡;

• the number of keyword co-occurrences at 𝑡, 𝐹𝑡, is
such that 𝐹𝑡(𝑤, 𝑤 ′) ≥ 1.

4.3. Quantitative Evaluation
We run tASKE on the ScopusDS corpus by selecting
years as time units in which the corpus is split. Since
tASKE requires to be initialized with a set of input topics
𝐶(0) = {𝑐(0)1 , … , 𝑐(0)𝑛 }, we exclude papers of year 2000 from
the evaluation and use the set of keywords assigned to
them to derive 𝐶(0). This set of terms 𝑊 (0) is first fil-
tered to retain only terms that appear in WordNet, i.e.
the knowledge base used for this evaluation. To avoid
the injection of spurious topics into the system, 𝐶(0) is
further filtered in order to keep only monosemic terms,
i.e. terms that are linked to a single WordNet synset, and
the 100 with the highest frequency are sampled. In order
to retrieve initial topics from this set of terms, we apply
Affinity Propagation [16], eventually obtaining 𝑛 = 20
topic clusters, mostly related to mathematics (e.g. re-
gressions analysis = {regression analysis, linear regression,
multiple regression}) and computer science (internet =
{internet, information system, bandwidth, world wide web,
electronic mail}), but also to domain of application (air
pollution = {air pollution, air transport}).
As for hyperparameters, we set thresholds 𝛼 and 𝛽

equal to one another so to have a single learning rate,
and since we found the system to be effective for 𝛽 ≤ 0.35,
the experiments were conducted with 𝛼 = 𝛽 = 0.35 to
achieve efficiency in terms of computation time.
To assess the closeness of topics retrieved by tASKE

to the ground truth, we train a Word2Vec model on a
pseudo-corpus whose documents are a concatenation of
document chunks and their ground truth keywords. By
exploiting this model, as was done for instance in [17],
it is possible to embed keywords and extracted terms in
the same vector space. For each year, we define topic
embeddings again as the centroids of the embeddings of
topic-related terms, which may change from year to year
even for the same topic, and we compute cosine similarity
between the resulting vectors and the set of keywords.
This is done by single linkage, i.e. finding the closest
keyword for each topic embedding. Figure 4 reports the

mean and the standard deviation of the results for each
year.

Figure 4: Distributions of similarities between topics ex-
tracted in each year and the closest keyword from the same
year (blue bars), or the closest keyword from all years (orange
bars).

Outcomes displayed in Figure 4 are promising, with a
mean similarity going from 86.99% in 2001 (𝑠𝑑 = 9.98%)
to 80.20% in 2021 (𝑠𝑑 = 13.47%), touching a minimum
equal to 77.12% (𝑠𝑑 = 10.98%) for year 2006. The figure
does not prove only the effectiveness of tASKE for target
(1), i.e. to discover topics in a corpus, but also for target
(2), i.e. to discover them at the proper time. Indeed,
at each year, matching with keywords from other years
yields better similarities only for few topics per year, as is
proven by the overlapping of the similarity distributions.

In the same way as we did for each topic, we can mea-
sure the maximal similarity between each keyword and
the set of topics in each year, which may be considered a
proxy for recall. Resulting similarity distributions, going
from 34.77% mean (𝑠𝑑 = 11.28%) in 2001 to 65.81% mean
(𝑠𝑑 = 12.76%) in 2021, are displayed in Figure 5. Although
maximising recall was not our main interest, we found
that the system gets closer and closer to finding at least
a topic for each keyword.

Figure 5: Distributions of similarities between keywords from
each year and the closest topic from the same year (blue bars),
or the closest topic from all years (orange bars).



Figure 6: A sample of the final topic genealogy produced by tASKE.

As for target (3), we experimented with the same eval-
uation method, taking into account the derivation pairs
defined in the ground truth, of the type (antecedent topic,
subsequent topic), together with the year of derivation.
Topic and keyword embeddings are concatenated, form-
ing derivation pair embeddings; similarities are then com-
puted by finding the keyword pair closest to each topic
pair.

Results for target (3) are shown in Table 2, both in the
case that accounts only for direct derivation relationships
𝑐(𝑡

←)
𝑖 → 𝑐(𝑡)𝑗 and for the one in which indirect derivations

were considered as well, i.e. 𝑐(𝑡
←)

𝑖 → 𝑐(𝑡)𝑗 if ∃𝑐(𝜏1), … , 𝑐(𝜏𝐿)

with 𝜏1, … , 𝜏𝐿 ∈ (𝑡←, 𝑡) such that 𝑐(𝑡
←)

𝑖 → 𝑐(𝜏1), 𝑐(𝜏𝑙)𝑖 →
𝑐(𝜏𝑙+1) ∀𝑙 = 1, … , 𝐿 and 𝑐(𝜏𝐿) → 𝑐(𝑡)𝑗 .

