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Abstract 
This paper proposes a new method for inferential continuous assessment of driver situational 
awareness (ICA-DSA) that provides the level of knowledge needed to make effective decisions and take 
appropriate actions. The paper presents the development of the method, which combines eye-tracking 
and driving performance data to provide a comprehensive situational awareness (SA) assessment of all 
three SA levels. The approach provides a continuous and non-intrusive assessment that can be applied 
in simulated and vehicle-based studies. It also presents a user study conducted to collect data for 
developing the eye-tracking model for assessment of SA level 1, and the rationale behind the selection 
of the driving performance indicators for SA levels 2 and 3. Finally, it presents the application of the 
method to the user study results as an example of how it can be used to evaluate new user interfaces. 
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1. Introduction 

Situational awareness (SA) plays an important role in any dynamic process of human decision 
making, as it provides the level of knowledge required to make effective decisions and take 
appropriate actions [1]. There are several SA definitions, that view and interpret SA from 
different angles and standpoints [1], [2], [3], [4], [5]. However, closer examination reveals that 
they all attempt to capture similar key elements about the operator's ability to perceive, 
understand, and project system status.  

The core of understanding and defining situational awareness is the idea of a clear separation 
between the operator's comprehension of the system status and the actual system status [6]. 
Consequently, it is expected that better alignment between them should also lead to more 
successful human-machine interaction between the system and its operator and vice versa. In 
this regard, assessment of SA has attracted much attention over the last three decades, as it has 
been found to provide a lot of significant information about the operator, the human-machine 
interface of the system, and the overall complexity of the system that requires human decision-
making in dynamic environments. Although it was primarily observed in aircraft, it has now 
spread to many other dynamic domains where the environment may be constantly changing. This 
includes the automotive domain - particularly with the introduction of automation, where the 
role of the driver, including the scope of situational awareness, changes with each level of 
automation.  

According to the theory SA [1], to achieve SA it is necessary to perceive the elements of the 
environment (SA level 1), understand their meaning (SA level 2) and be able to project their status 
in the near future (SA level 3). The three levels are arranged in hierarchical order, with SA level 
3 being the highest. The first level is about the perception of all relevant elements in the 
environment, their status, properties and dynamics. This is followed by the second level, which 
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focuses on understanding the environment and the meaning of the perceived elements and their 
properties. The third and highest level of SA reflects the ability to anticipate and predict the 
actions of the elements in the environment in the near future. Various methods have been 
developed to assess SA, which generally fall into three categories: query, self-assessment, and 
inference techniques. Query techniques require operators to self-report information about the 
system that points to their SA. In this approach, operators are asked questions about their 
perceptions and understanding of the operated system at a particular point in time. Their 
answers are then compared to an established (predefined) ground truth. Self-rating techniques, 
on the other hand, do not interfere with the operation process because they are always presented 
to the operator after the task is completed. Instead of asking questions about system operation, 
the operator is asked to provide a (numerical) subjective evaluation of their SA for a given period 
of time or during the execution of a given task. This type of evaluation is usually based on 
questionnaires and rating scales that attempt to capture subjective indications of the operator's 
SA by eliciting the individuals' self-perceptions of the system. Lastly, SA has also been evaluated 
using inferential or external procedures that seek implicit evidence of the operator's SA using 
observable and measurable correlates. There is no single format for conducting inferential SA 
assessment; the individual's performance and behavior are observed using various techniques as 
indirect evidence of the presence or absence of appropriate SA. This can be done by expert 
observation of the operator and completion of behaviorally anchored rating scales developed for 
performance assessment. 

1.1. Our contribution 

In this paper, we present a new method for inferential continuous assessment of driver's 
situational awareness (ICA-DSA) that draws inspiration from the greatest strengths of currently 
available solutions while attempting to overcome their greatest limitations. It combines eye 
tracking and driving performance data to provide a comprehensive SA assessment of all three SA 
levels. This approach also provides a continuous and non-intrusive assessment that can be 
applied to both simulated and vehicle-based studies. Because it does not involve self-rating, it is 
language-independent, allowing for broad and relatively easy application on a global scale.  

