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Abstract
One of the effective directions in the detection of UAVs is acoustic surveillance, the main advantage of
which is the operation in passive mode, which ensures the secrecy of the applied means, and thus the
safety of the operating personnel. Noise generated by the UAVs propulsion system and propeller is a
significant de-masking feature. Creation and improvement of methods of detection, direction finding
and recognition of small UAVs by receiving and processing of sound signals is an urgent task. When
recognizing objects, the most important and problematic task is the selection of features of the acoustic
signal. The selection of features affects the process of building a recognition algorithm, as well as the
performance of the entire system and the quality of recognition. The use of spectral analysis allows to
allocate the main features of the UAV quite effectively, such as: engine speed, the presence of harmonics
of the speed, the nature of the behavior of the envelope of harmonics. A promising method for identifying
the characteristic features of acoustic radiation of UAVs is Daubechies wavelet analysis. Wavelet spectrum
analysis is a powerful tool for detecting and recognizing a specific type of UAV. The method provides
much more informative data than simple Fourier spectral analysis. The main idea of Daubechies wavelet
analysis is to decompose the studied acoustic signal by a system of Daubechies basis functions, which
have special properties, in particular good localization in the time domain, which gives a significant
advantage in the analysis of non-stationary acoustic signals.
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1. Introduction

Expansion of the application spheres of small unmanned aerial vehicles (UAVs) in various fields
of human activity (military applications, meteorological observations, environmental protection,
etc.) provides a significant economic effect. At the same time, the use of UAVs creates a number
of problems associated with inadequate behavior of some UAV owners, unauthorized monitoring
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of objects and territories, etc. Accordingly, the task of UAV detection becomes relevant, which
can be solved by means of active and passive radar, thermal location, video surveillance or
acoustic observation systems [1, 2].

As follows from the results of studies, the total acoustic emission spectrum of a small UAV is
due to harmonic random components. In known algorithms for UAV detection and direction
finding, the problem is solved for a signal in a sufficiently narrow frequency band. However,
the narrow-band processing of acoustic UAV signals does not allow to fully utilize the energy
and information of the received signal. This becomes possible only with appropriate signal
processing using wavelet analysis based on the Daubechies basis [3].

The application of spatial and temporal wavelet processing for acoustic signals of UAVs in the
tasks of aircraft detection provides the expansion of the dynamic range of devices for receiving
and processing signals and increasing noise immunity, which occurs due to adaptive suppression
of interference in the bandwidth of the receiving device with minimal distortion of the useful
signal [4]. The maximum number of suppressed interference increases, in-phase summation of
acoustic signals in communication channels in the entire frequency band is provided, which
allows to more fully utilize the energy of the acoustic signal of the UAV coming to the input
and, consequently, allows to increase the signal-to-noise ratio at the output [5].

Thus, the implementation of wavelet algorithms for acoustic signal processing based on the
Daubechies wavelet function opens up a wide range of possibilities to further improve UAV
detection.

2. Literature review and problem statement

Fourier analysis is based on the statement that any 2𝜋-periodic function can be decomposed
into components, i.e., can be obtained by superposition of integer stretches of the basis function
𝑒𝑖𝑥 [6].

𝑓(𝑥) =
∞∑︁

𝑛=−∞
𝑐𝑛𝑒

𝑖𝑛𝑥,

where 𝑐𝑛 is Fourier coefficients

𝑐𝑛 =
1

2𝜋

∫︁ 2𝜋

0
𝑓(𝑥)𝑒−𝑖𝑛𝑥𝑑𝑥.

Fourier transform
⌢
𝑓 (𝜔) =

∫︁ ∞

−∞
𝑒−𝑖𝜔𝑡𝑓(𝑡)𝑑𝑡,

gives spectral information
⌢
𝑓 (𝜔) about the acoustic signal 𝑓(𝑡) and describes its behavior in

the frequency domain 𝜔, which is very important in acoustic UAV detection [7].

When moving to the Fourier frequency domain
⌢
𝑓 (𝜔), time information is completely lost 𝑡,

which makes the Fourier spectral analysis method unsuitable for processing non-stationary
acoustic signals 𝑓(𝑡), in which the determining value is the moment in time 𝑡, at which the
characteristic distortions in the acoustic signal emitted by the UAV occurred [8].
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In contrast to the short-time Fourier transform

⌢
𝑓 (𝜔, 𝑡) =

∫︁ ∞

−∞
𝑒−𝑖𝜔𝑡 (𝑓(𝑡) ·𝑊 (𝑡)) 𝑑𝑡,

which provides a uniform grid (figure 1) in the frequency-time domain
⌢
𝑓 (𝜔, 𝑡) through the

use of the window function 𝑊 (𝑡), the wavelet transform has non-uniform resolution, which
allows the acoustic signal of the UAV 𝑓(𝑡) to be investigated both locally and completely [9].

Figure 1: Time-frequency resolution of the Fourier transform.

