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Abstract
Gesture recognition with millimetre wave radar has been extensively researched and many datasets are
publicly available. However, datasets with raw data (including voltage levels) are almost not available.
These are essential as they allow for recreation of all signal representations, thus allowing evaluation
of gesture detection pipelines on the same datasets. This paper presents the design, implementation,
and testing of a data recording prototype for hand gesture recognition coupling the Texas Instruments
IWR6843ISK radar sensor andmagic leapmotion sensor. The study emphasizes on the system architecture,
system apparatus and implementation to optimize recorded data quality and format flexibility (including
voltage levels).

Preliminary results demonstrate the prototype’s ability to accurately capture stream of data from both
radar sensor and Ultraleap LeapMotion sensor. This report assists researchers and other practitioners in
building such a system, thus allowing them to capture high quality datasets on their own.

1. Introduction and related work

In recent years, gesture recognition with millimetre-wave (mmWave) radars has garnered
significant interest among researchers [1, 2, 3, 4, 5, 6, 7, 8, 9] and practitioners due to its
numerous advantages, including resilience to environmental factors such as lighting andweather
conditions, low power consumption, compact form factor, and the ability to detect gestures
through materials [8, 10]. This capability is particularly valuable for real-world applications
such as controlling infotainment systems in vehicles or sensing gestures even when the sensor
is embedded within an object, such as a phone in a pocket.

Current gesture recognition datasets with mmWave radars often provide processed data in the
form of Range-Doppler, Range-Angle, or point-cloud representations. While these formats offer
certain benefits, they lack the flexibility and granularity of raw Voltage data, which are essential
for understanding and comparing different gesture recognition pipelines. Further still these
datasets predominantly only offer one sensing modality, thus failing to provide reference data
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streams. For example, radar sensor can be used to reconstruct point-cloud data, however to the
best of our knowledge no dataset exists where reference point-cloud data (ground truth) would
be available besides the radar data. To address this gap, we present the design, implementation,
and testing of a data recording prototype for hand gesture recognition coupling the Texas
Instruments (TI) IWR6843ISK radar sensor and magic leap motion sensor.

Even though Texas Instruments provides extensive documentation and user guides for con-
figuring the IWR6843ISK radar sensor with the DCA1000EVM data capture card, the process
is not always straightforward. This is especially true when users need to develop their own
applications and customize the sensor to suit specific use cases. Moreover, integrating multiple
sensors together can be challenging. In this paper, we delve into the process of configuring the
radar sensor and integrating it with the LeapMotion sensor to achieve robust data capture. We
also explore the difficulties we encountered during the prototype setup and how we addressed
them, providing insights into our decision-making process.

2. System architecture

This data capture tool incorporates two sensors: IWR6843ISK radar sensor1 and an Ultraleap
LeapMotion sensor2. The tool captures mid-air gesture trajectories in real-time from both
sensors. The radar sensor operates at a frame rate of 100 frames per second (fps), while the
LeapMotion sensor operates at a frame rate of 115 fps. Both sensors are triggered simultaneously
via two sockets, and the timestamps of each frame are logged. This allows the tool to align the
corresponding radar frames with the LeapMotion hand captures.

2.1. Apparatus

Figure 1 shows a Radome like protective enclosure for the radar sensor. The enclosure is
constructed of Plexiglass covered with thin aluminum foil to prevent radiation leakage. An open
square on top of the antenna array allows the material under investigation to be placed on the
encloser. The size of the square is determined based on the radar’s field of view. The thickness
and proximity of the material to the radar sensor are important for optimal performance, but
we used the materials in their existing state to focus on analyzing their impact on gesture
recognition. The distance between the material’s internal surface and the radar antenna is also
critical and was set up 12mm.

