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Abstract
Researchers produce thousands of scholarly documents containing valuable technical knowledge. The community faces
the laborious task of reading these documents to identify, extract, and synthesize information. To automate information
gathering, document-level question answering (QA) offers a flexible framework where human-posed questions can be adapted
to extract diverse knowledge. Finetuning QA systems requires access to labeled data (tuples of context, question and answer).
However, data curation for document QA is uniquely challenging because the context (i.e., text passage containing evidence to
answer the question) needs to be retrieved from potentially long, ill-formatted documents. Existing QA datasets sidestep this
challenge by providing short, well-defined contexts that are unrealistic in real-world applications. We present a three-stage
document QA approach: (1) text extraction from PDF; (2) evidence retrieval from extracted texts to form well-posed contexts;
(3) QA to extract knowledge from contexts to return high-quality answers – extractive, abstractive, or Boolean. Using the
QASPER dataset for evaluation, our Detect-Retrieve-Comprehend (DRC) system achieves a +7.19 improvement in Answer-𝐹1
over existing baselines due to superior context selection. Our results demonstrate that DRC holds tremendous promise as a
flexible framework for practical scientific document QA.
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1. Introduction
Growth in new machine learning publications has ex-
ploded in recent years, with much of this activity oc-
curring outside traditional publication venues. For ex-
ample, arXiv hosts researchers’ manuscripts detailing
the latest progress and burgeoning initiatives. In 2021
alone, over 68,000 machine learning papers were sub-
mitted to arXiv. Since 2015, submissions to this category
have increased yearly at an average rate of 52%. While it
is admirable that the accelerated pace of AI research has
produced many innovative works and manuscripts, the
sheer amount of papers makes it prohibitively difficult
to keep pace with the latest developments in the field.
Increasingly, researchers turn to scientific search engines
(e.g., Semantic Scholar and Zeta Alpha), powered by neu-
ral information retrieval, to find relevant literature. To
date, scientific search engines [1, 2, 3] have focused on
serving recommendations based on semantic similarity
and lexical matching between a query phrase and a collec-
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What is the seed lexicon?

Question

The seed lexicon consists of positive
and negative predicates. If the pred-
icate of an extracted event is in the
seed lexicon and does not involve
complex phenomena like negation,
we assign the corresponding polar-
ity score (+1 for positive events and
-1 for negative events) to the event.
We expect the model to automatically
learn complex phenomena through
label propagation. Based on the avail-
ability of scores and the types of dis-
course relations, we classify the ex-
tracted event pairs into the following
three types.

Evidence

a vocabulary of positive and negative
predicates that helps determine the
polarity score of an event

Answer

Figure 1: QASPER questions require PDF text extraction and
evidence retrieval to generate an answer.

tion of document-derived contents, particularly titles and
abstracts. Other efforts to elicit the details of scholarly pa-
pers have extracted quantified experimental results from
structured tables [4] and generated detailed summaries
from the hierarchical content of scientific documents [5].

While these scientific search engines suffice for topic
exploration, once a set of papers are identified as relevant,
researchers would want to probe deeper for information
to address specific questions conditioned on their prior
domain knowledge (e.g., What baselines is the neural rela-
tion extractor compared to? ). While one can gain a sense
of the main findings of a paper by reading the abstract,
the answers to these probing questions are frequently
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CO (CONCESSION Pairs)
The seed lexicon matches
neither the former nor
the latter event, and their
discourse relation type
is CONCESSION. We as-
sume the two events have
the reversed polarities.

Paragraph Texts

CO (CONCESSION Pairs)
The seed lexicon matches
neither the former nor
the latter event, and their
discourse relation type
is CONCESSION. We as-
sume the two events have
the reversed polarities.
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The seed lexicon matches
neither the former nor
the latter event, and their
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is CONCESSION. We as-
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the reversed polarities.

CO (CONCESSION Pairs)
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neither the former nor
the latter event, and their
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is CONCESSION. We as-
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the reversed polarities.

What is the seed
lexicon?

Question Text

ELECTRA_CE

CO (CONCESSION Pairs)
The seed lexicon matches
neither the former nor
the latter event, and their
discourse relation type
is CONCESSION. We as-
sume the two events have
the reversed polarities.

