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Abstract
This paper explores the incorporation of olfactory data into multimodal language models, a relatively
under-explored area in computational linguistics. We tackled the challenge of detecting olfactory stimuli
in text and images, with a particular emphasis on multilingual contexts. Our approach involved enhancing
the Large Language and Vision Assistant (LLaVA) model, through fine-tuning with a specialized dataset of
around 2500 image-text pairs. By leveraging the open-source nature of LLaVA and the resource-efficient
fine-tuning techniques such as Low-rank Adapter (LoRA), our study aims to contribute to the broader
exploration of adapting language models to previously under-researched sensory modalities, such as
olfaction.

1. Introduction

The field of multimodal machine learning has predominantly concentrated on text and image
data. This focus is primarily because efficient representation techniques are readily available
for these modalities. Conversely, other sensory dimensions, such as olfaction and gustation,
have received less attention. This can be attributed partly to the challenge of incorporating
their complex chemical structures into machine learning frameworks. However, it is important
to note that these less-explored modalities are also implicitly present in both text and images,
a facet that has been largely overlooked. The Multimodal Understanding of Smells in Texts
and Images (MUSTI) addresses this gap by encouraging research in the detection of olfactory
sources through texts and images in a multilingual context.

In this paper, we outline our contribution to MUSTI 2023 [1], which focuses on evaluating
the capabilities of current open-source multimodal language models in identifying the sources
of olfactory stimuli. To this end, we utilized the Large Language and Vision Assistant (LLaVA)
model [2, 3], one of the most prominent multimodal open-source models available. Our research
examines both the standard capabilities of the LLaVA model and its potential for fine-tuning
with olfactory data. We observed significant performance improvements in the model when
fine-tuned with a very limited dataset of approximately 2000 image-text pairs. We believe that
the investigation of under-researched modalities in such models has great potential to advance
the field. Successful results would showcase the effectiveness of currently available multimodal
(text, image) language models in identifying olfactory sources and reveal the possibilities of
using information from various senses to improve the comprehension of olfaction in these
models. Therefore, in addition to developing more compact language models, such exploration
is also related to broader questions of cognitive science, such as the interplay of different senses.
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Table 1
The prompts used in the fine-tuning step.

Prompt
Subtask 1 Determine if the following text and image share common elements, with a specific focus

on smell sources. Look for entities such as objects, animals, fruits, or any other elements
that could be potential sources of smells. Answer YES or NO. Image: <image> Text:
<text>

Subtask 2 Determine if the following text and image share common elements, with a specific focus
on smell sources. Look for entities such as objects, animals, fruits, or any other elements
that could be potential sources of smells. If you identify any such common elements,
please list them in the same language as the provided text. If no common elements are
found, simply respond with ’No common elements identified.’ Image: <image> Text:
<text>

2. Related Work

Prior research in olfaction through natural language processing is limited. [4] developed a
FrameNet-like taxonomy to account for different aspects of the olfactory situations to facilitate
more NLP-oriented research. Building on this, [5] developed a multilingual benchmark with
manual annotations for these situations. [6] successfully trained a token classification model
with this benchmark that can accurately identify olfactory elements even in modern out-
of-domain texts like perfume reviews. [7] used word embeddings for an odor vocabulary in
English, mapping odor descriptors and their olfactory-semantic organization. [8] further applied
this to analyze sensory descriptors in wine, perfume, and food. Complementing text-based
research, image-based olfactory reference extraction has advanced: [9] used CNNs for odor-
object localization, [10] created an art dataset for olfactory recognition, and [11] developed a
dataset for identifying smell gestures in historical artworks.

The closest line of research is last year’s shared task [12]. [13] evaluated the then state-of-the-
art multimodal models, ViLBERT and mUNITER, for detecting common olfactory references
in multilingual text and images. The researchers formulated the task as a visual entailment
problem and demonstrated significant performance improvements through model fine-tuning.
[14] addressed the challenge by constructing a unified text-image object representation method
for olfactory information where Yolov51 is used to represent image data and multilingual BERT
for texts.

3. Approach

3.1. Model

Our approach employs LLaVA, which is a general-domain multimodal conversation model[2, 3],
as the starting point and fine-tunes to the olfactory domain. LLaVA has a rather straightforward
architecture, consisting of a vision encoder and a language model which are integrated through
a linear projection layer. The various versions of LLaVA, namely 7B and 13B, are named based
on the size of the Vicuna language model[15] used as the text encoder.

To optimize LLaVA for the designated subtasks, we transform the existing data into a format
suitable for instruction-tuning. The specific prompts used in our final model is provided in Table
1. Despite the related nature of these subtasks, we ensured each prompt was self-contained.
Therefore, from each text-image pair, two training instances were created. An important finding

1https://github.com/ultralytics/yolov5



Table 2
MUSTI train and development set data statistics. The positive and negative instances are based on the
Subtask 1 labels.

Language
Train Development

Total
Positive Negative Positive Negative

English 179 538 19 59 795
Italian 179 541 19 60 799
French 92 179 10 19 300

German 86 347 9 38 480

during this phase was the need to guide the model to list objects in the same language as the
input text, as it tended to default to English otherwise.

