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Abstract
Citations are scientists’ tools for grounding their innovations and findings in the existing collective knowledge. They are used
for semantically distinct purposes as scientists utilize them at different parts of their work to convey specific information. As
a result, a crucial aspect of scientific document understanding is recognizing the authorial intent associated with citations.
Current state-of-the-art methods rely on contextual sentences surrounding each citation to classify the intent. However,
in the absence of textual content, these approaches become unusable. In this work, we propose a text-free citation intent
classification method built on relational information among scholarly works in this work. To this end, we introduce a
large-scale knowledge graph built from the publications in the SciCite dataset and their multi-hop neighborhood extracted
from The Semantic Scholar Open Research Corpus (S2ORC). We also augment this knowledge graph by adding weakly-labeled
links based on the intent information available in the S2ORC. Finally, we cast the intent classification task as a link prediction
problem on the newly created knowledge graph. We study this problem in both transductive and inductive settings. Our
experimental results show that we can achieve a comparable macro F1 score to word embedding content-based methods by
only relying on features and relations derived from this knowledge graph. Specifically, we achieve macro F1 scores of 62.16
and 59.81 in the transductive and inductive settings, respectively, on the link-level SciCite dataset. Moreover, by combining
our method with the state-of-the-art NLP-based model, we achieve improvements across all metrics.
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1. Introduction
Citations are the primary way of identifying past contri-
butions and connecting progress in new publications to
existing literature. Nevertheless, not all citations indicate
the same meaning. Authors use citations sparingly with
specific intent behind them. For example, some papers
are cited for providing background information in a do-
main, while others are cited when adopting or adapting
a previously-used methodology. There are also scenar-
ios where the same paper is used as background infor-
mation and methodology use-case in different contexts
simultaneously. Understanding citation intent is crucial
to studying scholarly works, given the universality of
using citations. Current state-of-the-art citation intent
classification models [17, 1, 4] rely heavily on textual
information, e.g., the sentences surrounding the citation.
However, such information is expensive to obtain and
in some scenarios inaccessible altogether. Consequently,
we need models that could operate without having access
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to textual information. Previous works [3, 26, 6] have
shown the importance of relational and structural infor-
mation available in links among publications for various
tasks. In this work, we propose a general citation in-
tent classification method that relies purely on structural
information.

Besides helping researchers better understand the re-
lationship among publications, citation intent analysis
has been used for studying various other aspects of scien-
tific works such as research domain evolution [10], scien-
tific impact analysis [19], scientific document summariza-
tion [5], and retrieving related scientific works [16]. The
main three categories of citations are “Result,” “Method,”
and “Background” [4]. These categories describe the rea-
sons behind making a scientific connection, referencing a
publication in another publication. Classifying citations
into these groups has traditionally required a high level
of expertise in the respective scientific domains. This
constraint, combined with the high cost of expert human
labor, has resulted in highly scarce datasets, which makes
the task even more difficult.

Previous works have proposed classifying citation in-
tent through feature engineering-based [10] and repre-
sentation learning-based [1] methods. However, most
of these methods depend on textual information. As a
result, they require a complex multi-stage pipeline of
parsing documents, identifying citation contexts, and
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predicting citation intent [13]. Besides being prone to
error propagation from various pipeline stages, the use
of these models is limited to situations where the full text
is available in a proper format. This work introduces a
pure graph-based approach to classifying citation intent.
We extend the existing SciCite dataset with 2-hop neigh-
borhoods extracted from The Semantic Scholar Open
Research Corpus (S2ORC). To further enrich the graph,
we utilize the intent information provided in the S2ORC
to create a weakly supervised knowledge graph (KG) con-
sisting of the publications and the relations that match
the provided intents. Our main idea is to use contextu-
alized relational patterns to make predictions, obviating
the need for textual context. Given the newly built KG,
we cast the intent classification problem into the common
link prediction problem on KGs. Specifically, we train a
model to learn representations for entities and relations.
Using these representations, we run the following query
on the KG: (𝑠, ?, 𝑜), where 𝑠 cites 𝑜.

Converting this problem into a link prediction task
allows us to adapt and extend widely used KG embed-
ding models to this problem. We study the link predic-
tion problem in both transductive and inductive settings.
Our experimental results show that although our KG-
based method underperforms compared to the large lan-
guage model-based approaches, it is comparable or even
superior to the word embedding-based methods. More-
over, our experiments with combining the NLP-based and
graph-based methods show slight improvements over the
current state-of-the-art model. These findings further
signify the importance of relational patterns for citation
intent classification.

The contributions of this work are as follows:

1. Extending the SciCite dataset using the S2ORC
dataset to generate a large-scale weakly super-
vised KG.

2. Introducing a novel graph-based approach for
citation intent classification built on top of the
newly built KG.

3. Presenting benchmarks for both transductive and
inductive settings.

4. Presenting analyses on the effect of different parts
of the methodology such as weak supervision and
feature engineering.