Top-K Paragraph Texts (K=3)
r=0.07

CA (CAUSE Pairs) The
seed lexicon matches nei-
ther the former nor the lat-
ter event, and their dis-
course relation type is
CAUSE. We assume the
two events have the same
polarities.

r=0.10

UnifiedQA

no answer

K Answers (K=3)

matches neither
the former nor the
latter event

positive and nega-
tive predicates

The seed lexicon consists
of positive and negative
predicates. If the predi-
cate of an extracted

r=0.93

Figure 2: An instance of our modular end-to-end DRC system comprised of DiT + ELECTRA_CE + UnifiedQA.

found in the details of the methodology, experimental
setup, and results sections. Furthermore, questions may
require synthesis of document passages to produce an
abstractive answer rather than simply extracting a con-
tiguous span. Reading and manually cross-referencing
the results of several papers is a labor-intensive approach
to glean specific knowledge from scientific documents.
Therefore, effective tools to help automate knowledge
discovery are sorely needed.

A promising approach to extracting knowledge from
scientific publications is document-level question answer-
ing (QA): using an open set of questions to comprehend
figure captions, tables, and accompanying text [6]. Tradi-
tionally, the NLP community has focused on using clean
texts as context to their QA systems. However, this is
not representative of the vast majority of scholarly infor-
mation found in structured documents. As QA garners
interest from the computer vision community, DocVQA
[7] and VisualMRC [8] have extended document QA to
extracting evidence from single images, paving the way
to extend contexts from text to visual sources.

A foundational challenge in building robust document
QA systems is ensuring well-formed contexts, which en-
tails accurate text extraction and requires adaptation to
new document layouts. Nonetheless, even when text can
be cleanly extracted, there still remains the crucial task
of identifying question-relevant paragraphs for answer
prediction.

Our contribution is a general-purpose system for
QA on full documents in their original PDF form,
that addresses the key challenges of scientific document
QA: (1) accurate text extraction from unseen layouts, (2)
evidence retrieval (i.e., context selection), and (3) robust
QA.

2. Dataset
The Question Answering on Scientific Research Papers
(QASPER) dataset consists of 1,585 NLP papers sourced
from arXiv, and is accompanied by 5,049 questions from
NLP readers and corresponding answers from NLP practi-
tioners. Papers in QASPER are cited by their arXiv DOIs,
which we used to fetch the original PDF documents as
input to our system, as our work is focused on knowledge
extraction at the PDF level.

QASPER contains 7,993 answers categorized by an-
swer type: Extractive (4142), Abstractive (1931), Yes/No
(1110), and Unanswerable (810). Using only the Extractive,
Abstractive and Yes/No answers, we match our model
prediction to the most similar answer when a question
has more than one answer, and report our performance
accordingly.

QASPER is ideal for evaluating our proposed frame-
work because it provides: (1) paragraph text and table
information to evaluate our layout-analysis model (in
its ability to cleanly extract document regions); (2) ev-
idence paragraphs to validate, and optionally finetune,
our evidence retrieval model (in its ability to retrieve
good context paragraphs); and (3) ground-truth answers
to assess the accuracy of our QA model (in its ability to
answer the question given the context).

3. Methodology
Document QA on raw PDFs is necessary towards au-
tomating knowledge extraction from scientific corpora
and has remained an unaddressed problem. To address
this, we propose a flexible information extraction tool
to alleviate laboriously searching for answers grounded
in evidence. Our system combines: (1) a robust text de-



tector for visually rich documents, (2) explicit passage
retrieval for evidence selection, and (3) multi-format an-
swer prediction. We used pretrained open-source ma-
chine learning models that are effective in a zero-shot
setting. We also finetuned these models to improve our
system’s end-to-end performance.

3.1. Problem Description
Our work addresses evidence retrieval at the PDF level.
Thus, our document QA task is defined as: given a ques-
tion and a PDF document, predict the answer to the ques-
tion. We decompose this problem into three subtasks:
text extraction (§ 3.2), evidence retrieval (§ 3.3), and QA
(§ 3.4).

First, the PDF document, represented as a series of
images, has its semantic regions identified and their cor-
responding text content extracted as passages. Second,
the passages are ranked by their relevance to the question.
Irrelevant passages are filtered out so only the most rele-
vant passages are used as contexts for QA. Finally, given
a context and question, the answer is predicted. The over-
all architecture is shown in Figure 2. These components
correspond to the respective tasks of Detect, Retrieve and
Comprehend, or DRC, which is also the name of our pro-
posed system.