 In continuation, the paper presents the development of the ICA-DSA method. First, the user 
study that was used to collect data for the development of the eye tracking model for the 
assessment of SA level 1 is presented. Then, the rationale behind the selection of the driving 
performance-based indicators for SA level 2 and SA level 3 is explained. Finally, the application 
of the method to the user study results is presented as an example of how it can be used to 
evaluate new user interfaces. 

2. Related work 

The most widely known methods for assessment of SA are using performance assessment with 
query. The first and still most commonly used method is the Situation Awareness Global 
Assessment Technique (SAGAT) [7]. Originally, SAGAT was used for assessment of SA of 
operators operating industrial machines, however it was later used and adapted for numerous 
other fields. In driving, it has been used to correlate SA ability with driver's age, showing that 
older adults are less attentive to important information cues compared to younger drivers [8]. It 
was further used to correlate the working memory with SA, with the results indicating that visual-
spatial and auditory cues interfere with the spatial SA of drivers [9]. Beukel & Vort [10] used it to 
investigate the correlation of headways and response times of distracted drivers in a semi-
automated vehicle, finding a positive relationship between advanced warning time and rates of 
successfully avoided collisions. It was also used for evaluation of novel approaches and interfaces 
for increasing SA [11], [12]. Based on SAGAT, a similar frame-freeze query method was used to 
develop a mathematical model intended to describe the dynamic process of building SA after a 
take-over request in a semi-automated vehicle, showing an exponential relationship between 



driver's SA and the traffic density, and SA and the time spent under automated mode of driving 
[13].   

Since the process of driving is primarily a visual-manual task, the wide use of eye tracking is 
somewhat expected. Eye-trackers can be used from monitoring of where the driver is directing 
their visual attention to [14], [15], [16], up to differentiation of different levels of driver’s 
cognitive load [17]. More specifically, it has been used to observe if the driver detects important 
cues or are nonessential cues drawing away their attention [18], [19]. Furthermore, it has been 
used to explore how long it take the driver to regain visual attention or, as referred by Gold et al., 
environmental SA [20]. From the point of view of the SA theoretical level, eye-tracking is mostly 
related to assessment of SA level 1, which deals with perception of the environment [21]. 

Due to its ease and cost-effective nature, another common technique for assessment of driver’s 
SA is with self-assessment and use of questionnaires. Self-assessed data has revealed that SA 
positively affects trust in automated vehicles [22], [23] and that driver states such as anger can 
negatively affect SA and driving performance [24]. 

Lastly, behavior assessment has also been used to evaluate operator’s SA. Driver behavior 
assessment has also been used in driving, but the purpose of the expert evaluation has been 
mainly to obtain ground truth for initial weighing of neural networks [25] rather than as a 
standardized behavioral metric. As for assessment of driver’s SA, there is no uniform or 
established process of how and which driving behavior data should be observed.  For example, 
observing the driver’s behavior in critical situations was used to correlate shorter response times, 
headway control and time to collision to SA [26].  Furthermore, Ma & Kaber [27] revealed a 
significant negative linear association between decreased SA level 3 scores and driving 
navigation errors, which is in line with Matthews et al. theoretical linkage of SA level 3 with the 
strategic level of driving behavior [28]. Increased SA due to auditory cues informing the driver of 
slow traffic ahead resulted in smoother deceleration [29], which is a performance task related to 
SA Level 2. 

3. Methodology 

3.1. User study 

The study was conducted in a simulated driving environment consisting of a motion-based 
driving simulator with real car parts (seat, steering wheel, and pedals) and a physical dashboard. 
The visuals were displayed on three 49-inch curved TV screens that provided a 145° field of view 
of the driving environment (Figure 1). The driving scenario was developed for the purpose of the 
study in SCANeR Studio [30]. It had a length of 13 km and simulated a route from a suburb to a 
city center. In the study, we used a conditionally automated vehicle (SAE L3) [31]. During the 
driving scenario, several intersections with crosswalks and other road users formed the driving 
environment to create an object-rich test environment.  

 

Figure 1: Driving simulator set-up used in the study 
 



In each trial, there were four prompts to turn on the automated driving system (hereafter 
referred to as handover request) and four prompts to take over control of the vehicle (hereafter 
referred to as takeover request). The takeover requests occurred due to both critical (e.g., a busy 
crosswalk or a complicated intersection) and non-critical events (this was to simulate the vehicle 
simply losing communication with the infrastructure or the vehicle's sensor system failing). 