2. Related Work

2.1. Citation Function/Intent Schemes
Many prior works have studied the problem of creat-
ing categorical schemes for citation intent which in some
works is referred to as citation function [9]. Earlier works
were focused on creating more fine-grained categories,

Figure 1: Overview of the extracted multi-hop KG. The set of
0-hop nodes 𝒱0 includes all the orange nodes. The set of 1-hop
nodes 𝒱1 includes all the orange and blue nodes. Similarly,
the graph could be expanded to include 𝑘-hop nodes 𝒱𝑘 . The
annotated set on each edge represents that specific link’s
intent. Specifically, the empty set denotes that the citation
link has no intent label.

going as far as defining 35 [7] and 12 [21] fine-grained
schemes for scientific arguments. The more recent works
however have focused on creating more concise cate-
gories. For example, ACL-ARC [10] proposes a 6-class
intent categorization scheme: Background, Motivation,
Uses, Extension, Comparison or Contrast, and Future.
SciCite [4] is even more restrictive and drops or com-
bines small fine-grained classes to provide a more con-
cise 3-class annotation scheme: Background, Method,
and Result.

2.2. Citation Intent Classification
Methods

Before the explosion of deep learning approaches, most
methods relied on a combination of hand-crafted features
and classic machine learning models. For example, in
one instance [23], authors propose 12 different features,
including citation count, PageRank value, and author
overlap, and use classic machine learning models such
as SVM and Random Forest for classification. In another
instance [10], authors define pattern-based, topic-based,
and prototypical argument features and use SVM to make
predictions.

With the advent of deep learning models and the emer-
gence of large language models in recent years, represen-
tation learning-based methods have outperformed the
hand-crafted methods achieving a higher accuracy by
considering the textual information. Recent works have
proposed the use of structural scaffolds [4], BERT-based
models trained on the scientific corpus (SciBERT) [1],
word embedding-based approaches [17], and creating
a heterogeneous context graph based on an academic



Table 1
The statistic of the SciCite dataset and reconstructed datasets.

Dataset SciCite SciCiteorigin SciCiteresplit

Level Sentence Link Link
# Samples 11,020 10,379 5,766

# Train 8,243 7,602 4,122
# Validation 916 916 822

# Test 1,861 1,861 822

network [26]

2.3. Knowledge Graph Embedding
Models

KGs are structured information repositories consisting
of a set of nodes representing entities and a set of typed
edges representing relations. Since, in most cases, the
KG nodes and edges are not attributed, KG embedding
(KGE) models aim to learn low-dimensional representa-
tions for all entities and relations. The most common
traditional shallow KGE methods are TransE [2], Com-
plEx [22], and RotatE [20]. More recent GNN-based KGE
methods leverage the message-passing scheme of GNNs,
enabling more complex multi-hop reasoning. Examples
of these methods are GCN [11], which leverages the
spectral information for information propagation but
is limited to mono-relational KGs, R-GCN [18], which
extends GCN to support multi-relational KGs, and Graph-
SAGE [8] which introduces an inductive framework to
handle unseen nodes.

3. Dataset
The SciCite dataset focuses on individual citation links
and ignores the significance of broader relational connec-
tions and features. To overcome this issue, we construct
a knowledge graph by mapping each entity in the SciCite
dataset to the S2ORC and adding their 2-hop citation
neighborhoods. The S2ROC contains more than 206 mil-
lion publications and 2.49 billion citation links. Apart
from the regular citation links, this corpus provides par-
tial intent labels for citations using a 3-class scheme as
follows:

1. Background: Describe a problem, topic, or con-
cept

2. Method: Provide a method, tool, or dataset
3. Result: To make a comparison

Moreover, the SciCite dataset is tailored for sentence
classification methods, where input features are textual
excerpts and the output labels are citation intents. We
reformulate this task as link prediction on KGs, where the
input features are a representation of the source (citing)

paper and the target (cited) paper, and the output is the
label of a citation link between the source and target. We
release all our datasets under a CC-BY-SA license at TBD

3.1. Entity Mapping
We first map each paper in the SciCite dataset to the
S2ORC by matching SciCite’s IDs to Semantic Scholar’s
SHA IDs. Since a publication could have many SHA
IDs and only one Corpus ID, we then map each SHA
ID to the unique Corpus ID to extract unique entities.
From the 13,080 papers with unique IDs in SciCite, we
successfully map 13,019 of them to valid SHA IDs in
semantic scholar, while the remaining 61 papers do not
have any corresponding records. We believe this is due to
publication removals, as the SciCite dataset was created
from the S2ORC in 2019. After converting SHA IDs to
Corpus IDs, we end up with 13,011 unique entities and 8
duplicate entities.