2.2. User interface

The user interface (UI) of the application was implemented using the React3 JavaScript library
and pre-built semantic components from the Semantic UI4 front-end development framework.
React’s component-based approach and Semantic UI’s intuitive and reusable components made it

1https://www.ti.com/tool/IWR6843ISK
2https://leap2.ultraleap.com/leap-motion-controller-2/
3https://react.dev/
4https://react.semantic-ui.com/



Figure 1: Apparatus: Materials are placed on the open space configured to uphold the radar’s Field of
View at 140 degrees azimuth and 120 degrees elevation. The Radar sensor and Data capture card are
housed within the Radome, with the Leap Motion sensor positioned on its top.

an ideal choice for building a user-friendly and visually appealing interface. React’s component-
based structure allowed for modular development, ensuring that UI elements could be easily
reused across the application. This approach simplified code maintenance and contributed to a
maintainable and scalable codebase. Semantic UI’s pre-built semantic components provided a
consistent and modern design language, ensuring that the UI elements were well-organized,
accessible, and visually appealing. This library helped to streamline the design process and
ensured that the application’s UI conformed to industry standards. The results is an interface
shown in Figure 2

2.3. Backend

The backend was developed using Node.js5, Express.js6, and Atlas MongoDB cloud database7.
The database stores gesture metadata and metadata about recordings such as number of frames
captured, number of zero filled frames, number of Bytes recieved, and recorded temperatures of
the antennas. The Express.js routing framework was utilized to efficiently handle incoming user
requests and data from the sensors. Locally running backendwas responsible for communicating
with both the radar sensor and the LeapMotion sensor via sockets to acquire and store gesture

5https://nodejs.org/en
6https://expressjs.com/
7https://www.mongodb.com/atlas/database



Figure 2: User Interface: Once the study coordinator presses start-gesture then countdown progress
starts and the participant waits at the start position to start the gesture. Once the Time-Left progress
bar start, the participant start performing the gesture

data in the Atlas MongoDB database and local disk drive. The asynchronous and non-blocking
I/O capabilities of Node.js, coupled with the efficient routing capabilities of Express.js, enabled
the backend to handle a high volume of data streams from the sensors with minimal latency.
The NoSQL structure of Atlas MongoDB provided flexibility in storing and retrieving gesture
metadata, making it suitable for the dynamic nature of mid-air gesture data.

2.4. Radar sensor controller

In our research, we employed the Texas Instruments (TI) IWR6873ISK, an advanced on-antenna
radar module, as our primary radar sensor. TI provides the mmWave Studio application, a
comprehensive software tool designed for communication and configuration of the radar sensor.
We utilized this application for both configuring and triggering the sensor. A notable feature of
mmWave Studio is its command-line accessibility, facilitated through built-in Lua shell. This
feature allows for the configuration of the radar sensor via a custom Lua script.

The process of sensor activation is initiated through a Lua script within mmWave Studio.
This script serves two primary functions: firstly, it enables the detailed configuration of the
sensor through a series of specific commands. Once the sensor is configured, the Lua script then



establishes a socket server, actively listening for trigger commands issued from the backend of
our application. Upon receiving a trigger command from the backend, the Lua script proceeds
to activate the radar sensor.

The operational duration of the radar sensor is set to a precise two-second window upon
activation. During this period, the sensor transmits a total of 200 frames. Following the
transmission of each frame, the radar sensor relays the raw voltage data of the radar receiving
antennas (𝑅𝑥) to the DCA1000EVM data capture card8. This transmission occurs through an
LVDS (Low-Voltage Differential Signaling) interface, ensuring high-speed data transfer and
integrity. Upon reception, the DCA1000EVM data capture card sends the captured radar data to
the computer via an Ethernet port using User Datagram protocol (UDP), ensuring efficient and
timely transfer.

2.5. DCA1000EVM data capture card controller

In our setup, the 𝑅𝑋 antennas of the radar sensor capture data at a bandwidth exceeding the
capabilities of standard UART COM port communication. To address this, Texas Instruments
provides the DCA1000EVM data capture card, designed specifically for streaming radar sensor
data. This card connects to the radar sensor’s LVDS port and transmits the data to a computer
via an Ethernet port. While the DCA1000EVM receives operational commands through UART
COM ports, the data transfer is executed through Ethernet for higher bandwidth efficiency.