Since the frequency 𝜔 is inversely proportional to the period 𝑇 , i.e. 𝜔 = 1/𝑇 , a narrower
window 𝑊 (𝑡) is required to localize the high-frequency component 𝜔 → max of the acoustic
signal 𝑓(𝑡) and a wider window 𝑊 (𝑡) for the low-frequency component 𝜔 → min. The short-

time Fourier transform
⌢
𝑓 (𝜔, 𝑡) is acceptable for a signal with a relatively narrow bandwidth

Δ𝜔 → min, but acoustic signals 𝑓(𝑡) are not. For an acoustic signal it would be desirable to
have a window 𝑊 (𝑡), capable of changing its width with changing frequency 𝜔 [10].

Let us introduce a function 𝜑 ∈ 𝐿2(𝑅), satisfying the condition

∫︁ ∞

−∞

⃒⃒⃒
�̂�(𝜔)

⃒⃒⃒2
|𝜔|

𝑑𝜔 < ∞,

and we’ll call it the “base wavelet”.
With respect to each basis wavelet, the wavelet transform is defined as

(Ψ𝜑𝑓) (𝜏, 𝑠) = |𝑠|−
1
2

∫︁ ∞

−∞
𝑓(𝑡)𝜑

(︂
𝑡− 𝜏

𝑠

)︂
𝑑𝑡,

where 𝑠 and 𝜏 are the scaling and shifting parameters 𝑠, 𝜏 ∈ 𝑅; 𝑎 ̸= 0.
Then we denote

𝜑𝜏 ;𝑠(𝑡) = |𝑠|−
1
2 𝜑

(︂
𝑡− 𝜏

𝑠

)︂
,

and the transformation will take the form

(Ψ𝜑𝑓) (𝜏, 𝑠) = ⟨𝑓, 𝜑𝜏 ;𝑠⟩ .
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If the center and radius of the window function 𝜑, respectively, are equal to 𝑡* and Δ𝜑, then
𝜑𝜏 ;𝑠(𝑡) is a window function with center 𝜏 + 𝑠𝑡* and radius 𝑠Δ𝜑. Hence, the wavelet transform
localizes the signal in the time window (figure 2) [11]

[𝜏 + 𝑠𝑡* − 𝑠Δ𝜑, 𝜏 + 𝑠𝑡* + 𝑠Δ𝜑] .

Figure 2: Time-frequency resolution of the Daubechies wavelet transform.

Thus it was shown not only that the Fourier transform is uninformative in the problems of
analyzing non-stationary signals, which are acoustic signals, but also the fact that the basis
of wavelet decomposition plays a major role in the effectiveness of using wavelet analysis
in the task of acoustic detection of UAVs, so in this research work it is proposed to use the
decomposition in Daubechies series, since this function is an orthogonal wavelet with a compact
carrier computed iteratively.

3. Daubechies wavelet analysis of acoustic signals

To calculate the coefficients of the generating Daubechies wavelet filter 𝑛-th order, we need
to specify only the number of zero moments of the wavelet function 𝑁 , i.e., the order of the
function is determined by the number of zero moments, hence 𝑁 = 𝑛 [12].

Then the calculation of the generating Daubechies wavelet filter implies finding the coeffi-
cients of the polynomial

𝑃𝑘 =

∏︀𝑁
𝑖=−𝑁+1

(︀
1
2 − 𝑖

)︀∏︀𝑁
𝑖=−𝑁+1 (𝑘 − 𝑖)

, 𝑘 = 1, . . . , 𝑁,

which for all values of 𝑘 ̸= 𝑖 form a vector

𝑃 =
(︀
𝑃𝑁 0 𝑃𝑁−1 0 . . . 0 𝑃1 1 𝑃1 0 𝑃2 0 . . . 0 𝑃𝑁

)︀
, (1)

length 4𝑁 − 1.
In case 𝑁 = 1, then all values of coefficients of polynomial 𝑃1, ..., 4𝑁−1 satisfying the

condition 𝑃1, ..., 4𝑁−1 < 1 define the vector

𝑃 =
(︀
𝑃1 . . . 𝑃2𝑁

)︀
, (2)
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length 2𝑁 , whose values correspond to the coefficients of the Daubechies wavelet filter of the
1st order.

If 𝑁 > 1 is required to compute the roots of the coefficients of the polynomial 𝑃 given by
the vector (1).

Then the vector of coefficients of the polynomial 𝑃 is transformed into the following form

𝑃 =
(︁

𝑃2
𝑃1

𝑃3
𝑃1

. . .
𝑃4𝑁−1

𝑃1

)︁
,

length 𝐿 = 4𝑁 − 2.
Let’s form a square matrix 𝐴 of order 𝐿

𝐴𝐿 =

⎛⎜⎜⎜⎜⎝
−𝑃1 −𝑃2 . . . −𝑃𝐿−1 −𝑃𝐿

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

⎞⎟⎟⎟⎟⎠ ,

where the first row of the matrix 𝐴𝐿 defines the coefficients of the characteristic equation,
which has the form

𝜆𝐿 − 𝑃1𝜆
𝐿−1 − 𝑃2𝜆

𝐿−2 − . . . − 𝑃𝐿−1𝜆− 𝑃𝐿 = 0, (3)

where the roots 𝜆1, ..., 𝐿 of this equation are the eigenvalues of the matrix 𝐴𝐿. The order of the
square matrix 𝐴𝐿 is always a multiple of two since 𝐿 = 4𝑁 − 2.