3.2. Detect
The first step of our pipeline is to extract text from
PDF documents. Libraries such as pdfminer.six [9] and
TesseractOCR [10] extract text from documents indiscrim-
inately, including unwanted page numbers and footnotes,
which would need to be filtered out before the extracted
text can be used as context paragraphs. Thus, prior to
text extraction, document layout analysis should be per-
formed to detect targeted regions (from which text is to
be extracted).

Document layout analysis models are trained to seg-
ment a document into its constituent components (e.g.,
paragraphs, figures, and tables). The Document Image
Transformer (DiT) [11] is designed for layout analysis
and text detection. DiT uses a masked image modeling
objective to pretrain a Vision Transformer [12] without
labels. It supports prediction of semantic region bound-
ing boxes and segmentation masks. Predicted regions are
then passed to OCR tools for text extraction.

In the Detect stage of DRC, the pdf2image library first
converts each page of the document to images. For each
image, DiT detects the bounding boxes for paragraphs.
The text within each bounding box is then extracted using
pdfminer.six . The extracted texts form passages which
are candidates for question evidence.

3.3. Retrieve
Evidence retrieval identifies relevant passages by ranking
them according to their similarity to the question. We
considered several architectures.

Lexical Retriever BM25 [13] ranks questions and pas-
sages based on token-matching between sparse represen-
tations of the question and passage. Prior work has shown
that BM25 is a strong baseline across many datasets
[14, 15]. Given a question 𝑞 containing tokens 𝑞1, … , 𝑞𝑇
and a set of passages 𝒫, the BM25 retrieval score 𝑆 be-
tween 𝑞 and passage 𝑝 ∈ 𝒫 is defined using TF-IDF token
weights:

𝑆𝐵𝑀25
𝑞,𝑝 =

𝑇
∑
𝑖=1

log(
|𝒫 |

𝑁 (𝑞𝑖, 𝒫 )
)

𝑛(𝑞𝑖, 𝑝)(𝑘1 + 1)

𝑘1(1 − 𝑏 + 𝑏|𝑝|
𝑎𝑣𝑝𝑙 ) + 𝑛(𝑞𝑖, 𝑝)

where |𝒫 | is the number of passages in the corpus; |𝑝|
is the length of the passage; 𝑁(𝑞𝑖, 𝒫 ) is the number of
passages with token 𝑞𝑖; 𝑛(𝑞𝑖, 𝑝) is the term frequency of
𝑞𝑖 in passage 𝑝; 𝑎𝑣𝑝𝑙 is the average passage length. 𝑘1 and
𝑏 are constants.

Dual Encoder The Dense Passage Retriever (DPR)
[16] learns via a contrastive training objective with in-
batch negatives and hard negatives chosen by BM25.
For question 𝑞 and a set of passages 𝒫, DPR measures
question-passage similarity with a dual-encoder archi-
tecture, where 𝑓𝑞 encodes the question 𝑞 and 𝑓𝑝 encodes
the passage 𝑝 ∈ 𝒫 to the same latent space [17, 18]. The
retrieval score 𝑆 is defined as the dot product of the two
resulting embeddings:

𝑆𝐷𝐸𝑞,𝑝;Φ = 𝑓𝑞(𝑞; Φ𝑞)𝑓𝑝(𝑝; Φ𝑝)

Φ = [Φ𝑞, Φ𝑝] denotes the retriever question and pas-
sage encoder parameters. We used the DPR multi variant,
which has been trained on additional data, as Karpukhin
et al. [16] has shown that the additional data improves
retrieval generalizability.

Cross-Encoder Instead of embedding the question 𝑞
and passage 𝑝 separately, cross-encoders [19] compute
a retrieval score 𝑆 where 𝑓 (𝑞, 𝑝; Φ)[CLS] encodes both
question and passage using the CLS token representation
of their concatenation:

𝑆𝐶𝐸𝑞,𝑝;Φ = softmax(𝑓 (𝑞, 𝑝; Φ)[CLS]𝑊 + 𝑏)

where 𝑊 and 𝑏 are the weight and bias in the final layer
that classifies whether 𝑝 is relevant to 𝑞. Many cross-
encoders 𝑓 have since been proposed and a comparative
analysis was performed [20], where the ELECTRA-base
[21] cross-encoder (ELECTRA_CE) was declared as the



Table 1
Tuned hyperparameter values for the number of epochs, weight decay (WD), and batch size (BS) for finetuning. The learning
rate for all trainable models is 2e-5.