Texas Instruments also offers a Command-Line Interface (CLI) control program for the
DCA1000EVM9. This program manages the data flow from the capture card, filling in any
missing frames with zeros and reordering the data before storing it as binary files. Additionally,
it compiles the statistics of the received data into a separate CSV file.

2.6. Ultraleap’s LeapMotion controller

In our research, we employed the Ultraleap Leap Motion sensor for tracking hand movements.
Ultraleap provides the Gemini software10, a C#-based SDK, to facilitate the sensor’s integration
with computers for data capture. To integrate the Leap Motion sensor with our systemb́ackend,
we developed a custom Leap Motion controller script, leveraging the LeapC Python wrapper11.

The Leap Motion controller initiates a socket server to listen for interruption signals from
the backend. Upon receiving an interruption signal, the controller starts the recording of hand
events. The Leap Motion sensor transmits the detected hand coordinates as events via USB-C to
the computer. These events are then captured by our Leap Motion controller using the LeapC
Python wrapper, ensuring seamless and accurate acquisition of hand movement data.

8https://www.ti.com/tool/DCA1000EVM
9https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/1023/TI_DCA1000EVM_CLI_
Software_DeveloperGuide.pdf

10https://leap2.ultraleap.com/gemini-downloads/
11https://github.com/ultraleap/leapc-python-bindings
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3. Evaluation of raw data

Upon acquiring the raw data, our initial step is to evaluate its utility and interpretability.
This assessment is conducted by visualising the data using several established representation
methods in radar signal processing. Figure 3 shows Range-Doppler[1, 8, 2, 3], Point-Cloud[4, 5],
Range-Angle[2, 9], and IQ signal representation[7] deduced from the raw data gathered. These
visualisation techniques provide critical insights into the data’s characteristics such as detected
target range, angle of arrival or velocity of the targets and are instrumental in determining its
applicability for further analysis.
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Figure 3: The image presents four signal representation plots derived from raw data for the Swipe-
Left gesture’s initial repetition: the Range-Doppler Map shows velocity and distance, the Point-Cloud
visualises detected points in spatial coordinates, the Range-Angle Map illustrates the distribution
of ranges over angles, and the Complex Signal Time-Domain plot displays the real and imaginary
components of the signal over time.



4. Triggering the radar Sensor

In our experimental setup, two distinct approaches were employed for triggering the radar
sensor. The first approach involves configuring the radar sensor to emit an indefinite number
of frames, wherein data recording occurs exclusively during the user’s gesture performance.
This method eliminates the need to activate the radar sensor for each gesture repetition.

The alternative approach necessitates the activation of the radar sensor concurrently with the
commencement of the user’s gesture, thereby initiating data recording. This method requires the
radar sensor to be invoked for every gesture repetition. However, the comparative advantages of
these two approaches – finite frame versus infinite frame configurations – are not immediately
apparent. To investigate this, we conducted a focused within-subject user study.

The study’s objective was to assess the sensor’s efficacy across these two operational modes
by monitoring the incidence of data packet loss and variations in sensor temperature.

For a robust evaluation, we conducted a controlled within-subject experiment, maintain-
ing consistent external variables while comparing the frequency of missing data frames and
temperature fluctuations between the two sensor operation modes.

4.1. Data capture and Analysis

We selected a set of five commonly used gestures that are relatively simple to execute: Swipe-
Left, Swipe-Right, Swipe-Up, Swipe-Down, and Hold[8, 5, 11, 12, 10, 11, 13, 14]. The participant
repeated each gesture 10 times in both Infinite and Finite modes. We recorded the antenna
temperatures and the number of missing radar frames after each repetition to compare sensor
performance between the two modes.

Initially, we set the sensor to Infinite mode, during which the participant completed 50
gestures repetition in total. After each repetition, we recorded the antenna temperatures and
the count of any missing data frames.