Solving the equation (3) by one of the numerical methods (by the method of half division,
combined, iterations, etc.), we find the roots 𝜆1, ..., 𝐿 of this equation and thus the vector 𝜆 of
eigenvalues of the matrix 𝐴𝐿 is formed.

𝜆 =
(︀
𝜆1 . . . 𝜆𝐿

)︀
.

The values of the vector 𝜆 should be arranged in ascending order

𝜆 =
(︀
𝜆min . . . 𝜆max

)︀
,

observing the condition |𝜆1, ..., 𝐿 + 1|, and select only those values that match the condition of
the expression

𝜆 =
(︀
𝜆𝐾+2 . . . 𝜆2𝐾

)︀
,

where 𝐾 = 2𝑁 − 1, then the length of the vector 𝜆 is equal to 𝑀 = 2𝐾 − (𝐾 + 2)+ 1 values.
Let’s rearrange the values of the vector 𝜆 in ascending order

𝜆 =
(︀
𝜆min . . . 𝜆max

)︀
,

complying with the condition |𝜆1, ..., 𝑀 |.
Thus we obtain a vector 𝜆 of length 𝑀 , which includes the values of the roots of 𝜆1, ..., 𝑀

arranged in ascending order
𝜆 =

(︀
𝜆1 . . . 𝜆𝑀

)︀
.
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Then all values of the roots of 𝜆1, ..., 𝑀 satisfying the condition |𝜆1, ..., 𝑀 | < 1 define the
vector

𝜆 =
(︀
𝜆1 . . . 𝜆𝐻

)︀
,

where 𝐻 depends on the condition |𝜆1, ..., 𝑀 | > 1, i.e., how many values of 𝜆1, ..., 𝑀 are modulo
greater than one.

Let’s set the vector
𝑂 =

(︀
𝑂1 . . . 𝑂𝑁

)︀
,

where 𝑂1, ..., 𝑁 = −1, since the values of the roots of 𝜆1, ..., 𝐻 are complex numbers, the values
of 𝑂1, ..., 𝑁 are converted to complex form, hence 𝑂1, ..., 𝑁 = −1.0000 + 0.0000𝑖.

As a result, we obtain the vector

𝜆 =
(︀
𝜆1 . . . 𝜆𝐻 𝑂1 . . . 𝑂𝑁

)︀
, (4)

defined by the root values 𝜆1, ..., 𝐻 and unit vectors 𝑂1, ..., 𝑁 , of length 𝐽 = 𝐻 +𝑁 .
Then let us represent the vector 𝜆 in the form

𝜆 =
(︀
𝜆1 . . . 𝜆𝐽

)︀
, (5)

equating the values of vector (4) to the notations (5).
So, having a pre-formed vector of values of roots of 𝜆1, ..., J polynomial, let us calculate the

vector of values of coefficients of this polynomial according to the expression

𝑃𝑘 = 𝑃𝑘 − 𝜆𝑗𝑃𝑖, (6)

where in cases where 𝑗 = 1, . . . , 𝐽 , then 𝑘 = 2, . . . , 𝑗 + 1, 𝑖 = 1, . . . , 𝑗, and the initial
values of the coefficients correspond to the vector

𝑃 =
(︀
𝑃1 𝑃2 . . . 𝑃𝐽+1

)︀
,

length 𝐽 + 1 = 2𝑁 , where 𝑃1 = 1, 𝑃2, ..., 𝐽+1 = 0, since the values of the roots 𝜆1, ..., 𝐽 of
the polynomial are complex numbers, the values of the coefficients 𝑃1, ..., 𝐽+1 are converted to
complex form, and thus 𝑃1 = 1.0000 + 0.0000𝑖, 𝑃2, ..., 𝐽+1 = 0.0000 + 0.0000𝑖.

Let us explain the recursive algorithm of expression (6) in more detail [13].
So if 𝑗 = 1, . . . , 𝐽 , where 𝐽 = 5

we have
𝑃 =

(︀
1 0 0 0 0 0

)︀
at 𝑗 = 1

𝑘 = 2, . . . , 𝑗 + 1 = 2, . . . , 2

𝑖 = 1, . . . , 𝑗 = 1, . . . , 1

then
𝑃 =

(︀
1 𝑃2 − 𝜆1𝑃1 0 0 0 0

)︀
at 𝑗 = 2

𝑘 = 2, . . . , 𝑗 + 1 = 2, . . . , 3
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𝑖 = 1, . . . , 𝑗 = 1, . . . , 2