Type Model Epochs WD BS

BM25 – – –
Retriever DPR-ft 20 0 8

ELECTRA_CE-ft 6 0.01 8

Reader UnifiedQA-ft 10 0.01 10

Table 2
UnifiedQA Answer-𝐹1 scores using the top ranked context from extracted PDF regions.

Extractive Abstractive Boolean Overall
Extractor Retriever QA Val. Test Val. Test Val. Test Val. Test

TesseractOCR ELECTRA_CE UnifiedQA 34.47 34.77 21.05 21.99 74.69 73.06 33.82 34.75
DiT + pdfminer.six ELECTRA_CE UnifiedQA 33.91 34.65 21.80 22.18 74.97 78.73 34.05 35.28
DiT + pdfminer.six ELECTRA_CE UnifiedQA-ft 38.46 39.70 25.23 24.24 84.95 85.29 38.81 39.22
DiT + pdfminer.six ELECTRA_CE-ft UnifiedQA 33.70 35.11 22.89 22.74 77.28 79.90 34.63 35.88
DiT + pdfminer.six ELECTRA_CE-ft UnifiedQA-ft 39.18 41.79 26.29 25.49 84.02 81.82 39.46 40.16
– – LED-base 28.10 32.50 16.70 14.91 61.82 69.05 28.94 32.97
– – LED-base-scaff 23.37 29.59 15.49 14.95 66.36 67.14 26.37 31.59

best cross-encoder due to its stability and effectiveness
across datasets. Thus, the ELECTRA_CE model (trained
on MS MARCO [22]) was selected as our starting cross-
encoder.

Once the passages have been ranked, the top-𝐾 most
relevant passages are used as contexts in the QA stage.

3.4. Comprehend
The final stage of DRC is comprehending a document’s
contents via multi-format question answering. These for-
mats correspond to answer types, which can be extrac-
tive, abstractive, or Boolean. (An extractive answer is a
span of text taken verbatim from an evidence passage.
An abstractive answer is a generated span not quoted
verbatim from the evidence. A Boolean answer is a binary
prediction: yes or no.)

For comprehension, we use UnifiedQA [23], a genera-
tive question-answering model that has been pretrained
on 20 datasets and can predict all answer formats with
a single architecture. The answer type returned by Uni-
fiedQA depends on the way the question is phrased.
For each of the 𝐾 relevant passages (from the Retrieve
stage), we pair the passage with the question as input to
UnifiedQA to predict an answer. At the end, we have 𝐾
answers – one for each of the 𝐾 passages.

4. Experimental Setup

4.1. QASPER Baselines
Following Dasigi et al. [24], in our QASPER experiments,
we use the Longformer-Encoder-Decoder (LED) [25]
as the baseline model for evidence retrieval and QA.
This model uses a modification of self-attention from
the Transformer architecture [26] to encode longer se-
quences more efficiently. To jointly answer questions
and decide whether a context is relevant in providing
answer evidence, LED optimizes a multi-task objective.
In addition to answer generation, LED adds a classifica-
tion head (termed evidence scaffold) that operates over
each paragraph to predict binary labels (evidence or non-
evidence). Since we discarded unanswerable questions
from QASPER, we retrain LED on the remaining ques-
tions and evaluate with and without evidence scaffold-
ing. The retrained LED serves as a fairer competitor to
UnifiedQA, which was not pretrained on unanswerable
questions.

4.2. Text Extraction with Layout Analysis
We use DiT with pdfminer.six for selective text extraction.
First, a pretrained DiTmodel predicts the bounding boxes
of paragraphs on each page. Then, pdfminer.six extracts
text within the bounding boxes. We denote this two-
step procedure as DiT+pdfminer.six , and compare against
TesseractOCR, which takes an image as input and returns
the text found within the image, as well as pdfminer.six ’s
high-level extractor (pdfminer.six*), which takes a PDF as



Table 3
Token extraction from paragraphs and tables within all documents from QASPER. 𝑃 denotes precision and 𝑅 denotes recall.