3.2. Dataset Splitting
The original SciCite dataset contains 11,020 human-
labeled samples. Hence, to adapt it to our link predic-
tion setting, we reconstruct two datasets: SciCiteorigin

and SciCiteresplit. SciCiteorigin adheres to the same bench-
marks reported in prior works but is modified to remove
overlapping citation links in the training and test sets.
To maximize usage of the training data while removing
artifacts, we create SciCiteresplit that performs additional
cleaning, provides a stronger separation of training and
test sets, and avoids multi-intent citations. Table 1 show-
cases the statistic of these datasets.

SciCiteorigin:

To make methods comparable, we use the same valida-
tion and test sets as SciCite for this dataset and try to
keep the training set as close as possible. We convert each
publication in the SciCite dataset to a Semantic Scholar
entity using the mapped Corpus IDs and drop the con-
textual sentence-level information. We assign a random
unique ID to publications without a Corpus ID. After
this procedure, we end up with a set of links for our link
prediction task.

Due to the removal of the contextual information,
some of the training links appear exactly the same in
the test set. Hence, we remove 641 training set samples
that also appear in the test set to prevent data leakage.
Moreover, since only one link in the test set has mul-
tiple intents, we treat the link prediction problem as a
multi-class task rather than a multi-label task. In this
scenario, the multi-intent links are represented as sepa-
rate samples with the same inputs and different outputs.



Table 2
Statistics of the extracted KGs along with the original S2ORC dataset.

Dataset # Nodes # Citation Links # Background # Method # Result Weak Labels

Zero-Hop (𝒢0) 13,011 10,733 5,479 4,403 1,335 79.04%
One-Hop (𝒢1) 5,862,261 119,776,090 39,202,086 16,830,665 16,830,665 43.18%
Two-Hop (𝒢2) 57,535,880 1,621,293,902 467,860,523 121,877,053 35,283,718 34.41%

S2ORC 206,159,629 2,495,513,737 643,955,457 169,472,164 45,779,793 31.90%

Multi-label methods may be a promising future extension
of our work.

SciCiteresplit:

Even though we convert the SciCite dataset to the
SciCiteorigin, problems, such as duplicate citations and
multi-label links, still exist. Therefore, we further tai-
lor the SciCite dataset to create a better link prediction
dataset for graph-based models. First, we remove all the
entities, and their related samples, that do not have a
mapped Corpus ID. Then, similar to SciCiteorigin, we con-
vert the remaining samples to a set of links. Following
this, we drop all duplicate samples. Among the remaining
6,458 unique links, 5,886 only have one intent, 489 have
two intents, and 83 have all three intents. We remove
all the multi-intent links and resplit the dataset with ra-
tios of 70%/15%/15% for training, validation, and test sets,
respectively.

4. Method
Throughout the rest of this work, for simplicity, we use
the term publication to denote all types of academic
publications, e.g., books and papers. Moreover, we use
the terms citation and reference to denote incoming
and outgoing links, respectively.

4.1. Weak Supervision
In order to enrich our data and provide more informa-
tion to the models, we extract the set of intents provided
in the S2ORC dataset for each citation link. The intent
labels in S2ORC are extracted using the structural scaf-
folds model [4] at a sentence level. In this scenario, we
implicitly use the existing data derived from the con-
tent for bootstrapping our approach. We refer to these
links as weakly labeled due to being labeled by a noisy
model rather than a human expert. Since the intent labels
are partial at a sentence level, citation links could have
zero intent in the absence of text or several intents in an
abundance of use cases.

4.2. Knowledge Graph Construction
Given the S2ORC dataset, we expand the SciCite dataset
using the mapped entities to construct a KG containing
2-hop neighborhoods of the publications. Figure 1 illus-
trates an overview of the expanded KG. This work uses
the 2022-09-13 version of the corpus downloaded from
the bulk API. Formally, given the set of mapped entities
𝒱0, the set of 𝑘-hop nodes 𝒱𝑘 is defined as

𝒱𝑘 = 𝒱𝑘−1 ∪ {𝑦 | ∃𝑥 ∈ 𝒱𝑘−1 : 𝑦 ∈ 𝒩𝑥} (1)

where for a given entity 𝑥, 𝒩𝑥 denotes all the entities
that cite or are cited by 𝑥, i.e., the set of neighboring
entities. Given the sets of unlabeled links 𝒰 and weakly
labeled links ℒ, the set of 𝑘-hop edges ℰ𝑘 is defined as

ℰ𝒰
𝑘 = {(𝑥, 𝑦,UNK) | 𝑥, 𝑦 ∈ 𝒱𝑘, (𝑥, 𝑦) ∈ 𝒰} (2)