then
𝑃 =

(︀
1 𝑃2 − 𝜆2𝑃1 𝑃3 − 𝜆2𝑃2 0 0 0

)︀
at 𝑗 = 3

𝑘 = 2, . . . , 𝑗 + 1 = 2, . . . , 4

𝑖 = 1, . . . , 𝑗 = 1, . . . , 3

then
𝑃 =

(︀
1 𝑃2 − 𝜆3𝑃1 𝑃3 − 𝜆3𝑃2 𝑃4 − 𝜆3𝑃3 0 0

)︀
at 𝑗 = 4

𝑘 = 2, . . . , 𝑗 + 1 = 2, . . . , 5

𝑖 = 1, . . . , 𝑗 = 1, . . . , 4

then
𝑃 =

(︀
1 𝑃2 − 𝜆4𝑃1 𝑃3 − 𝜆4𝑃2 𝑃4 − 𝜆4𝑃3 𝑃5 − 𝜆4𝑃4 0

)︀
at 𝑗 = 5

𝑘 = 2, . . . , 𝑗 + 1 = 2, . . . , 6

𝑖 = 1, . . . , 𝑗 = 1, . . . , 5

then

𝑃 =
(︀
1 𝑃2 − 𝜆5𝑃1 𝑃3 − 𝜆5𝑃2 𝑃4 − 𝜆5𝑃3 𝑃5 − 𝜆5𝑃4 𝑃6 − 𝜆5𝑃5

)︀
.

Thus, according to expression (6) we obtain a vector of complex values of polynomial coeffi-
cients from which it is required to leave only the real part, and to discard the imaginary part,
which will form the vector

𝑃 =
(︀
𝑃1 . . . 𝑃2𝑁

)︀
, (7)

length 2𝑁 , whose values correspond to the coefficients of the Daubechies wavelet filter 𝑛-th
order.

Normalization of coefficients of the Daubechies wavelet filter 𝑛-th order is carried out as
follows

𝑃𝑘 = 𝑆𝑃
𝑃𝑘∑︀2N
k=1 Pk

, (8)

where 𝑘 = 1, . . . , 2𝑁 , forming the resulting vector of normalized coefficients

𝑃 =
(︀
𝑃1 . . . 𝑃2𝑁

)︀
, (9)

such that the sum of the coefficients of
∑︀2𝑁

𝑘=1 𝑃𝑘 will equal𝑆𝑃 , i.e., if𝑆𝑃 = 1, then
∑︀2𝑁

𝑘=1 𝑃𝑘 = 1
(figure 3).

Thus, at the output of the above transformations, at 𝑁 = 1 we obtain the vector of values
of coefficients of the Daubechies wavelet filter of the 1st order according to (2), and at 𝑁 > 1
we obtain the vector of values of coefficients of the Daubechies wavelet filter of the 𝑛-order
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(a) (b)

(c) (d)

Figure 3: Coefficients of generating Daubechies wavelet filters of the 2nd (a), 4th (b), 8th (c) and 12th
(d) orders.

according to (7), where in both cases the procedure of normalization of coefficients according
to (8) is applied, which as a result forms the vector (9) [14].

The coefficients of the generating Daubechies wavelet filters of the 2nd, 4th, 8th and 12th
orders found by the above algorithm are shown below (figure 3).

Let us calculate the coefficients of the orthogonal wavelet filters on the basis of the values of
the coefficients of the generating Daubechies wavelet filter 𝑛-th order found earlier according
to (9).

Thus, the coefficients of the orthogonal low-pass wavelet filter for the inverse discrete wavelet
transform are defined as follows

𝑅 =
√
2
(︀
𝑃1 . . . 𝑃2𝑁

)︀
,

forming a vector
𝑅 =

(︀
𝑅1 . . . 𝑅2𝑁

)︀
, (10)

length 2𝑁 , then the coefficients of the orthogonal low-pass wavelet filter for the direct discrete
wavelet transform are defined by

𝐷 =
(︀
𝑅2𝑁 . . . 𝑅1

)︀
,

which corresponds to the inversion (10), forming the vector

𝐷 =
(︀
𝐷1 . . . 𝐷2𝑁

)︀
. (11)
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The coefficients of the orthogonal high-pass wavelet filter for the inverse discrete wavelet
transform are determined by computing the quadrature-mirror filter as follows

𝑊 =
(︀
𝑅2𝑁 −𝑅2𝑁−1 𝑅2𝑁−2 −𝑅2𝑁−3 . . . −𝑅4 𝑅3 −𝑅2 𝑅1

)︀
,

forming a vector
𝑊 =

(︀
𝑊1 . . . 𝑊2𝑁

)︀
, (12)

then the coefficients of the orthogonal high-pass wavelet filter for the direct discrete wavelet
transform are determined by

𝑉 =
(︀
𝑊2𝑁 . . . 𝑊1

)︀
,

which corresponds to the inversion (12), forming the vector

𝑉 =
(︀
𝑉1 . . . 𝑉2𝑁

)︀
. (13)

Thus we obtained vectors of values 𝐷 and 𝑉 , as well as 𝑅 and 𝑊 , which correspond to the
coefficients of orthogonal wavelet filters of low and high frequencies for forward and inverse
discrete wavelet transform, respectively [15].

As an example, let’s show the coefficients of orthogonal wavelet filters based on the 8th-order
Daubechies generating wavelet filter found by the above method (figure 4).