Category Method 𝑃 𝑅 𝐹1
DiT + pdfminer.six 68.28 86.91 75.34

Paragraphs pdfminer.six* 48.95 90.31 62.54
TesseractOCR 49.27 89.75 62.73

DiT + pdfminer.six 67.72 82.87 70.81
Tables pdfminer.six* 6.88 92.71 12.38

TesseractOCR 7.31 96.40 13.13

Table 4
Retrieval recall measured as the top percentages (top-𝐾%) of retrieved passages that contain the answer, averaged across all
questions. The Training column makes explicit which retrievers are applied zero-shot or finetuned using the QASPER train
split. For each pairing of data split and 𝐾, the best performing model is shown in bold and the second best is underlined.

K=1% K=5% K=10% K=20%
Retriever Training Val. Test Val. Test Val. Test Val. Test

BM25 – 15.32 15.97 33.00 31.81 45.36 44.28 61.95 60.38
DPR – 10.91 11.75 23.23 25.28 33.49 36.50 51.13 52.61
ELECTRA_CE – 20.98 22.82 39.44 39.97 52.08 52.06 66.89 66.39

DPR-ft QASPER 25.21 26.22 43.79 46.41 58.19 59.09 73.31 72.97
ELECTRA_CE-ft QASPER 22.81 24.50 49.26 50.36 64.58 65.67 78.80 79.66

input and exploits PDF metadata to extract texts within
the pages.

4.3. Retriever-QA Implementation Details
For BM25, we create an inverted index on QASPER vali-
dation and test sets using Pyserini [27] with default pa-
rameters (𝑘1=0.9, 𝑏=0.4). For DPR and ELECTRA_CE, we
start with pretrained models from Hugging Face, then
finetune them per hyperparameters shown in Table 1. In
finetuning DPR and ELECTRA_CE, we sample batches
containing a 1:4 ratio of positive to negative evidence
passages.

For UnifiedQA, we use the unifiedqa-v2-t5-large-
1363200 model from Hugging Face. We finetune it in
a weakly supervised manner using evidence passages
ranked by ELECTRA_CE but with the original questions
and answers from QASPER. The choice to use retrieved
passages (instead of the human-labeled evidence passages
from QASPER) should make our system more robust to
noisy context paragraphs. We show that a pretrained text
extractor and evidence retriever can adapt UnifiedQA to
the domain of QASPER papers without labeled evidence.

4.4. Evaluation Metrics
We evaluate DRC’s text extraction, retrieval, and QA
stages separately. For each stage, performance is mea-

sured by the 𝐹1 score between the predicted outputs and
the target labeled in QASPER. Adopting the same nota-
tion as Dasigi et al. [24], we name the 𝐹1 scores for our
evidence retrieval and QA as Evidence-𝐹1 and Answer-𝐹1,
respectively. For text extraction, in addition to its 𝐹1 score,
we also evaluate its precision and recall.

Since each question in QASPER is labeled with its an-
swer(s) and accompanying evidence, it is possible to eval-
uate both our QA and evidence retrieval stages using this
single dataset. For QA, Answer-𝐹1 is calculated between
the tokens in the predicted answer and the tokens in the
target answer. For our evidence retrieval stage, which
ranks passages by their relevance to a given question,
Evidence-𝐹1 is calculated between a fixed percentage of
the top ranking passages and the set of passages labeled
as evidence in QASPER.

QASPER also contains the plain text for each of its
documents, organized so that text from paragraphs and
tables are separated. We use this plain text to evaluate
the efficacy of our text extraction to extract only the
primary content of PDF document. The precision, recall,
and 𝐹1 score for text extraction are calculated between
the tokens in a document’s extracted text and its tokens in
QASPER’s plain text version. For all of our experiments,
tokenization is performed at the word level, using our
pretrained UnifiedQA model’s tokenizer.



Table 5
UnifiedQA Answer-𝐹1 scores on UnifiedQA using the top ranked context from selected retrievers compared to the LED
baselines. For all data splits, the best performing model is shown in bold and the best zero-shot model is underlined.