ℰℒ
𝑘 = ∪𝑟{(𝑥, 𝑦, 𝑟) | 𝑥, 𝑦 ∈ 𝒱𝑘, (𝑥, 𝑦) ∈ ℒ𝑟} (3)

ℰ𝑘 = ℰ𝒰
𝑘 ∪ ℰℒ

𝑘 (4)

where 𝑟 ∈ {Background, Method, Result} and ℒ𝑟 de-
notes the set of all weakly labeled links with label 𝑟. Con-
sequently, given the sets of 𝑘-hop nodes 𝒱𝑘 and edges
ℰ𝑘 , the extracted 𝑘-hop KG, 𝒢𝑘 , is defined as

𝒢𝑘 = (𝒱𝑘, ℰ𝑘) (5)

The specific statistics of the extracted KG and the origi-
nal semantic scholar corpus are reported in Table 2. Since
not every link has weakly labeled intent, this table also
provides the percentage of weakly labeled links for each
corresponding graph. Although we extract 𝒢2, given its
scale, we opt to run our current experiment only on 𝒢1

and leave the larger-scale experiments for future works.

4.3. Feature Engineering
Since none of the publications in our KGs have any fea-
tures or pre-defined representation, we propose to repre-
sent them through their references, citations, and graph-
based features. More specifically, from S2ROC we extract
the in-degrees and out-degrees of citations (or references),
background links, method links, and result links. As a re-
sult, each paper is represented with an 8-dimensional fea-
ture vector, 4 for each in-degree and out-degree feature.



Table 3
Intent classification results on SciCiteorigin and SciCiteresplit datasets. All the metrics are macro averaged. Bold values represent
the highest performance within the metric and dataset scope.

SciCiteorigin SciCiteresplit

Method Setting Accuracy Precision Recall F1 Accuracy Precision Recall F1

Random Universal 33.05 33.05 33.83 31.22 32.99 32.88 33.85 31.89
Most Common Universal 53.57 17.86 33.33 23.26 42.63 14.21 33.33 19.93

TransE Transductive 40.41 37.09 37.81 36.52 39.57 35.96 35.70 35.59
ComplEx Transductive 49.01 44.11 37.94 33.30 40.25 41.85 35.64 28.78
RotatE Transductive 23.54 32.97 32.74 22.98 28.12 36.88 36.31 27.88

Random + MLP Transductive 49.60 30.58 35.17 32.42 45.35 30.26 35.83 32.78
TransE + MLP Transductive 54.16 45.77 45.21 45.24 51.93 45.68 44.16 43.89
ComplEx + MLP Transductive 55.72 47.80 45.19 44.77 48.64 43.46 43.15 43.24
RotatE + MLP Transductive 56.37 48.79 46.15 46.55 51.81 46.92 45.46 45.63

Infersent-KMeans Universal - 58 64 60 - - - -
Infersent-HDBSCAN Universal - 57 63 58 - - - -
Glove-KMeans Universal - 51 56 51 - - - -
Glove-HDBSCAN Universal - 52 57 52 - - - -

MHLP (Ours) Transductive 66.20 62.18 56.13 57.88 66.10 63.69 61.33 62.16
MHLP (Ours) Inductive 63.94 58.36 55.05 56.13 64.17 59.86 59.83 59.81

Structural Scaffolds Universal - 84.7 83.6 84.0 - - - -
SciBERT Universal 86.94 85.30 85.92 85.58 86.39 85.51 85.14 85.28
SciBERT + MHLP Universal 87.53 85.56 87.07 86.25 86.85 86.80 85.96 86.35

For the publications where the content is unavailable, the
out-degree intent-based features will be zero since those
features are based on the noisy sentence-level model that
the Semantic Scholar uses. However, the in-degree fea-
tures may not be zero as long as the citing paper’s content
is available. For the new publications, i.e., unseen nodes
in the inductive setting, the only known non-zero feature
is the reference count.

We normalize the reference and citation features by a
biased log factor defined as

ℎ̄𝑥 = log10(ℎ𝑥 + 1 + 𝛼) (6)

where 𝛼 is a bias hyperparameter. We specifically set
𝛼 = −0.9 to get a normalized value of −1 for zero-
reference and zero-citation situations.

Moreover, we normalize the non-zero in-degree intent-
based features into a [0, 1] probability distribution as
follows:

ℎ̄𝑥 =
ℎ𝑥

ℎBackground + ℎMethod + ℎResult
(7)

The same normalization step is used for out-degree fea-
tures separately.

4.4. Baselines
Knowledge Graph Embedding Models:

Traditional KGE models consist of two shallow embed-
dings as entity and relation encoders and a score function
as a decoder to predict the likelihood of a link. These
models are trained in a contrastive way by masking ei-
ther one of the entities in a given triplet (head, relation,
tail) and sampling a set of negative entities, contrasting
the positive entity.