3.2. Participants 

28 (14 male and 14 female) participants took part in the study. The drivers ranged in age from 
21 to 57 years (M = 30.17 years, SD = 10.60 years) and had held a valid driving license for an 
average of 11.77 years (SD = 10.12 years). About half of them (53.33%) reported driving daily, 
36.66% several times a week, 6.66% several times a month, and 3.33% several times a year. 20% 
had no experience with vehicles with automated features (any advanced driving assist systems 
(ADAS)), while 6.66% had driven a vehicle with multiple ADAS systems once, 13.3% a few times, 
and 60% several times. Data from 9 of the 28 participants had to be excluded due to motion 
sickness or because the data sets were recorded partially and were hence unusable due to 
technical problems for the ICA-DSA method development. The data available for all 28 
participants were used for the evaluation of the HUD. As a thank you for their participation in the 
study, the participants received a gift voucher for €10. 

3.3. Experiment design and procedure 

The goal of the study was two-fold. First, it aimed to collect data necessary for the development 
of the ICA-DSA method. Second, it aimed to present the application of the method for assessment 
a novel human-computer interaction (HCI) solution. 

For the later purpose, the study had a within subject design – all participants performed two 
trials:  

• a baseline trial,   
• a trial with the addition of a head-up display (HUD), shown on Figure 1. 
 
The HUD displayed information about the vehicle speed, the speed limit, indicated speeding, 

highlighted traffic signs, indicated too short distances to the vehicle ahead, and highlighted (with 
bounding boxes) important road participants during take-over, which could affect the course of 
driving. The HUD was intended to help drivers with the perception of the environment (SA level 
1), but also to contribute to safer and smoother longitudinal control of the vehicle. Half of the 
participants started the study with the baseline trial, and the other half with trial with the HUD.  

The study began with the experimenter explaining the purpose of the study and informing 
participants that their only task was to operate the vehicle safely. Participants were informed that 
they can stop their participants at any time if they felt any discomfort or motion sickness. Upon 
receiving all information concerning the study, the participants were provided with an informant 
consent, which after it was signed, was followed by a demographic questionnaire. In this study, 
we did not collect any personal information. After signing the consent forms, all of the data was 
recorded under unique randomly assigned IDs. 

The participants were then subjected to a practice drive in which they were shown how to use 
the driving simulator, and how to turn on and turn off the automated driving system (ADS). They 
received the handover request in the form of a pre-recorded voice message saying “Turn on 
automated driving system”. The ADS could be turned on by pressing a specifically dedicated ADS 
button on the bottom left lever of the steering wheel. They received the takeover request as a 
visual and auditory notification 5 seconds prior to the ADS turning off on itself. The visual 
takeover notification was a text message “Takeover”, which was accompanied with a countdown 
from 5 to 0, showing the time remaining for takeover. The auditory notification was a 4000 Hz 
pure tone [32] which was played at 65 dB from the start of the takeover notification until the 
driver took over control of the vehicle. Participants were able to take over control of the vehicle 



by pressing on the brake or gas pedal for at least 40 N, steering the wheel for at least 6° or by 
pressing the same ADS button on the bottom left lever of the steering wheel used for turning on 
the automated system. 

The participants then proceeded to completing the two trials. In between there was a 2-minute 
break. After completing the trials, they were provided with the gift voucher. 

3.4. Development of ICA-DSA 

3.4.1. Eye tracking 

Video recordings from the driver’s point of view recorded with Tobii Pro Glasses 2 eye tracker 
[33] were used as the main data source for assessment of SA level 1 (perception of elements in 
the environment [1]). Tobii Pro Glasses 2 are a head-mounted eye tracker with sampling 
frequency of 50 Hz. The eye tracker provides information about the gaze coordinates within the 
coordinate system of the video recording, enabling visualization of the gaze position as a small 
green circle in the video scene (see Figure 2 annotation view_marker).  