(a) (b)

(c) (d)

Figure 4: Coefficients of orthogonal Daubechies wavelet filters of the 8th order. (a) is low-pass
decomposition filter 𝐷, (b) is high-pass decomposition filter 𝑉 , (c) is low-pass reconstruction filter 𝑅,
(d) is high-pass reconstruction filter 𝑊 .
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Then the direct discrete wavelet transform is nothing but a mathematical convolution of the
values of the studied vector

𝑋 =
(︀
𝑋1 . . . 𝑋𝐿

)︀
, (14)

length 𝐿, with previously found vectors of coefficient values of orthogonal wavelet filters of
low and high frequencies 𝐷 (11) and 𝑉 (13), respectively, followed by twofold thinning of ↓ 2
coefficients obtained after convolution operation, thus obtaining a vector of coefficient values
𝑍 containing the low-frequency component and a vector of values 𝑌 corresponding to the
high-frequency component of the studied vector 𝑋 , where the formed vectors of coefficient
values 𝑍 , 𝑌 are the result of this transformation [16].

Thus, the operation of mathematical convolution of the values of the investigated vector 𝑋
(14) with the values of coefficients of the orthogonal low-pass wavelet filter 𝐷 (11) is defined
by the following expression

𝑍𝑘 =

min(𝑘, 𝐿)∑︁
𝑗=max(1, 𝑘+1−2𝑁)

Xj𝐷𝑖, (15)

where 𝑘 = 1, . . . , 𝐿+ 2𝑁 − 1, 𝑖 = 𝑘 + 1− 𝑗,
forming a vector of values

𝑍 =
(︀
𝑍1 . . . 𝑍𝐾

)︀
,

where 𝐾 = 𝐿+ 2𝑁 − 1.
Let us explain expression (15) in more detail.
So, we have the vector under study

𝑋 =
(︀
𝑋1 . . . 𝑋𝐿

)︀
,

length 𝐿 = 8, as well as the vector of values of coefficients of the orthogonal wavelet filter of
low frequencies

𝐷 =
(︀
𝐷1 . . . 𝐷2𝑁

)︀
,

length 2𝑁 = 4,
from where

𝑘 = 1, . . . , 𝐿+ 2𝑁 − 1 = 1, . . . , 11

then according to (15)
at 𝑘 = 1, 𝑗 = 1, . . . , 1, 𝑖 = 1, . . . , 1

𝑍1 = 𝑋1𝐷1

at 𝑘 = 2, 𝑗 = 1, . . . , 2, 𝑖 = 2, . . . , 1

𝑍2 = 𝑋1𝐷2 +𝑋2𝐷1

at 𝑘 = 3, 𝑗 = 1, . . . , 3, 𝑖 = 3, . . . , 1

𝑍3 = 𝑋1𝐷3 +𝑋2𝐷2 +𝑋3𝐷1
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at 𝑘 = 4, 𝑗 = 1, . . . , 4, 𝑖 = 4, . . . , 1

𝑍4 = 𝑋1𝐷4 +𝑋2𝐷3 +𝑋3𝐷2 +𝑋4𝐷1

at 𝑘 = 5, 𝑗 = 2, . . . , 5, 𝑖 = 4, . . . , 1

𝑍5 = 𝑋2𝐷4 +𝑋3𝐷3 +𝑋4𝐷2 +𝑋5𝐷1

at 𝑘 = 6, 𝑗 = 3, . . . , 6, 𝑖 = 4, . . . , 1

𝑍6 = 𝑋3𝐷4 +𝑋4𝐷3 +𝑋5𝐷2 +𝑋6𝐷1

at 𝑘 = 7, 𝑗 = 4, . . . , 7, 𝑖 = 4, . . . , 1

𝑍7 = 𝑋4𝐷4 +𝑋5𝐷3 +𝑋6𝐷2 +𝑋7𝐷1

at 𝑘 = 8, 𝑗 = 5, . . . , 8, 𝑖 = 4, . . . , 1

𝑍8 = 𝑋5𝐷4 +𝑋6𝐷3 +𝑋7𝐷2 +𝑋8𝐷1

at 𝑘 = 9, 𝑗 = 6, . . . , 8, 𝑖 = 4, . . . , 2

𝑍9 = 𝑋6𝐷4 +𝑋7𝐷3 +𝑋8𝐷2

at 𝑘 = 10, 𝑗 = 7, . . . , 8, 𝑖 = 4, . . . , 3

𝑍10 = 𝑋7𝐷4 +𝑋8𝐷3

at 𝑘 = 11, 𝑗 = 8, . . . , 8, 𝑖 = 4, . . . , 4

𝑍11 = 𝑋8𝐷4.