Since the traditional KGE methods rely on shallow em-
beddings for encoding entities and relations, they can
only be used in the transductive setting and cannot op-
erate on unseen nodes. For our experiments, we use the
available implementations of TransE, ComplEx, and Ro-
tatE in the DGL-KE toolkit [27]. In the evaluation phase,
we calculate the likelihood of all different relation types
for each link and consider the highest likelihood as the
model’s intent prediction.

Hybrid Models:

To increase the reasoning power of the traditional KGE
models, we devise a two-stage approach based on mul-
tilayer perceptron (MLP). We first use the traditional
KGE models to learn embeddings for entities and rela-
tions. Then, instead of relying on the produced likelihood
scores, we concatenate the vectors of two entities and



Figure 2: Overview of the composite model. The model consists of two encoders for the citation phrase and the citation graph
around the citation link. During the training phase, we freeze the SciBERT model in the first two epochs as a warm-up step for
the graph encoder; then, we jointly train both encoders along with the final prediction module.

pass that through an MLP to get logit values. Formally,
given a link (𝑢, 𝑣) and their respective learned represen-
tation (𝑧𝑢, 𝑧𝑣), we calculate the logit values as

𝑝 = MLP([𝑧𝑢‖𝑧𝑣]) (8)

where 𝑝 ∈ R𝒞 contains the unnormalized logits for each
class. The predicted class 𝑐 is then calculated as

argmax𝑐 sigmoid(𝑝). (9)

Natural Language Processing Models:

We include the reported results of several state-of-the-art
Natural Language Processing (NLP) methods. Specifi-
cally, we include results from the word embedding-based
methods such as Infersent-KMeans, Infersent-HDBSCAN,
Glove-KMeans, and Glove-HDBSCAN [17], BiLSTM-
based method Structural Scaffolds [4], and large language
model-based method SciBERT [1]. Moreover, we report
the results of fine-tuning a pre-trained SciBERT model on
both datasets. All these methods use textural information
and are evaluated on the SciCite dataset.

4.5. Multi-Hop Link Prediction (MHLP)
Transductive and inductive settings are the most common
link prediction evaluating schemes for KGs. The main dif-
ference between these two settings is having a fixed set of
nodes in both the training and evaluation phases (trans-
ductive) versus allowing the addition of unseen nodes
in the evaluation phase (inductive). This work refers to
citation intent prediction on unseen publications as the
inductive setting, whereas the transductive setting refers
to citation intent prediction on already seen publications.

We propose an adaptable graph-based model for cita-
tion intent prediction in both the transductive and in-
ductive settings. The primary basis of this approach is
that a node, i.e., publication, could be represented as a

combination of the neighboring nodes’ representations.
Let ℎ(0)

𝑥 be the extracted feature vector for any arbitrary
node 𝑥. We calculate the representation of an arbitrary
node 𝑣 at layer 𝑙 + 1 of a multilayer model as

ℎ
(𝑙+1)
𝒩𝑣

=
1

|𝒩𝑣|
∑︁

𝑢∈𝒩𝑣

ℎ(𝑙)
𝑢 (10)

ℎ(𝑙+1)
𝑣 = 𝜎(𝑊 (𝑙+1)[ℎ(𝑙)

𝑣 ‖ℎ(𝑙+1)
𝒩𝑣

]) (11)

where 𝜎 is a non-linear function. Throughout our ex-
periments, we specifically use ReLU to introduce non-
linearity. Given the node representation from a 𝐿-layer
model and a link (𝑢, 𝑣), we calculate the logit values as

𝑝 = MLP([ℎ(𝐿)
𝑢 ‖ℎ(𝐿)

𝑣 ]) (12)

where 𝑝 ∈ R𝒞 contains the unnormalized logits for each
class and 𝒞 is the set of all classes. The predicted class 𝑐
is then calculated as

argmax𝑐 sigmoid(𝑝). (13)

The main disadvantage of the inductive settings is that
the unseen nodes only have one available feature, i.e.,
reference count. This absence of information makes the
task extremely difficult, as the feature vectors are highly
sparse. However, our model tries to diminish this effect
by using the message-passing scheme, as defined in Equa-
tion 11, to aggregate information through connected en-
tities, i.e., cited papers, creating a denser representation
for the unseen nodes.

All our models are trained using the cross-entropy loss
defined as

𝑙𝑛 = − log
exp(𝑝𝑦𝑛)∑︀|𝒞|
𝑖=1 exp(𝑝𝑖)

(14)

where and 𝑝𝑥 is the logit value for class 𝑥 given the
prediction vector 𝑝.



(a) The number of different citation intents.

(b) The percentage of different citation intents.