Extractive Abstractive Boolean Overall
Retriever QA Val. Test Val. Test Val. Test Val. Test

BM25 UnifiedQA 29.24 30.04 23.12 24.77 77.40 78.99 33.23 36.85
DPR UnifiedQA 28.28 28.94 23.60 21.85 75.96 79.38 32.58 35.59
ELECTRA_CE UnifiedQA 32.72 34.46 24.34 23.40 77.30 80.63 35.73 39.51
DPR-ft UnifiedQA 33.37 34.64 24.97 24.53 78.66 77.16 36.46 39.31
ELECTRA_CE-ft UnifiedQA 33.18 34.21 24.56 25.78 78.20 81.45 36.18 40.03
– LED-base 28.10 32.50 16.70 14.91 61.82 69.05 28.94 32.97
– LED-base-scaff 23.37 29.59 15.49 14.95 66.36 67.14 26.37 31.59

Table 6
Comparison between ELECTRA cross-encoders against LED
baselines in terms of Evidence-𝐹1.

Model
Evidence-𝐹1
Val. Test

ELECTRA_CE 31.75 36.37
ELECTRA_CE-ft 31.58 36.12
LED-base 23.94 29.85
LED-base-InfoNCE 24.90 30.60
LED-large 31.25 39.37

5. Results
We demonstrate DRC’s effectiveness on document QA by
measuring its end-to-end performance. We also evaluate
its constituent components on text detection, evidence re-
trieval, and QA tasks against existing QASPER baselines.
For evidence retrieval, we study the benefits of having a
separate retrieval process, in contrast to the evidence se-
lection scaffold for LED. Furthermore, we explore DRC’s
performance in both zero-shot and finetuned settings, to
assess its performance under varying degrees of access
to labeled data.

5.1. End-to-End QA System
Table 2 shows DRC’s performance in terms of Answer-𝐹1.
In these experiments, we extract text from documents
using either TesseractOCR or DiT and rank passages us-
ing ELECTRA_CE. We then pass highly-ranked passages
to UnifiedQA for answer prediction. First, we study the
influence of the text detection model on Answer-𝐹1 per-
formance by comparing TesseractOCR to DiT. While we
observe that using DiT reports higher Answer-𝐹1 than
TesseractOCR across all answer types, the difference is
negligible.

Next, we examine DRC in the zero-shot setting where

ELECTRA_CE and UnifiedQA models are not fine-
tuned. DRC achieves an overall +2.31 improvement
in Answer-𝐹1 over LED-base without scaffolding on
QASPER’s test split. To improve upon the fully zero-shot
approach, we apply weak supervision to finetune Uni-
fiedQA: we sample extracted passages according to their
retrieval scores from the pretrained ELECTRA_CEmodel,
assuming that higher ranked passages are correlated with
selection probability for answer prediction. Thus, we are
able to finetune UnifiedQA without access to human-
labeled contexts, since labeled question-answer pairs are
generally unavailable for large technical corpora. This
finetuning approach yields a +6.25 improvement to LED-
base in overall Answer-𝐹1 on the test dataset.

To analyze Answer-𝐹1 performance when ground-
truth question-passage pairs are available, we consider an
ELECTRA_CE retriever finetuned on QASPER’s training
set. We then finetune UnifiedQA through weak super-
vision using the now improved retriever. DRC with a
finetuned ELECTRA_CE shows modest gains over the
zero-shot system but still lesser performance compared to
the pretrained ELECTRA_CE with a weakly-supervised
UnifiedQA. This suggests that downstream QA perfor-
mance is better improved by adapting to the target do-
main QASPER documents, than by receiving more rele-
vant passages.

Combining a finetuned ELECTRA_CE retriever with a
weakly supervised UnifiedQA model shows the greatest
improvements over LED-base without scaffolding, +7.19
in Answer-𝐹1 on the and test dataset for all answer types.
We observe that using finetuned ELECTRA_CE for weak
supervision shows worse performance on Boolean ques-
tions than using the pretrained ELECTRA_CE to weakly
supervise UnifiedQA. This discrepancy is likely due to
the small proportion of Boolean samples in the validation
and test datasets compared to other formats, 13% and 15%
respectively.