 

 
 

Figure 2: Objects of interest observed during driving 
 

For analyzing the eye tracking videos, we used You Only Look Once (YOLO) object identifier 
for object detection and recognition. YOLO can recognize and locate multiple objects within an 
image or video. Its libraries typically provide several pre-trained models for object detection, 
classification and segmentation in driving scenes, mainly based on real-life driving recordings. 
For our model, we used driving-based video recordings from a driving simulator. Consequently, 
we could not use existing YOLO models, but had to perform the training process from scratch with 
the simulator-based recordings and data. To train the model, we decided to observe only the 
driver’s SA during the handover and takeover requests, which resulted in 8 video extractions. The 
video extractions started with the handover/takeover requested and lasted 15 seconds after the 
driver’s accepted the requested, which (in average) resulted in 20 seconds long videos for the 
handovers, and 30 seconds long videos for the takeovers.  

With the goal of capturing driver’s SA level 1, objects of interest observed were the rear 
mirrors (left, right and center), other road participants (vehicles, pedestrians, cyclists), the 
physical dashboard in the simulator, the projected HUD (in the trials with the HUD) in the 
simulation, the physical head-down display (HDD) for display of entertainment content, and the 
gaze position of the test participant. All of the points of interest are presented in Figure 2.  

The processing was performed in. The first step of the process was to select 300 static images 
in the video recordings to be used as a training set and mark all objects of interest visible in the 
individual image. This process was performed by YOLO Label tool [34] which outputs a 



configuration file with bounding boxes of all objects. The set of images is split into subsets for 
training (70%), testing (15%) and validation (15%). The model itself was trained using the YOLO 
Custom Training model.  

The final step was then to analyze all of the video recordings using our pre-trained model by 
implementing it in PyTorch [35]. A position of the gaze in each frame was compared against the 
other detected objects and the potential overlap was recorded as “seen object”. Figure 2 shows a 
screenshot of the analyzed video with a set of predefined objects of interest and user’s gaze 
position (view marker). In the right bottom corner of the video, the experimenter can see at all 
times the data being recorded, allowing for monitoring of the reliability of the detection model. 
Attached to this submission is a short video extraction showing the process in practice. 

3.4.2. Driving performance 

ICA-DSA further foresees use of driving performance data as indicators for assessment of SA level 
2 (comprehension on the meaning of elements in the environment) and SA level 3 (projection of 
near future events), mainly focusing on lateral and longitudinal control of the vehicle [1]. 
 

For observing SA level 2, ICA-DSA looks at: 
- % longitudinal accelerations < 1.23 m/s2  < 2.12 m/s2, 
- % longitudinal decelerations < 1.13 m/s2  < 2.02 m/s2, 
- % lateral accelerations < 1.64 m/s2  < 1.87 m/s2, and 
- % speeding 10% above the speed limit (as defined by national regulation).  

 
For observing SA level 3, ICA-DSA looks at: 

- % longitudinal accelerations > 2.12 m/s2, 
- % longitudinal decelerations > 2.02 m/s2, 
- % lateral accelerations > 1.87 m/s2, and 
- % number of accidents (collisions with other road participants or road infrastructure).  

 
The acceleration and deceleration ranges were derived from de Winkel et al. study results [36] 

in which they suggested standards for lateral and longitudinal acceleration rates in automated 
vehicles, which were somewhat in line also with standards for accelerations in (manually 
operated) public transportation [37]. They defined longitudinal accelerations, longitudinal 
decelerations and lateral accelerations below 1.23 ms−2, 1.13 ms−2, and 1.64 ms−2 respectively as 
“good”, whereas above 2.12 ms−2, 2.02 ms−2 and 1.87 ms−2 respectively as terrible. Based on their 
results, we defined accelerations above the “good” rating as indicators of poor SA, which due to 
lack of comprehension of the meaning of status of elements in the environment requires sudden 
adjustments of the lateral and longitudinal control of the vehicle. Excessive accelerations on the 
other hand, usually result in accidents or near accidents [38], due to the driver’s lack of projection 
of the status of the elements in near future. 

For the purpose of this study, the driving performance data was captured with a motion-based 
driving simulator and SCANeR simulation software. The data was aggregated with using a data 
logger with sampling frequency of 100 Hz. The data logger records positions and velocities of all 
elements in the driving environment, including the ego-vehicle. To be able to align the driving 
performance data with the eye tracker data, which is logged at 50 Hz, the driving simulator data 
was down sampled from 100 HZ to 50 Hz. 