Figure 3: The statistic of citation intent for all publications in
the Semantic Scholar corpus. The temporal trends stay steady
over time, suggesting a lack of information in the elapsed time
from the time of publication to the time of citing.

Composite Model:

To further test the capabilities of our proposed model
and use both structural and textual information, we de-
vise a multi-modal model comprising encoders for both
the graph structure and the citation context. Specifically,
we use a pre-trained SciBERT model for encoding the
citation phrase text and our MHLP model for encoding
the citation graph around the citation link. Figure 2 illus-
trates an overview of the composite model.

5. Experiments
In this section, we report our experimental results on both
of the SciCiteorigin and SciCiteresplit datasets. All the graph-
based experiments are carried out on the 𝒢1 KG. For the
traditional KGE methods, we tune their hyperparameters
as described in Appendix A.1 and train them using the
hyperparameters showcased in Table 4. For the hybrid
methods, the KGE component is first trained to generate
node features using the hyperparameters described in

Table 4. Then, the MLP component is trained using the
procedure described in A.2 to predict the citation intent.
For the MHLP-based methods, in both transductive and
inductive settings, we use a 1-layer variation on top of
the normalized features extracted as described in Section
4.3. Moreover, we tune their hyperparameters and train
them as described in Appendix A.3. For the SciBERT
method, we freeze the pre-trained model and add an
MLP module on top of the 768-dimensional [CLS] token
output. Similar to the other models, the MLP module
is tuned using the parameters described in A.2. For the
composite model, during the training phase, we freeze
the SciBERT model in the first two epochs as a warm-up
step for the graph encoder; then, we jointly train both
encoders along with the final prediction module.

To control for the effect of the pre-training using tradi-
tional KGE models, we also run a variation with randomly
initialized node features and designate it as “Random +
MLP.” For the NLP models, we use the previously re-
ported results [17] to compare our models on the test
set-aligned SciCiteorigin dataset. Finally, we also include
the results from random and most common class predic-
tions as sanity checks. All the models are implemented
using PyTorch [14] and trained on a machine with a sin-
gle Quadro RTX 8000 GPU, 72 CPU cores, and 768GB of
RAM. Implementations are available under a CC-BY-SA
license at TBD.

5.1. Results
Table 3 illustrates our experimental results on both
datasets. As evident from Table 3, traditional KGE meth-
ods perform poorly on both datasets, only slightly beat-
ing the random baseline on the macro F1 metric. In-
terestingly, both ComplEx and RotatE perform worse
than TransE on both datasets. This finding is surprising
as both ComplEx and RotatE are more expressive than
TransE [20]. However, when combined with MLP models,
all exhibit significant performance boost, up to more than
100% in the case of RotatE. After this addition, we can see
the same expressivity trend in the model results, i.e., the
more powerful the model, the better the result. Moreover,
the control “Random + MLP” experiment showcases very
similar results to the random baseline, indicating the im-
portance of both components for the hybrid model to
perform well. Altogether, it is evident that the reasoning
power of shallow traditional KGE models is not enough
to capture the complexity of this task, and we require
models with more reasoning power.

As for the MHLP method, in the transductive setting, it
achieves 57.88 and 62.16 macro F1 scores on SciCiteorigin

and SciCiteresplit datasets, respectively. Moreover, its in-
ductive results showcase the robustness of our approach
in an extreme out-of-distribution setting, achieving 56.13
and 59.81 macro F1 scores. Compared to previously re-



ported results [17], our model achieves superior perfor-
mance to Glove-based models while slightly lagging be-
hind Infersent-based models. Looking into the precision
and recall comparison, our method has better precision
scores on both transductive and inductive settings com-
pared to all word embedding-based models; however, for
recall, it performs better than Glove-based models and
worse than the Infersent-based models which might stem
from the imbalance in the links as illustrated by Figure 3a.
Further experimentation to address the class imbalance
problem in future works might help improve the overall
performance of MHLP. The significance of these results is
that we show structural and relational information could
be used to achieve relatively high performance without
using textual information. Moreover, although our mod-
els underperform compared to language model-based
approaches such as Structural Scaffolds and SciBERT,
we showcase interesting future directions for combining
graph-based and NLP-based methods.

Finally, the composite model denoted as SciBERT +
MHLP in Table 3, achieves the best performance among
all models, even beating the fine-tuned SciBERT. When
considering MHLP’s standalone performance, these re-
sults showcase the potential improvements that could be
achieved through the use of structural information that
is not available in citation phrases. The presented ex-
periments are a stepping stone for better understanding
and using the structural information at scale for citation
intent classification.