Across all experiments, DRC demonstrates superior



performance to LED while solving a more difficult task:
DRC starts from PDFs while LED starts from clean texts.
DRC bridges an essential gap in real-world applications
for scientific knowledge extraction because PDFs are
directly processed as input. In the following discussion,
we validate our individual system components.

5.2. Text Detection
We evaluate three different methods for text extraction
from PDF files: (1) DiT+pdfminer.six , (2) pdfminer.six*,
and (3) TesseractOCR. Table 3 reports the average pre-
cision, recall, and 𝐹1 between the extracted tokens and
those in the ground-truth text.

For paragraph extraction, DiT+pdfminer.six has bet-
ter precision than pdfminer.six* (+19.33) and Tesserac-
tOCR (+19.01). We attribute this improvement to ex-
tracting fewer unwanted artifacts (e.g., page numbers,
headers, footers, and footnotes). For text within ta-
bles, only DiT+pdfminer.six is effective off-the-shelf.
pdfminer.six* and TesseractOCR do not disambiguate be-
tween text in and outside of tables. pdfminer.six* and
TesseractOCR would suffice if text is contained only in
tables, or only in paragraphs, but not a mixture of the
two because the text from tables and paragraphs will be
interspersed.

5.3. Evidence Passage Retrieval
We compare DPR, ELECTRA_CE, and BM25 by their
ability to rank passages by relevance to questions. Table 4
shows the recall of evidence passages within various
percentages of the top ranked passages, averaged over
all questions in QASPER, for the retrievers in both zero-
shot and finetuned settings. As questions are posed for
a specific document, our retrievers consider a variable
number of passages per question because documents
vary in length. Since top-𝐾 penalizes longer documents
when 𝐾 is small, we measure recall using top-𝐾% for
𝐾 ∈ {1, 5, 10, 20}.

In the zero-shot setting, BM25 outperforms DPR by an
average of +15.58 gain in recall on the test data. These
results support findings from Sciavolino et al. [15], who
reported that DPR trained on Natural Questions [28]
underperformed BM25 when faced with the new ques-
tion patterns and entities found in their EntityQuestions
dataset. Thus, DPR requires finetuning and is less gener-
alizable than BM25, which has no trainable parameters.

ELECTRA_CE, with average recall gains of +7.2 and
+13.78 over BM25 and DPR, respectively, is the clear win-
ner. We hypothesize that ELECTRA_CE’s success is due
to the explicit interaction between every token of the
question and passage through its cross-attention mecha-
nism, offering a more expressive similarity function than

DPR’s inner product between question and passage or
BM25’s weighted term matching.

To analyze how retrievers perform with ground-truth
question-passage pairs, we also evaluate passage retrieval
with DPR and ELECTRA cross-encoders finetuned on
QASPER. Here, ELECTRA_CE outperforms DPR on the
test data for 𝐾 = 5%, 10% and 20% by an average recall
of +3.95, +6.58, and +6.69, respectively. Notably, DPR has
higher recall for 𝐾=1%. We conjecture that this may be
due to DPR’s contrastive objective utilizing hard nega-
tive sampling, but further analysis on the relationship
between training objective and ranking is needed.

5.3.1. Comparison to Evidence Selection Scaffold

To compare against LED’s evidence scaffold, we now
treat ELECTRA_CE as a binary classifier. Akin to LED’s
evidence scaffold, we use the [CLS] representation of the
question-passage pair as input to a single layer neural
network to estimate the probability that the passage is rel-
evant as evidence to the question and use a classification
threshold of 0.5 [19]. Table 6 illustrates the evidence clas-
sification performance of zero-shot and finetuned ELEC-
TRA_CE models against LED variations. Evidence-𝐹1
scores are computed using the extracted passages classi-
fied as evidence with respect to the ground-truth set la-
beled in QASPER.We observe that the difference between
the zero-shot and finetuned ELECTRA_CE models is neg-
ligible. On the test split, zero-shot ELECTRA_CE shows
a notable Evidence-𝐹1 improvement over LED-base aug-
mented with InfoNCE loss [29], but is outperformed by
LED-large. This agrees with findings from Dasigi et al.
[24] that LED-large generally outperforms LED-base for
retrieval but not QA. Thus, we consider only LED-base
in our subsequent experiments with downstream QA.