Thus the vector of values is formed

𝑍 =
(︀
𝑍1 . . . 𝑍𝐾

)︀
,

where 𝐾 = 𝐿+ 2𝑁 − 1 = 11.
Then having calculated the values of convolution coefficients 𝑍1, ..., 𝐾 according to (15), it is

necessary to perform the operation of double thinning ↓ 2, according to expressions

𝑍 =
(︀
𝑍2 𝑍4 𝑍6 . . . 𝑍𝐾

)︀
,

when 𝐾 is a multiple of two, and when 𝐾 is not a multiple of two

𝑍 =
(︀
𝑍2 𝑍4 𝑍6 . . . 𝑍𝐾−1

)︀
,

which in turn forms the vector

𝑍 =
(︀
𝑍1 . . . 𝑍𝑄

)︀
, (16)
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length 𝑄 = 𝐾
2 or 𝑄 = 𝐾−1

2 depending on the multiple of two 𝐾 .
Thus, the found vector of coefficient values 𝑍 (16) defines the low-frequency component of

the direct discrete wavelet transform of the investigated vector 𝑋 .
Then to find the high-frequency component 𝑌 of the direct discrete wavelet transform of the

investigated vector 𝑋 , it is required to repeat the given mathematical operations (2.30 - 2.34),
but respectively, for the values of the coefficients of the orthogonal high-frequency wavelet
filter 𝑉 (13) [17].

Thus, the operation of mathematical convolution of the values of the investigated vector 𝑋
(14) with the values of coefficients of the orthogonal wavelet filter of high frequencies 𝑉 (13) is
defined by the following expression

𝑌𝑘 =

min(𝑘, 𝐿)∑︁
𝑗=max(1, 𝑘+1−2𝑁)

Xj𝑉𝑖, (17)

where 𝑘 = 1, . . . , 𝐿+ 2𝑁 − 1, 𝑖 = 𝑘 + 1− 𝑗,
forming a vector of values

𝑌 =
(︀
𝑌1 . . . 𝑌𝐾

)︀
,

where 𝐾 = 𝐿+ 2𝑁 − 1.
Then, having calculated the values of convolution coefficients 𝑌1, ..., 𝐾 according to (17), it is

necessary to perform the operation of two-fold thinning ↓ 2, according to expressions

𝑌 =
(︀
𝑌2 𝑌4 𝑌6 . . . 𝑌𝐾

)︀
,

when 𝐾 is a multiple of two, and when 𝐾 is not a multiple of two.

𝑌 =
(︀
𝑌2 𝑌4 𝑌6 . . . 𝑌𝐾−1

)︀
,

which in turn forms the vector

𝑌 =
(︀
𝑌1 . . . 𝑌𝑄

)︀
, (18)

length 𝑄 = 𝐾
2 or 𝑄 = 𝐾−1

2 depending on the multiple of two 𝐾 [18].
Then the vectors of coefficient values 𝑍 (16) and 𝑌 (18) are the result of one level of direct

discrete wavelet transform, which can be written in the following form

Ω =
(︀
𝑍1 . . . 𝑍𝑄 𝑌1 . . . 𝑌𝑄

)︀
,

then
Ω =

(︀
Ω1 . . . Ω2𝑄

)︀
,

length 2𝑄.
To reconstruct the studied vector 𝑋 (14) by the values of wavelet coefficients 𝑍1, ..., 𝑄 (16)

and 𝑌1, ..., 𝑄 (18), it is required to perform the operation of doubling ↑ 2 coefficients, according
to the expressions

𝑍 =
(︀
𝑍1 0 𝑍2 0 𝑍3 0 . . . 0 𝑍2𝑄−1

)︀
,
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𝑌 =
(︀
𝑌1 0 𝑌2 0 𝑌3 0 . . . 0 𝑌2𝑄−1

)︀
,

forming vectors
𝑍 =

(︀
𝑍1 . . . 𝑍2𝑄−1

)︀
, (19)

𝑌 =
(︀
𝑌1 . . . 𝑌2𝑄−1

)︀
, (20)

length 2𝑄− 1.
Then the inverse discrete wavelet transform is defined according to the expression

𝑋𝑘 =

min(𝑘, 2𝑄−1)∑︁
𝑗=max(1, 𝑘+1−2𝑁)

Zj𝑅𝑖 +

min(𝑘, 2𝑄−1)∑︁
𝑗=max(1, 𝑘+1−2𝑁)

Yj𝑊𝑖, (21)

where 𝑘 = 1, . . . , 2𝑄− 1 + 2𝑁 − 1, 𝑖 = 𝑘 + 1− 𝑗,
forming a vector of values

𝑋 =
(︀
𝑋1 . . . 𝑋𝐾

)︀
,

where 𝐾 = 2𝑄− 1 + 2𝑁 − 1.
Expression (21) can be characterized as the sum of two mathematical convolution of the

wavelet coefficient values of 𝑍1, ..., 2𝑄−1 (19) and 𝑌1, ..., 2𝑄−1 (20) with the coefficients of the
orthogonal lowpass and highpass wavelet filters 𝑅1, ..., 2𝑁 (10) and 𝑊1, ..., 2𝑁 (12), respectively
[19].