6. Analysis

6.1. Temporal Analysis
This analysis studies the relationship between the time
that has passed since publication and citation intent. We
hypothesize that a paper is more likely to be cited as
“Result” or “Method” right after its publication, and as
time passes, it will be more likely to be cited as “Back-
ground.” If this is proven accurate, we could get a rela-
tively strong signal from the temporal information for
each citation. We plotted the years after publication
against intent counts and ratios for all papers in the se-
mantic scholar corpus to test our hypothesis. Figure 3a
and 3b illustrate the results of our analysis. As evident
from these figures and contrary to our original hypothe-
sis, we find out that the ratio of intent classes almost stays
the same as time passes with insignificant fluctuations.
As a result, using temporal information in our models is
unlikely to provide any significant improvement. Note
that these results are based on the weakly labeled links
that we obtained from S2ORC. Consequently, these links
are generated by another noisy model that could poten-
tially be biased. Hence, it should not discourage further

(a) Publication features (both sides)

(b) Averaged neighborhood features (both sides)

Figure 4: The calculated MI values for publication features
and averaged neighborhood features. On average, the publica-
tion features show stronger connections to the target variable.

analysis or studies of temporal information for citation
intent classification.

6.2. Mutual Information Analysis
In this analysis, we study the quality of the engineered
features as described in Section 4.3 concerning the weakly
labeled intent classes. To this end, we use the well-known
mutual information (MI) [12] measurement to quantify
the importance of each feature. Formally, the MI between



(a) Features before normalization (b) Features after normalization

Figure 5: The t-SNE visualizations for the unnormalized and normalized features.

(a) The percentage of utilized weak labels.

(b) The percentage of corrupted data.

Figure 6: The macro F1 score of MHLP (Transductive) on
SciCiteorigin and SciCiteresplit dataset

two discrete random variables 𝑋 and 𝑌 is defined as

𝐼(𝑋,𝑌 ) =
∑︁
𝑦∈𝒴

∑︁
𝑥∈𝒳

𝑃𝑋,𝑌 (𝑥, 𝑦) log(
𝑃𝑋,𝑌 (𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌 (𝑦)
)

(15)

where 𝒴 is the value space for 𝑌 , 𝒳 is the value space for
𝑋 , 𝑃𝑋,𝑌 is the joint probability distribution, and 𝑃𝑋 and
𝑃𝑌 are the marginal probability distributions. Note that
MI is a non-negative value, and higher values indicate
more correlation between the two random variables. For
our analysis, we calculate MI for both sides of the 5,886
unique citation links in the SciCiteresplit dataset. More-
over, to study these features in the graph context, we also
calculate MI for the average of these features over the
neighborhood of each publication, i.e., all citing and cited
publications, from both sides of the citation links. Figures
4a and 4b present the results of our experiments. As evi-
dent from these results, while the publication-averaged
features generally show stronger connections to the tar-
get variable, the neighborhood-averaged features seem to
show complementary connections, further emphasizing
the importance of using both sets of features.

6.3. Feature Quality Analysis
In this analysis, we study the effect of normalization as
described in Equations 6 and 7. To this end, we project
the extracted features of the 5,886 unique citation links
in the SciCiteresplit dataset to a 2-dimensional space us-
ing t-SNE [24]. Figure 5a and 5b illustrate the projected
space for the unnormalized and normalized features, re-
spectively. As evident from Figure 5a, it is challenging
to distinguish different intent types in the unnormalized
space. However, after normalization, as evident from Fig-
ure 5b, we can see that the “Method” intention more or
less creates a distinguishable cluster. This result shows
that the use of normalization is potentially helpful for
the model. Further studies on different types of normal-
ization and their effects are left for future work.



6.4. Robustness Analysis
In this analysis, we focus on studying the robustness
of our proposed graph-based method. To this end, we
devise two ablation studies. In the first study, we ran-
domly corrupt a percentage of the weak labels by replac-
ing the correct label with a random label. This study
aims to understand the model’s resilience to noise better.
In the second study, we randomly remove a percentage
of the weak labels. This study’s idea is to understand
better the effect of weak supervision on the model’s
performance. These studies are carried out by running
the MHLP method in the transductive setting on both
SciCiteorigin and SciCiteresplit datasets.

The feature vectors for the publications are calculated
by counting the number of citations and intents. These
vectors are normalized then using Equation 6 and 7. To
analyze the relationship between the model’s perfor-
mance and the amount of available data, we create ten
variations of the dataset by only using a portion of the
available weak labels, varying from using all the available
weak labels to only using 10% of them. Figure 6a presents
the result of this study.

As evident from Figure 6a, the more weakly labeled
links are available, the better our method performs. The
other significant observation is the robustness of the
model, even in the extreme scenario of having access to
only 10% of the labels. Note that only 31.90% of links in
the S2ROC have at least one weakly labeled intent, which
means, even if the utilization percentage is 100%, only
31.90% citation links are weakly labeled.