During the fine-tuning, instead of updating the entire model, we used LoRA which greatly
reduces the number of learnable parameters by freezing the model and learning much smaller
projection matrices between layers [16].

For our study, we followed the LLaVA model’s official GitHub hyperparameters2, experiment-
ing with various LoRA settings but found no significant performance differences. Consequently,
we chose a rank and alpha value of 16. We fine-tuned the LLaVA-13B model for three epochs on
our dataset, noting no further gains with extended training, likely due to dataset size limitations.
The fine-tuning was completed in under 3 hours using a 40GB A100 GPU at a batch size of 4.

3.2. Data

The MUSTI 2023 dataset comprises pairs of texts and images, selected to evoke olfactory
experiences and sourced from historical archives. The dataset encompasses four languages:
English (EN), German (DE), French (FR), and Italian (IT), and contains a total of 2,374 image-text
pairs. However, the data is unbalanced, with only 593 pairs annotated as positive, meaning
the existence of at least one common smell source. We created an in-house development set,
constituting 10% of the total data, ensuring a similar distribution of positive and negative
examples across all languages. The development set is primarily used for hyperparameter
tuning and prompt tuning. Table 2 details the distribution of these pairs in the training and
development sets, highlighting the number of positive and negative samples in each language.

4. Results and Analysis

In this section, we present and discuss the results of our models on the in-house development set
allocated during the training phase, as well as the official results on the test sets. We participated
in all three subtasks, namely i) identification of whether or not text passages and images evoke
the same smell source, ii) listing them, and also iii) performing the same tasks for another
language in a zero-shot setting.

During the development phase, we evaluated both the LLaVA-7B and LLaVA-13B models,
before and after fine-tuning, as shown in Table 3. These models were assessed across multiple
languages. The F1-macro scores revealed significant enhancements following fine-tuning.
Notably, the fine-tuned LLaVA-13B model achieved a remarkable overall F1-macro score of
0.882, with particular improvements in recognizing positive samples. This suggests that the
base models initially lacked the necessary knowledge for detecting potential smell sources. The
LLaVA-7B model also showed competitive performance, especially considering its smaller size.

2https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_task_lora.sh



Table 3
The performance of the plain and fine-tuned LLaVA models on the development set. The Overall score
is the F1-macro on all predictions on the entire development set.

Model English Italian French German Overall
Pos Neg Pos Neg Pos Neg Pos Neg Macro

LLaVA-7B 0.491 0.738 0.550 0.847 0.667 0.811 0.240 0.725 0.636
LLaVA-13B 0.581 0.896 0.240 0.857 0.167 0.783 0.308 0.889 0.619

Fine-tuned LLaVA 7B 0.865 0.958 0.743 0.927 0.700 0.842 0.800 0.962 0.860
Fine-tuned LLaVA-13B 0.833 0.950 0.824 0.952 0.706 0.878 0.875 0.974 0.882

Thanks to LoRA, the computational cost of fine-tuning was minimal, making the switch to a
larger model have almost no tangible effect on the resources needed.

However, the most significant improvement was observed in subtask 2. On the development
data, we noted that the plain LLaVA models scored almost 0 F-score for positive examples, i.e.
when the evaluation ignored the correct classification of no common objects. This was because
the models either failed to provide any list or listed all objects in the images. After fine-tuning,
the performance of LLaVA-13B drastically improved to an F-score of 0.61, indicating that the
model learned to discern which objects needed to be detected.

In the official results (Table 4), the fine-tuned LLaVA-13B model showed balanced macro
precision and recall on both test and test-zero sets, performing well in identifying negative
samples. The F1-Scores reached 0.776 for Subtask 1 and 0.698 for Subtask 2 in the test set.
In the zero-shot scenario, performance dropped to 0.65 and 0.538 for Subtask 2, respectively.
However, this is still promising, especially considering that Slovenian was not included in
the pre-training or fine-tuning phases. These results highlight the fine-tuned LLaVA model’s
efficacy in recognizing olfactory data, marking a notable advancement in the capabilities of
multimodal language models.

Table 4
Official results of our submission on the test sets. The overall column reports the macro average.

Test Test (zero-shot)
Metric Neg Pos Overall Subtask2 Neg Pos Overall Subtask2
Precision 0.819 0.676 0.774 - 0.662 0.706 0.684 -
Recall 0.874 0.575 0.781 - 0.848 0.458 0.653 -
F1-Score 0.846 0.621 0.776 0.698 0.743 0.556 0.65 0.538
Accuracy - - 0.781 - - - 0.675 -

5. Conclusion

In our research, we delved into the less-explored territory of integrating olfactory data into
multimodal language models. Using the LLaVA model, we focused on recognizing olfactory cues
in a diverse range of texts and images. By fine-tuning LLaVA with around 2500 image-text pairs
and employing the Low-rank Adapter (LoRA) method, we achieved notable enhancements in the
model’s ability to detect olfactory stimuli. We believe that our findings highlight the potential
of multimodal language models in processing sensory information beyond conventional texts
and visuals.