Subsequently, we powered down the sensor for one hour to allow it to return to baseline
temperature conditions. Following this cool-down period, we reconfigured the sensor to Finite
mode, ensuring that startup temperatures were consistent with the initial trials.

4.2. Results

We analysed the mean antenna temperatures and number of missing radar frames in two sensor
configurations. Since the mean antenna temperatures (𝑊 = 0.958, 𝑝 < 0.01) and number of
missing radar frames (𝑊 = 0.53375, 𝑝 < 0.00001) were not normally distributed, we opted for
Wilcoxon matched pairs [15] test with false discovery rate (FDR)[16] correction.

The mean temperatures and number of missing frames across study conditions are shown in
Figure 4. Significant effect could be detected between Infinite and Finite sensor configurations
when analysing the distribution of the mean temperatures. ( 𝑉 = 0, 𝑝 < 0.0001) Similarly,
significant effect could be detected between the same same sensor configurations when analysing
the distributions of the number of missing radar frames. (𝑉 = 229, 𝑝 < 0.05)
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Figure 4: Comparison of Average Temperatures and Missing frames between Finite and Infinite Radar
Configurations

5. Discussion

The evaluation demonstrates that the sensor effectively captures the raw voltage signal, and the
acquired data can be successfully interpreted using standard radar signal processing techniques.

5.1. Controlling Temperature

Our initial setup involved setting the radar frame frequency to 100 fps, with the radar contin-
uously radiating frames until manually stopped. This approach, however, led to a significant
rise in sensor temperature, reaching approximately 100°C within 30 minutes of activation. To
mitigate this issue and maintain temperature control, we modified the radar operation to activate
only during gesture execution. The radar now radiates frames for a precise two-second duration
aligned with gesture performance, followed by deactivation. This intermittent activation effec-
tively regulates the sensor temperature. Moreover, we observed that at temperatures exceeding
90°C, there was a notable increase in data frame loss. This error was substantially reduced with
our revised method of operation. section 4 shows that the number of missing radar frames and
the antenna temperatures are significantly different in the two sensor configurations. However,
we should acknowledge that the findings are based on a single-participant study.



5.2. Signal processing on inbuilt DSP chip of IWR6843ISK Radar

The TI Radar Toolbox provides various applications such as Out-of-Box-Demo12, Area-Scanner13,
and Gesture-Recognition14, designed for deployment within the IWR6843ISK radar sensor.
These applications leverage the radar’s inbuilt DSP chip for signal processing, outputting data
formats such as point cloud, Range-Doppler, Angle-Doppler, or recognized gestures and objects
via UART COM ports. Additionally, by setting ‘lvdsStreamCfg -1 1 1 1‘ in the configuration file,
the sensor can be configured to output raw raw Voltage data through the LVDS interface.

However, this approach presents limitations when operating at higher frame rates, such
as 100 fps, rendering it unsuitable for our specific needs. Therefore, in our study, we opt for
processing the signal externally on a computer, post capturing the raw Voltage data. This
method not only circumvents the frame rate limitation but also offers greater flexibility in data
analysis and processing.

6. Conclusion

This study presents the development of a prototype system designed for capturing raw voltage
data from the IWR6843ISK radar sensor during hand gesture performance. In our innovative
approach, we integrated two distinct sensors: the IWR6843ISK radar sensor and Ultraleap’s Leap
Motion sensor. We developed a specialised application capable of simultaneously recording
both the radar’s raw voltage data and the Leap Motion sensor’s hand snapshots during gesture
execution.

Furthermore, we delved into the operational dynamics of the sensor, examining how different
configurations affect antenna temperatures and the occurrence of missing radar frames. This
exploration is crucial for optimising sensor performance and ensuring reliable data capture.

However, our research also encountered challenges, particularly in achieving synchronisation
when capturing data frommultiple sensors. Addressing these challenges is critical for enhancing
the accuracy and efficiency of the data collection process. This study not only contributes
valuable knowledge to the field of gesture recognition using radar technology but also opens
avenues for future research in improving multi-sensor integration and synchronisation.
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