From where we determine the required values 𝑋1, ..., 𝐿 according to the expression

𝑋 =
(︀
𝑋2𝑁−1 . . . 𝑋2𝑁−2+𝐿

)︀
,

then we obtain the vector
𝑋 =

(︀
𝑋1 . . . 𝑋𝐿

)︀
, (22)

length 𝐿, which is the result of the inverse discrete wavelet transform, i.e., the values of the
vector 𝑋 (22) are the result of the process of reconstructing the values of the studied vector 𝑋
(14) by the values of the wavelet coefficients 𝑍1, ..., 𝑄 (16) and 𝑌1, ..., 𝑄 (18) [20].

4. Simulation results

The disadvantages of the Fourier transform are demonstrated in figure 5a, 5b and figure 6a, 6b.
In figure 5a and figure 6a show two harmonic components 𝑆1(𝑡) = 𝐴1 · sin(𝜔1𝑡) and

𝑆2(𝑡) = 𝐴2 · sin(𝜔2𝑡), with angular frequencies 𝜔1 = 63 rad/s and 𝜔2 = 252 rad/s.
The angular frequency 𝜔 in rad/s is expressed through the frequency 𝑓 in Hz, as 𝜔 = 2𝜋𝑓

and 𝑓 = 𝜔
2𝜋 . Based on this, 𝑓1 = 10 is Hz, and 𝑓2 = 40 is Hz.

The process shown in figure 5a, is an adaptive combination of two sinusoids [21] 𝑆1(𝑡) and
𝑆2(𝑡)

𝑈1(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡), 𝑡 ∈ (0, 𝑇 ],

where 𝐴1 = 0.5, 𝐴2 = 0.25, respectively, and 𝑇 = 512, and the process shown in figure 6a is
described as follows

𝑈2(𝑡) =

{︂
𝑆1(𝑡), 𝑡 ∈ (0, 𝑡0],
𝑆2(𝑡), 𝑡 ∈ (𝑡0, 𝑇 ],
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(a) (b)

Figure 5: Fourier transform of the signal 𝑈1(𝑡). (a) is signal 𝑈1(𝑡); (b) is Fourier transform spectrum of
the signal 𝑈1(𝑡).

(a) (b)

Figure 6: Fourier transform of the signal 𝑈2(𝑡). (a) is signal𝑈2(𝑡); (b) is Fourier transform spectrum of
the signal 𝑈2(𝑡).

where 𝐴1 = 0.5, 𝐴2 = 0.25 respectively and 𝑡0 = 512 where 𝑇 = 1024.
Outside the interval (0, 𝑇 ], the functions 𝑈1(𝑡) and 𝑈2(𝑡) are 0.
As a result of the Fourier transform of the signals 𝑈1(𝑡) and 𝑈2(𝑡), we obtained poorly

distinguishable spectral images, which are shown in figure 5b and figure 6b.
The following example also shows the low information content of the Fourier transform. The

signal presented in figure 7a, the signal 𝑈3(𝑡) in the vicinity of 𝑡 = 253 : 260 contains a short
pulse 𝐼(𝑡) (anomaly) [22], where 𝑡 ∈ (−3, 3]

𝑈3(𝑡) =

⎧⎨⎩
𝑈1(𝑡), 𝑡 ∈ (0, 𝑡1],
𝐼(𝑡), 𝑡 ∈ (𝑡1, 𝑡2],
𝑈1(𝑡), 𝑡 ∈ (𝑡2, 𝑇 ],

where 𝑡1 = 253, 𝑡2 = 260.
The Fourier transform made it possible to clearly distinguish two harmonic components of

the signal, and the spectral components of the anomaly, as expected, were distributed along the
entire frequency axis.

In figure 5, figure 6, figure 7 showed specific examples of the disadvantages of the Fourier
transform that can be overcome by using the wavelet transform.
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(a) (b)

Figure 7: Fourier transform of the signal 𝑈3(𝑡). (a) is signal 𝑈3(𝑡); (b) is Fourier transform spectrum of
the signal 𝑈3(𝑡).

It should be noted that the above Fourier transform spectra contain all the information about
the input signals. This information is distributed in the phase and amplitude values of all
spectral components. The input acoustic signals can be fully recovered after the inverse Fourier
transform.

The advantages of the wavelet transform are demonstrated in figure 8a, 8b, and figure 9a, 9b.

(a) (b)

Figure 8: Wavelet transform of the signal 𝑈2(𝑡). (a) is approximation coefficients of the wavelet
transform of the signal 𝑈2(𝑡); (b) is detail coefficients of the wavelet transform of the signal 𝑈2(𝑡).

5. Discussion

As a spectral analysis of a noisy acoustic signal, it was proposed to use a wavelet transform
based on the Daubechies wavelet function. This transformation has advantages over the Fourier
transform, as it is adaptive to obtain a set of informative acoustic features for UAV recognition,
which will keep the classification at a sufficiently high level. As a result of the first step of the
wavelet transform, the time resolution is halved, since only half of the samples characterize the
entire acoustic signal. However, the frequency resolution is doubled, as the signal now occupies
half the frequency band and the uncertainty is reduced. This procedure, known as subband
coding, is repeated further and the wavelet coefficients at the output of the low-pass filter are
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(a) (b)

Figure 9: Wavelet transform of the signal 𝑈3(𝑡). (a) is approximation coefficients of the wavelet
transform of the signal 𝑈3(𝑡); (b) is detail coefficients of the wavelet transform of the signal 𝑈3(𝑡).

fed to the same processing circuit, and the wavelet coefficients at the output of the high-pass
filter are considered the resultant wavelet coefficients.

