Formatting SPARQL 1.1 via Parsing Expression
Grammar

Hirokazu Chiba

Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information
and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan

Abstract

The core programming language of the Semantic Web is SPARQL. To increase the productivity of
Semantic Web programming, reusability of the SPARQL queries is key. Here, we aim to implement
a formatter that fully supports SPARQL 1.1 to enhance the reusability of SPARQL. First, SPARQL 1.1
grammar defined in EBNF was transformed into Parsing Expression Grammar (PEG) to generate a
SPARQL 1.1 parser. The parser accepts a valid SPARQL query and constructs the abstract syntax tree
(AST) of the input SPARQL query. Next, a formatter was implemented to output a SPARQL query from
this AST. The SPARQL formatter is available on the command line and also available as a JavaScript
library for developing websites. SPARQL ASTs are represented internally in JSON, and can be reused
for purposes other than formatting. Furthermore, the PEG expression developed here can be readily
modified for similar subgraph matching problems on knowledge graphs. The source code and a website
of the SPARQL formatter are available at https://github.com/sparqling/sparql-formatter.

Keywords
SPARQL, parser, formatter, PEG, grammar

1. Introduction

The core of Semantic Web programming is SPARQL [1]. To increase the productivity of
Semantic Web programming, enhancing the reusability of SPARQL queries is key. Especially,
the readability of code is essential for reusability. However, reformatting the SPARQL query is
not a trivial issue. We need to parse the input SPARQL and output it appropriately to reformat
it. Parsing a SPARQL query is a complex task because the SPARQL specification has a complex
grammar, which is comprised of 173 rules in the format of EBNF. Thus, it is difficult to implement
a parser in a conventional sequential programming language.

Several programming languages including JavaScript support Parsing Expression Grammar
(PEG) [2] for describing definitions of a grammar in a declarative manner to generate a parser.
Here, we aim to implement a formatter that fully supports SPARQL 1.1 by using PEG for
command-line use and website development.

CEUR-WS.org/Vol-3658/IJCKG_2023_P5.pdf

IFCKG 2023 Poster and Demo track, December 8-9, 2023, Tokyo, Japan

Q chiba@dbcls.rois.ac.jp (H. Chiba)

® 0000-0003-4062-8903 (H. Chiba)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
[====2 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
E Workshop
Proceedings

https://github.com/sparqling/sparql-formatter
mailto:chiba@dbcls.rois.ac.jp
https://orcid.org/0000-0003-4062-8903
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

// [2] Query ::= Prologue (SelectQuery | ConstructQuery | DescribeQuery | AskQuery) ValuesClause
Query = p:Prologue WS* q:(SelectQuery / ConstructQuery / DescribeQuery / AskQuery) v:ValuesClause

{
let ast = { type: 'Query' };
if (p.length) {
ast.prologue = p;
}
ast.queryBody = q;
if (v) {

ast.values = v;

}

return ast;

Figure 1: An excerpt from the EBNF of SPARQL and the corresponding PEG rules

2. Implementation

We used PEG js (https://pegjs.org/) to generate a SPARQL 1.1 parser. 173 rules expressed in EBNF
were extracted from SPARQL 1.1 Query Language specification [1] and translated into PEG
rules for constructing abstract syntax trees (ASTs). An excerpt from the EBNF rules of SPARQL
and the corresponding PEG rules for constructing the AST is shown in Figure 1. Notably, white
spaces and comments in SPARQL are not included in EBNF rules. As comments are often
inserted in SPARQL queries in practice, comments besides white spaces are also expressed
in our PEG expressions. Comments are kept separate from the AST. The position from the
beginning of the SPARQL input was obtained and included in the returned values.

The formatter was implemented in JavaScript, which accepts an AST of SPARQL and outputs
each element of the SPARQL uniformly. The position of each element is compared with the
positions of comments, so that the comments are added at the appropriate positions.

91 test queries were extracted from the SPARQL 1.1 Query Language [1] specifications, and
16 from SPARQL 1.1 Update [3]. All those queries were formatted and then manually curated
for use as test cases.

3. Use Cases

The SPARQL formatter is published as an npm library, so that it is easy to install and use in a
Node.js environment as the sparql-formatter command. The Docker version is also available
and published on Docker Hub.

The JavaScript code of the parser and formatter has been bundled and made available on
Content Delivery Network (CDN), so that users can incorporate the SPARQL formatter into
their websites. Figure 2 shows a website using the SPARQL formatter. All the queries extracted
from the SPARQL 1.1 specifications are available as example queries on the website.

The AST of a SPARQL query is represented internally in JSON and can be reused for purposes

https://pegjs.org/

SPARQL 1.1 formatter GitHup)

Input: example v Formatted: indent | 2 v
1 select * where| { ?s ?p 7?0 } limit 10 1 SELECT * @ Copy
2 WHERE {

3 ?s ?p ?0 .
4}
5 LIMIT 10

Figure 2: A website of the SPARQL 1.1 formatter

other than formatting. Figure 3 shows the AST obtained for an example SPARQL query, “SELECT
* WHERE { ?s ?p ?0 } LIMIT 10"

4. Discussion

By generating a SPARQL parser via PEG.js, the SPARQL formatter was implemented. This
work contributes to the increased reusability of SPARQL queries. The queries can be format-
ted in a uniform way, thus the readability will be increased. While other efforts to imple-
ment SPARQL parsers have been made in projects such as RSFStore-js [4] and SPARQL.js
(https://github.com/RubenVerborgh/SPARQL.js), they could not format queries as intended.
Notably, by adding a JSON-LD context to the obtained AST for a SPARQL, the query can be
viewed as RDF, thus the SPARQL queries themselves can be treated as RDF resources. It may
contribute to the FAIRification [5] of the Semantic Web queries. The PEG.js code developed
for SPARQL 1.1 can be modified for extended specifications of SPARQL [6] or other subgraph
matching problems on knowledge graphs [7].

References

[1] SPARQL 1.1 Query Language, 2013. https://www.w3.org/TR/sparql11-query/.

[2] B. Ford, Parsing Expression Grammars: a recognition-based syntactic foundation, in:
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 2004, pp. 111-122.

[3] SPARQL 1.1 Update, 2013. https://www.w3.org/TR/sparql11-update/.

[4] A.G. Hernandez, M. Garcia, A JavaScript RDF store and application library for linked data
client applications, in: Devtracks of the WWW2012 conference. Lyon, France, 2012.

[5] M. D. Wilkinson, M. Dumontier, L. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., The FAIR Guid-
ing Principles for scientific data management and stewardship, Scientific Data 3 (2016)
1-9.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-update/

{
lltypell : "Query" s
"queryBody": {
"select": [
ll*ll
1
"where": [
{
"type": "TriplesBlock",
"triplePattern": [

{
"subject": {
"variable": "s"
}’
"properties": [
{
"predicate": {
"variable": "p"
})
"objects": [
{
"variable": "o"
}
]
}
]
}
]
}
]}
"limitOffset": [
{
"limit": 10
}

]
¥
¥

Figure 3: AST obtained for an example SPARQL query

[6] H. Chiba, I. Uchiyama, SPANG: a SPARQL client supporting generation and reuse of queries
for distributed RDF databases, BMC Bioinformatics 18 (2017) 1-6.

[7] H. Chiba, R. Yamanaka, S. Matsumoto, G2GML: Graph to graph mapping language for
bridging RDF and property graphs, in: International Semantic Web Conference, Springer,
2020, pp. 160-175.

	1 Introduction
	2 Implementation
	3 Use Cases
	4 Discussion