Mean Std
Only direct
derivations

67.24% 14.51%

Including
indirect
derivations

69.79% 14.43%

Table 2
Mean and standard deviation of similarities between topic
derivation pairs and keyword derivation pairs.

Results are naturally better when indirect derivation
relationships are included, but the difference between
these and the ones that accounted only for direct relation-
ships is small enough to assume tASKE can find short-
term derivations, but has more difficulty in managing
long-term ones, likely due to cumulative errors.

4.4. Qualitative Analysis
To grasp the potential as well as the current limitations of
tASKE in a broader perspective, we looked at the geneal-
ogy it produces and at the topics having low similarity
with keywords from the same year, as well as derivation
relationships they are involved in. An example of the
topic genealogy produced by tASKE is shown in Figure
6.

We noticed that the number of extracted topics tends
to grow quadratically in the first iterations, going from
57 (containing 178 terms) in year 2001 to 3039 (with 8950
terms) in 2009, while slowing down at later iterations,
reaching 6135 topics and 18189 terms in 2021. This be-
havior is indicative of the fact that the system accelerates
until most common knowledge is retrieved. A surplus
of generic topics is produced. Such topics contain few
terms and also contribute to lower the similarity with
keywords, as most of these belong to domain lexicon.
For instance, topics ‘diagram’, ‘cast’, ‘fill’, ‘known’, ‘let’,
‘lie’, ‘play’ all have similarity lower than 0.5 with key-
words from the same year, and give rise to relationships
that further diverge from the domain of interest: from
‘play’ to ‘toy’ and ‘fun’, from ‘diagram’ to ‘display’ and
‘drafting’. These are topics that do appear in the form of
terms in the ScopusDS corpus, but attention has to be
put on the system misinterpreting their meaning or their
importance.

tASKE has proved to be capable of capturing some of
the topics that marked recent developments or applica-
tions in the Data Science domain, such as: ‘face recog-
nition’ (2014, from ‘biometric identification’) (as shown
in Figure 6), ‘speech production’ (2004, from ‘wavelet’),



‘search engine’ (2004, from ‘internet’), ‘ontology’ (2006,
from ‘knowledge’), ‘clustering’ (2006, from ‘class’), ‘nat-
ural language processor’ (2008, from ‘internet’), ‘graphi-
cal user interface’ (2008, from ‘internet’), ‘cryptanalytic’
(2010, from ‘cryptography’), ‘flight control’ (2012, from
‘flight simulator’), ‘machine readable’ (2017, from ‘inter-
net’), ‘automatic face recognition’ (2016, from ‘face recog-
nition’ through ‘identity verification’). Another category
of topics is the one that includes topics of interest but pro-
vides a spurious derivation, e.g. ‘neural network’ (2006),
here derived from ‘internet’, or ‘cryptography’ (2008), that
descends from ‘air pollution’. An even clearer example of
the boundaries the external knowledge base imposes on
tASKE is given by the topic ‘percolation’, which may refer
to ‘clique percolation technique’ in the documents but is
here linked to ‘air pollution’ due to the absence of any
non-physical sense of term ‘percolation’ from WordNet.
We acknowledged also that most extracted topics are re-
lated to domains of application, e.g. medicine, physics,
chemistry, social sciences, etc. Including these topics
in a hierarchical class structure may prove beneficial to
simplify visualization of the topic genealogy.

5. Concluding Remarks
Starting from the increasingly current need to understand
the evolution of ideas and research themes in scientific lit-
erature, in this work we have presented tASKE, a method
for identifying topics in a diachronic corpus of scientific
articles. Time in tASKE is a crucial aspect, as the goal
is not only to identify the topics in their right temporal
collocation, but also to understand how a topic can derive
from previous topics, in order to reconstruct the geneal-
ogy of the topics in time. tASKE makes it possible to
achieve these objectives with an unsupervised approach,
i.e., without the need to resort to large and complex pre-
annotated datasets. The experimental results, conducted
on a corpus of real scientific publications covering a pe-
riod of 21 years, show how tASKE is able to identify the
topics deemed relevant by the authors of the papers and
expressed by means of thematic keywords. In particular,
the topics identified by tASKE are not only adequate, but
also placed in the correct time period and related to each
other in a genealogy that described their evolution. Our
current and future work on tASKE is aimed at three main
goals: i) introduce an adaptive learning rate, with the
aim of controlling the number of new topics discovered
by tASKE for each time period according not only to the
topic relevance but also to the capability of each topic to
potentially induce the discovery of new topics in future
iterations; ii) make tASKE independent from external
knowledge bases, exploiting contextual embeddings, so
to avoid restricting a-priori the vocabulary of terms that
can be extracted; iii) perform further evaluations both by

comparing tASKE with other temporal topic modeling
methods and by assessing the quality of topics and their
genealogy through the evaluation of domain experts.
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