The most significant frequencies of the input acoustic signal will be displayed as large
amplitudes of wavelet coefficients that characterize the corresponding frequency range. Small
values of wavelet coefficients mean low energy of the corresponding frequency bands in the
acoustic signal. These coefficients can be set to zero without significant signal distortion, which
is very promising in the formation of acoustic signal recognition features for UAV detection.

A wavelet transform is a decomposition of an acoustic signal into a system of wavelet
functions, each of which is a shifted and scaled copy of one function - the parent wavelet.
Usually, the parameter that determines the choice of the type of mother wavelet is the external
similarity of the signal under study and the transformation function. Based on this, it is advisable
to use Daubechies wavelets as the mother wavelet function for processing acoustic signals.

This is one of the most famous wavelets and its main properties are as follows:

1) the functions have a finite number of zero values, i.e., the Daubechies wavelet system has
the properties of smoothness and moment exclusion;

2) the functions have the properties of carrier compactness (rapidly increasing and rapidly
decreasing) and orthogonality, which makes it possible to accurately restore the acoustic
signal;

3) wavelets have both a wavelet function and a scaling function, which makes it possible to
perform multiple-scale and fast wavelet analysis.

Functions on the same scale and on different scales are orthogonal. Note that the property of
orthogonality allows us to obtain independent information at different scales, and normalization
ensures that the value of information is preserved at different stages of the transformation.
Among the disadvantages is the asymmetry of the Daubechies wavelet.

In acoustic signal processing tasks for UAV detection by noise, due to the unique sound
characteristics of UAVs, the requirements imposed on the shape of wavelet function spectra are
quite high, which leads to the use of a large number of zero moments (10-15 zero moments).
Daubechies wavelets of length 𝐿 have = 𝐿/2 zero moments. However, it should be remembered
that the number of zero moments determines the length of wavelet functions and, therefore, the
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speed of the algorithm for calculating the wavelet transform. In the classical Daubechies design,
the length of the filters is 𝐿 = 2, where 𝑀 is the number of zero moments. All Daubechies
wavelet functions have a compact carrier.

It is easy to see that the smoothness of wavelets increases as their order increases. At the same
time, the frequency of oscillations increases. These wavelets have a characteristic asymmetry,
namely the rise of the function is stretched compared to the decay.

The main problem when working with a wavelet transform is the problem of choosing the
most appropriate wavelet. The choice of a particular family of wavelets is dictated by the
application tasks and the type of information about the signal that needs to be maximally
detected (recognized). There are no hard and fast rules, but it is best to choose a wavelet so that
it belongs to the same class of functions as the signal being analyzed. If the original function
can be approximated by a polynomial, then the number of zero moments of the wavelet should
be approximately equal to the degree of the polynomial. The number of zero moments is more
important to achieve higher information content of wavelet coefficients, which increases with a
large number of zero moments.

6. Conclusion

This research paper is devoted to the wavelet analysis of acoustic signals of UAVs, which can
improve the efficiency of aircraft detection algorithms. The problem of spatial and temporal
wavelet processing of the received UAV acoustic signal by the criterion of maximum useful
signal-to-noise ratio on the basis of Daubechies wavelet basis is considered.

The necessary mathematical relations determining the sequence of processing of the received
acoustic signal on the basis of wavelet analysis using the Daubechies decomposition basis
are obtained. The vector of optimal weighted Daubechies wavelet coefficients is formed in
accordance with one of the known criteria of optimality of spatial and temporal processing, for
example, in accordance with the criterion of maximum signal-to-noise ratio.

The obtained simulation results reflect the effectiveness of the spatio-temporal wavelet method
for processing acoustic signals of UAVs in the Daubechies decomposition basis compared to the
less effective Fourier basis, and as a consequence, indicate its applicability for solving problems
related to the detection of UAVs by the acoustic method.

Further scientific research, continuing this topic, will be related to the construction of primary
acoustic features for UAV recognition. Acoustic noise emitted by a UAV is a realization of a
broadband random process, the description of which can be given by an energy wavelet spectrum.
Therefore, the information attributes of acoustic recognition of UAVs can serve as estimates of
spectral wavelet coefficients determined from a discrete realization containing a given number
of samples. The transition to secondary information features is carried out by constructing the
covariance matrix of spectral wavelet coefficients and its diagonalization. After the calculations,
the set of acoustic signs of UAV recognition, which came to the input of the system, corresponds
to some class, if the average value of the similarity coefficient for all pairs of vectors is greater
than a certain threshold value. The conducted theoretical studies allow us to develop a module
for the formation of a collection of acoustic recognition features of UAVs and a module that
implements the decision-making rule for the classification of feature vectors.
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