3.5. Independent variables used in the study 

For presentation of results obtained with ICA-DSA, we defined two independent variables in the 
study: absence and presence of the HUD. Additionally, we observed separately the data for the 
handover and takeover request. The data was collected from receiving the notification (for 
handover or takeover) until accepting it, and 15 seconds after acceptance to differentiate 
between manual and automated driving mode. During the automated drive (after handover and 



before takeover), we observed only the eye tracking data, as the driving performance data was 
not from the driver but from the ADS. 

4. Results 

In addition to applying the ICA-DSA model, the obtained data for each trial was compared with 
paired samples t-test to compare the values between the baseline trial and trial with HUD. The 
Shapiro-Wilk test of normality showed that the eye-tracking and driving performance data were 
not normally distributed (p > 0.05). As a result, the data was analyzed with Wilcoxon signed-rank 
non-parametric test. 

4.1. Eye tracking 

The eye-tracking model provides information about the driver’s gaze in every recorded frame. 
Since the observed video recordings represent specific situations during takeover (handover and 
takeover), which have defined short time durations, we present the results as percentage of time 
the driver spent looking at a specific (type of) of object in interest during each situation. 

4.1.1. Handover 

Figure 3 presents the mean percentage of time drivers looked at a specific object during 
handover. The data is split in two time intervals: 1) from handover notification until the actual 
handover (Figure 3, left) when the driver operates the vehicle manually, and 2) 15 seconds after 
right after handover (Figure 3, right) when the vehicle is operated by the ADS. It should be noted 
that the reduced time spent looking on the road in the trials with the HUD is due to the fact that 
the figures do not include the percentage of time the driver’s gaze was on the HUD during the 
trials with the HUD, which were M = 9.07% (SD = 14.59%) during the manual, and M = 6.32% (SD 
= 11.31%) during the automated driving intervals. The HUD was displayed on the lanes, therefore 
overlapping with the road bounding box. Because the HUD is semi-transparent, the drivers could 
still pay attention to road, so looking at the HUD should not be considered entirely as not looking 
on the road. The Wilcoxon signed-rank test revealed statistically significant increase in the 
percentage of time drivers spent looking at other vehicles during before the handover, Z = 2.130, 
p = 0.033, and pedestrians after the handover, Z = -2.216, p = 0.027. 

4.1.2. Takeover 

Figure 4 presents the mean percentage of time driver’s looked at a specific object during 
takeover. The data is split in two time intervals: 1) from takeover notification until the actual 
takeover (Figure 4, left) when the vehicle is operated by the ADS, and 2) 15 seconds after right 
after takeover (Figure 4, right) the driver operates the vehicle manually. Again, the figures do not 
include the percentage of time the driver’s gaze was on the HUD during the trials with the HUD, 
which were M = 7.64% (SD = 11.05%) during the automated, and M = 5.43% (SD = 11.06%) 
during the automated driving intervals. The Wilcoxon signed-rank test revealed only one 
statistically significant increase: in the percentage of time drivers spent looking at pedestrians, 
both before takeover (Z = 2.547, p = 0.011), and after takeover (Z = -2.008, p = 0.045). 
 



 
Figure 3: Mean percentage of time drivers spent looking at specific types of objects during 
handover. The left graph shows from handover request manual driving (left), whereas the right 
graph after handover automated driving (right) 
 

 
Figure 4: Mean percentage of time drivers spent looking at specific types of objects during 
takeover. The left graph shows from takeover request automated driving (left), whereas the right 
graph after takeover manual driving (right) 

4.2. Driving performance 

The eye-tracking model provides information about the driver’s gaze in every recorded frame. 
Since the observed video recordings represent specific situations during takeover (handover and 
takeover), which have defined short time durations, we present the results as percentage of time 
the driver spent looking at a specific (type of) of object in interest during each situation. 

4.2.1. Handover 

Figure 5 presents the mean percentage of time drivers performed a specific driving performance 
indicator from the handover notification until the actual handover. The Wilcoxon signed-rank test 
revealed only one statistically significant increase - in the percentage of time the drivers’ 
longitudinal deceleration was above 1.13 m/s2, Z = 2.450, p = 0.014 when operating the vehicle 



with a HUD compared to the baseline trial. There were no accidents in any of handover situations 
in the baseline and HUD trials. 