Figure 6b showcases the relationship between the
model performance and the percentage of corrupted data.
Following our intuition, the model’s performance mono-
tonically decreases as we add more noisy labels to the
data. However, two interesting observations could be
made from this figure. First, the performance of our
method only drops less than five macro F1 scores when
half (50%) of the weak labels are replaced with randomly
assigned noisy labels. This observation shows that the
proposed method is exceptionally resilient when faced
with mistakes. Second, even when all the labels are re-
placed with random ones (100%), the model performs
better than the random baselines. This observation indi-
cates that the model is learning to make inferences based
on purely structural information, which further solidifies
our hypothesis regarding the importance of structural
information.

7. Conclusions and Future Work
In this work, we first introduced an expansion to the Sci-
Cite dataset by extracting scholarly information from the
S2ORC dataset and creating an extended citation graph.
Then, we gathered a large-scale weakly labeled dataset

to augment the extracted citation graph with citation in-
tents and create a multi-relational knowledge graph. Fol-
lowing this, we adapted the sentence-based intent classifi-
cation into a citation-based link prediction task on graphs.
We then introduced a set of engineered graph-based and
citation-based features. Built on top of these features, we
introduced a graph-based multi-hop reasoning approach
for the newly introduced task. Our approach achieves
62.16 and 59.81 macro F1 scores in the transductive and in-
ductive settings, respectively. The experimental results in
the inductive setting further showcase the robustness of
the proposed approach in the information-deprived out-
of-distribution environment. Compared to NLP-based
models, we reached a comparable performance to, and
in some cases outperform, the word embedding-based
methods that rely on contextual sentences to make pre-
dictions. Moreover, with a composite model comprising
our method as the graph encoder and the state-of-the-art
NLP-based model as the text encoder, we outperformed
all the other models we experimented with. These results
further signify the strong signal in relational informa-
tion and highlight the importance of future analysis and
studies in this domain. Finally, our presented analyses
further support our methodological choices.

For future works, one straightforward idea is to extend
the knowledge graph with more scholarly information,
such as authors, venues, and fields of study. There already
exist some open repositories such as OpenAlex [15] and
Microsoft Academic Graph (MAG) [25] that contain this
information. Another direction is further investigation
into the temporal signals. Last but not least, although we
achieved an improved performance through a fusion of
textual and structural information, more investigation
and analysis could be done in this setting in future works.
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A. Hyperparameters

A.1. Knowledge Graph Embedding
We use a randomized search to tune our models and
find near-optimal hyperparameters using the follow-
ing ranges: embedding dimensions ∈ {50, 100, 200},
learning rate ∈ {0.03, 0.1, 0.3}, regularization coef-
ficient ∈ {0.0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, number of
negative samples ∈ {64, 128, 256, 512, 1024}, 𝛼 ∈

Table 4
Hyperparameters of KGE algorithms.

Hyperparameter TransE ComplEx RotatE

embedding dimension 100 100 50
learning rate 0.1 0.3 0.1

regularization coefficient 1e-6 1e-6 1e-6
negative samples size 128 512 64

𝛼 0 0.25 1
𝛾 - - 6

{0.25, 0.5, 1}, 𝛾 ∈ {6, 12, 24}. Note that𝛼 and 𝛾 are the
adversarial temperature and the margin value (RotatE-
only), respectively.

A.2. Multilayer Perceptron
To simplify the model tuning process, we find the optimal
hyperparameters of “ComplEx + MLP” on SciCiteorigin

using grid search and reuse them for the rest of our ex-
periments. Specifically, we run a grid search over the
following ranges: number of layers ∈ {0, 1, 2, 3}, dropout
∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, dimension ∈ {32, 64, 128},
The optimal hyperparameters are as follows: number of
layers = 2, dropout = 0.2, and dimension = [64, 32]. We
use ReLU as the activation function for all layers.

A.3. Multi-Hop Link Prediction
We run a grid search over the following ranges: number
of layers ∈ {0, 1, 2, 3}, dimension ∈ {10, 50, 100, 200},
learning rate ∈ {0.03, 0.01, 0.003, 0.001}, The optimal
hyperparameters are as follows: number of layers = 1,
dimension = 100, learning rate = 0.01. We use Adam as
the optimizer through the tuning process.

We use a randomized search to tune our models and
find near-optimal hyperparameters using the follow-
ing ranges: embedding dimensions ∈ {50, 100, 200},
learning rate ∈ {0.03, 0.1, 0.3}, regularization coef-
ficient ∈ {0.0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, number of
negative samples ∈ {64, 128, 256, 512, 1024}, 𝛼 ∈
{0.25, 0.5, 1}, 𝛾 ∈ {6, 12, 24}. Note that𝛼 and 𝛾 are the
adversarial temperature and the margin value (RotatE-
only), respectively.
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