References
[1] A. Hürriyetoglu, I. Novalija, M. Zinnen, V. Christlein, P. Lisena, S. Menini, M. van Erp, R. Troncy,

The MUSTI challenge @ MediaEval 2023 - multimodal understanding of smells in texts and images
with zero-shot evaluation, in: Working Notes Proceedings of the MediaEval 2023 Workshop,
Amsterdam, the Netherlands and Online, 1-2 February 2024, 2023.

[2] H. Liu, C. Li, Q. Wu, Y. J. Lee, Visual instruction tuning, arXiv preprint arXiv:2304.08485 (2023).
[3] H. Liu, C. Li, Y. Li, Y. J. Lee, Improved baselines with visual instruction tuning, arXiv preprint

arXiv:2310.03744 (2023).
[4] S. Tonelli, S. Menini, FrameNet-like annotation of olfactory information in texts, in: S. Degaetano-

Ortlieb, A. Kazantseva, N. Reiter, S. Szpakowicz (Eds.), Proceedings of the 5th Joint SIGHUM Work-
shop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature,
Association for Computational Linguistics, Punta Cana, Dominican Republic (online), 2021, pp. 11–
20. URL: https://aclanthology.org/2021.latechclfl-1.2. doi:10.18653/v1/2021.latechclfl-1.2.

[5] S. Menini, T. Paccosi, S. S. Tekiroglu, S. Tonelli, Building a multilingual taxonomy of olfactory
terms with timestamps, in: Proceedings of the Thirteenth Language Resources and Evaluation
Conference, European Language Resources Association, 2022, pp. 4030–4039.

[6] M. Kurfalı, T. Hörberg, J. K. Olofsson, Automatic detection of olfactory context elements, in: 15TH
PANGBORN SENSORY SCIENCE SYMPOSIUM-MEETING NEW CHALLENGES IN A CHANGING
WORLD (PSSS 2023), volume 6, 2023.

[7] T. Hörberg, M. Larsson, J. K. Olofsson, The semantic organization of the english odor vocabulary,
Cognitive science 46 (2022) e13205.

[8] T. Hörberg, M. Kurfalı, J. K. Olofsson, Odor and flavor vocabulary in wine, perfume and food
product reviews: insights from language modeling, Food Quality and Preference (under review).

[9] S. Kim, J. Park, J. Bang, H. Lee, Seeing is smelling: Localizing odor-related objects in images, in:
Proceedings of the 9th Augmented Human International Conference, 2018, pp. 1–9.

[10] M. Zinnen, P. Madhu, R. Kosti, P. Bell, A. Maier, V. Christlein, Odor: The icpr2022 odeuropa
challenge on olfactory object recognition, in: 2022 26th International Conference on Pattern
Recognition (ICPR), IEEE, 2022, pp. 4989–4994.

[11] M. Zinnen, A. Hussian, H. Tran, P. Madhu, A. Maier, V. Christlein, Sniffyart: The dataset of smelling
persons, in: Proceedings of the 5th Workshop on analySis, Understanding and proMotion of
heritAge Contents, 2023, pp. 49–58.

[12] A. Hürriyetoglu, T. Paccosi, S. Menini, M. Zinnen, P. Lisena, K. Akdemir, R. Troncy, M. van Erp,
MUSTI - multimodal understanding of smells in texts and images at mediaeval 2022, in: S. Hicks,
A. G. S. de Herrera, J. Langguth, A. Lommatzsch, S. Andreadis, M. Dao, P. Martin, A. Hürriyetoglu,
V. Thambawita, T. S. Nordmo, R. Vuillemot, M. A. Larson (Eds.), Working Notes Proceedings of the
MediaEval 2022 Workshop, Bergen, Norway and Online, 12-13 January 2023, volume 3583 of CEUR
Workshop Proceedings, CEUR-WS.org, 2022. URL: https://ceur-ws.org/Vol-3583/paper50.pdf.

[13] K. Akdemir, A. Hürriyetoğlu, R. Troncy, T. Paccosi, S. Menini, M. Zinnen, V. Christlein, Multi-
modal and Multilingual Understanding of Smells using VilBERT and mUNITER, in: MediaEval
Benchmarking Initiative for Multimedia Evaluation, 2022.

[14] Y. Shao, Y. Zhang, W. Wan, J. Li, J. Sun, Multilingual Text-Image Olfactory Object Matching Based
on Object Detection, in: MediaEval Benchmarking Initiative for Multimedia Evaluation, 2022.

[15] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
Gonzalez, et al., Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, See
https://vicuna. lmsys. org (accessed 14 April 2023) (2023).

[16] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, Lora: Low-rank
adaptation of large language models, arXiv preprint arXiv:2106.09685 (2021).

https://aclanthology.org/2021.latechclfl-1.2
http://dx.doi.org/10.18653/v1/2021.latechclfl-1.2
https://ceur-ws.org/Vol-3583/paper50.pdf

	1 Introduction
	2 Related Work
	3 Approach
	3.1 Model
	3.2 Data

	4 Results and Analysis
	5 Conclusion