 
Figure 5: Mean percentage of time drivers performed a specific driving performance indicator 
before handover 

4.2.2. Takeover 

Figure 6 presents the mean percentage of time drivers performed a specific driving performance 
indicator 15 seconds after taking over the vehicle control. Also in this case the Wilcoxon signed-
rank test revealed only a statistically significant decrease in the percentage of time the drivers’ 
longitudinal deceleration was above 1.13 m/s2, Z = -2.108, p = 0.035 when operating the vehicle 
with a HUD compared to the baseline trial. There were no collisions in any of the takeover 
situations in the baseline and HUD trials. 

 
Figure 6: Mean percentage of time drivers performed a specific driving performance indicator 
after takeover 



5. Discussion and conclusions  

The goal of this study was to develop an inferential, non-intrusive, continuous, automated, and 
language-independent method for assessment of driver's SA at all three levels defined in SA 
theory. To do so, we conducted a user study to collect data that was used to train the models for 
SA level 1, which deals with the perception of elements in the environment. Based on the available 
literature, we used the data to further define driving performance indicators that can be used for 
assessment of SA level 2 and SA level 3, which can be retrieved in the same data format as the 
eye-tracking data.  

The results of the user study demonstrate the application of the method to evaluate a 
novel HUD, designed to improve driver's SA during the transition of control between the driver 
and the vehicle in semi-automated vehicles. The results for SA level 1 revealed that the 
introduction of a HUD, which highlights other important road participants such as other vehicles 
and pedestrians, can increase the driver's attention to elements in the environment during the 
handover or takeover respectively. The results for SA level 2 showed that the addition of the HUD 
resulted in less excessive deceleration and thus a smoother ride. Sudden braking can occur to 
adjust longitudinal vehicular control to avoid speeding or collisions after (late) detection of 
elements in the environment. Because the HUD displayed information about speeding, too short 
distance to the vehicle in front as well as highlighted important road participants, drivers may 
have been able to better understand their significance and thus reduce the need for excessive 
braking. The observed driving performance indicators for SA level 3 did not show statistically 
significant differences, and some of them did not occur at all. The reason for this could be due to 
the relatively uneventful scenario that was mainly used to train the eye tracking model. 

In addition to assessment of new interfaces such as the presented HUD, the ICA-DSA results 
could be used to gain an understanding about the driver in specific situations such as handover 
and takeover. For example, drivers seem to pay more attention to all road environment elements 
after operating the vehicle manually for some time (before handover). In contrast, they seem to 
spend more time looking straight on the road and fail to disperse their attention to other objects 
(including rear mirrors) during takeover after having spent some time being driven by the ADS. 
However, further studies dedicated for assessment of such specific situations are needed to 
further explore the existence of statistically significant differences and the what may be causing 
them. 

Although it provides an automated method for capturing data for every object of interest and 
driving performance indicator in every frame, in its current form, the proposed ICA-DSA method 
does not provide a definite score, still requiring interpretation of the obtained results. Further 
research is needed to define a SA scale for every SA level, which could be then used to calculate 
an overall driver’s SA. As it is a continuous-based method, the scores could be calculated for a 
defined period of time; a duration that could be set around a time interval or situation-based. A 
potential step forward would be conducting an expert-based study, to define SA scale-based 
scores, which could also be calculated automatically, and could hence ease the interpretation 
process of the results. The study could also involve other existing query, self-rating and inferential 
SA methods (for example, SAGAT, SART and SABARS) to validate the sensitivity of ICA-DSA and 
check for existence of correlations among them.  

Another limitation revealed with the study lays in the driving performance indicators used 
for assessment of SA level 3. A future step would be identification of more performance indicators 
that could indicate driver’s ability to predict the status of elements in near future, which do not 
require critical events such as (near) collisions.  

Lastly, because the eye-tracking model was developed based on video recordings of driving 
simulator, this paper presents the application of ICA-DSA for studies conducted in a simulated 
driving environment. However, since YOLO models for object detection in videos from real 
vehicles are already available, ICA-DSA could be easily adapted and used also for assessment of 
driver’s SA based on real vehicle data.  



At this point, we believe that in the presented form ICA-DSA provides a good starting point 
for overall assessment of driver’s SA as it already minimizes the limitations of currently available 
solutions. 
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