5.4. Question Answering
Here, we focus on the effect of using retrieval mecha-
nisms on QASPER’s plain text passages for answer pre-
diction. We report Answer-𝐹1 scores for extractive, ab-
stractive, and Boolean answer types. We also finetune
DPR and ELECTRA_CE models on QASPER’s train split
and compare against LED variations.

Table 5 shows UnifiedQA’s Answer-𝐹1 using the
highest-ranked passage from each retriever. We observe
that UnifiedQA (first 5 rows) generally yields higher
Answer-𝐹1 scores across answer types, datasets, and re-
trievers than LED baselines (last 2 rows). The exception is
extractive answers from the test set where BM25 reports
a lower Answer-𝐹1 than LED-base. Similarly, a zero-shot
DPR retriever performs worse than both LED models.
Among zero-shot retrievers, ELECTRA_CE yields the
best performance on the overall test set with a +7.92 and
+6.54 Answer-𝐹1 increase over LED with and without
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Figure 3: UnifiedQA overall Answer-𝐹1 performance on the
QASPER test data split using the top-𝐾 ranked contexts from
selected retrievers. Retrievers with “-FT” denote those fine-
tuned on QASPER’s train split.

scaffolding. While DPR benefits the most from finetun-
ing, the finetuned ELECTRA_CE reports the highest test
performance across all answer types.

To verify that a weakly-supervised UnifiedQA model
improves end-to-end answer prediction using weakly-
labeled evidence, we measure the effect of retrieval be-
yond the top-ranked passage. We report UnifiedQA’s
overall Answer-𝐹1 on the test data using the best an-
swer predicted from the top-𝐾 ranked passages. Figure 3
compares performance using zero-shot and finetuned
retrievers. Zero-shot ELECTRA_CE consistently dom-
inates BM25 and DPR without finetuning. When fine-
tuned, ELECTRA_CE reports the best performance for
all choices of 𝐾. This confirms our hypothesis that we
can adapt UnifiedQA to achieve higher quality answers,
via weak supervision using ranking signals from the re-
triever.

6. Conclusion
We introduced DRC, an end-to-end QA system for au-
tomating manual knowledge extraction from scientific
PDF documents. We showed that DRC greatly improves
over existing baselines, which act on clean texts and
sidestep the challenge of PDF-to-text extraction. Through
extensive experiments, we evaluate our pipeline compo-
nents in both zero-shot and finetuned settings. In practice,
datasets as comprehensive as QASPER are few and may
not be feasible for niche domains. In such cases, a fully
zero-shot pipeline is mandatory for document QA, and
DRC can be weakly supervised to adapt to specific do-
mains. Our DRC sets a new benchmark for QASPER and
serves as a proof of concept for an end-to-end document
QA system, from PDF to answer. Key takeaways from

our experiments include:

1. DiT demonstrates superior text extraction perfor-
mance to pdfminer.six and TesseractOCR.

2. Zero-shot ELECTRA_CE offers the best re-
trieval performance for all top-𝐾% (where 𝐾 ∈
{1, 5, 10, 20}).

3. DRC adapts to new domains through weakly-
supervised training on evidence passages leading
to substantially improved answer prediction over
LED baselines.

In this work, we have only scratched the surface with
text. Future QA systems should be able to process sci-
entific documents with diverse layouts and visually rich
content. In order to fully automate information extrac-
tion beyond text, wemust augment our system to identify
and understand visual elements (e.g., figures) by incorpo-
rating visual question answering (VQA) and multimodal
representations. Additionally, QASPER consists of well-
formatted research papers in digitally-generated PDF
documents. Further experiments are required to evaluate
DRC’s performance under domain shifts with respect to
document format and text cleanliness (e.g., OCR noise).

Deployed document QA systemsmust operate on docu-
ments of varying lengths. We demonstrated retrieval and
evidence selection on relatively short research papers,
whose lengths are unrepresentative of manual processing
tasks that require comprehending entire textbooks and
technical manuals. As the number of passages grows, the
input sequence limit will be exceeded, making answer
prediction and evidence selection by efficient transformer
architectures challenging. In addition, ranking via cross-
encoder may be computationally expensive due to the
costly cross-attention operation between the question
and each passage. Thus, QA on lengthy documents may
require a dual-encoder retriever, to store precomputed
passage embeddings using FAISS [30] to maximize effi-
ciency.
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