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Abstract
The paper investigates the problem of optimizing the university class schedule. Sequential and parallel
methods for scheduling based on genetic search are developed. The proposed methods use adapted
initialization, crossover, and selection operators. The algorithms minimize conflicts and the time interval
between classes, taking into account recommendations for time and place. The developed methods
contribute to effective planning of the educational process and avoidance of errors in scheduling. A
comparative analysis of the classical and modified genetic algorithms is carried out, confirming the faster
and more efficient functioning of the modified approach. The modified algorithm is also compared with
different operators and parameters of the genetic algorithm to determine the optimal conditions. The
obtained results indicate effective methods for improving the quality of the schedule and optimizing the
educational process at the university.
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1. Introduction

Time and resource management is critical to success in higher education. For students, effective
time management is an important factor for successful studies, allowing them to balance studies
with other activities such as work, sports or social life. On the other hand, for teachers, an
optimal schedule of classes helps increase the productivity and efficiency of their work.

Scheduling is a complex task that requires a lot of resources and planning knowledge. Since
there are many constraints, such as following the curriculum and taking into account the needs
of students and teachers, automating this process is essential. The scheduling problem can
be classified as an NP-complete problem due to the large number of possible solutions, and
metaheuristic algorithms are used to solve it. This paper proposes a modified genetic algorithm
for efficient university scheduling.
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2. Literature review and problem statement

Implementation of automatic systems for drawing up university timetables is an urgent task,
that is of great importance for improving the management of the educational process. Over the
last decades, many studies and developments have been carried out in order to optimize the
process of the distribution of working time and resources in university educational institutions.

Lukas et al. [1] use a genetic algorithm and a heuristic search to solve the problem of
scheduling at a university. The schedule creation methodology is based on genetic algorithms,
which are aimed at maximizing the number of successfully planned lesson units in the schedule.
This article provides a detailed description of the timetable generation process and takes into
account various constraints, such as the availability of teachers, classrooms and days.

Abduljabbar and Abdullah [2] uses the method of genetic algorithms to solve the problem of
a complex schedule of classes at a university or college. The authors proposed a system where
complex aspects such as class schedules, lecture times, and available classrooms are encoded as
binary sequences, and based on these, solutions are generated using genetic operations such as
selection, crossover, and mutation.

Alghamdi et al. [3] examines the problem of scheduling classes in universities and explores
various methods for its optimization. The article provides an overview of the genetic algorithm
optimization method. Genetic algorithms are based on the principles of genetics and natural
selection. The basic idea is to select the fittest individuals in a population, which are then
recombined or mutated to create new groups. GAs can effectively solve optimization problems
that have different parameters or characteristics that cannot be represented mathematically.

The task of creating a schedule is to create an optimal schedule of classes, taking into account
various restrictions and requirements. This issue belongs to the class of NP-complete problems
because it is a combinatorial optimization problem in which the number of solutions increases
with the size of the input data, constraints, and parameters.

The objective function for the scheduling problem defines the main optimization criteria,
which include:

• minimizing the number of windows between classes to reduce the downtime of teachers
and students;

• uniform distribution of the load during the week to increase work efficiency;
• minimization of conflicts and overlaps of classes, which involves avoiding overlap between

classes with joint groups, teachers or classrooms;
• taking into account proposals regarding the schedule to meet the needs of students and

teachers.

The objective function calculates the sum of the penalty functions that indicate violations of
the constraints when creating the schedule. Each penalty function can have a weight depending
on the importance of the corresponding constraint. We use the following notations: n is the
number of groups, m is the number of teachers, k is the number of audiences, L is the number of
classes, D is the number of school days, U is the maximum number of classes per day, Y is a type
of couple, 𝐺 = [𝑔1, 𝑔2, . . . , 𝑔𝑛] is schedule relative to groups, 𝑇 = [𝑡1, 𝑡2, . . . , 𝑡𝑚] is timetable
for teachers, 𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑘] is the timetable for the classrooms, 𝑆 = [𝑠1, 𝑠2, . . . , 𝑠𝑙] is
general schedule, X is the schedule of a separate group, teacher or classrooms.
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𝑓1(𝑥) is a function that calculates windows between classes and has a corresponding weight-
ing factor 𝑘1. The function calculates the difference between the next class and the previous one
within one day. Depending on the type of classes, the following differences will be calculated:
between two common classes, or between the common and the numerator or denominator,
and between two classes in the numerator or denominator. In general, this function can be
described as follows (1):

𝑓1(𝑥) = 𝑘1

𝐷∑︁
𝑑=1

𝑈∑︁
𝑢=1

𝑌∑︁
𝑦=1

𝑥𝑑,𝑢,𝑦 − 𝑥𝑑,𝑢−1,𝑦, (1)

𝑓2(𝑥) is a function that calculates the overlap of classes and has the corresponding weighting
coefficient 𝑘2. This function checks whether classes in a certain group or audience do not
overlap. the teacher An overlap is considered when two or more classes are scheduled for the
same day of the week and class number, or different classes are held in the same auditorium. It
should be noted that if two classes are held in the same time slot, the class type is the numerator
and the denominator, respectively, then this is not considered overlapping. Mathematical model
of function (2):

𝑓2(𝑥) = 𝑘2

𝐿∑︁
𝑖=1

𝐿∑︁
𝑗=𝑖+1

𝑤2(𝑥𝑖, 𝑥𝑗) (2)

𝑤2(𝑥𝑖, 𝑥𝑗) is a Boolean function that can be described as follows (3):

𝑤2(𝑥𝑖, 𝑥𝑗) =

{︃
1, if i=j .

0, else.
(3)

𝑓3(𝑥) is a function that calculates compliance with the recommendations regarding the time
of the lesson and has a corresponding weighting factor 𝑘3. The objective function will look like
this (4):

𝐹 (𝑆) =
2∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑘𝑖𝑓𝑖(𝑔𝑗) +
2∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑘𝑖𝑓𝑖(𝑡𝑗) + 𝑘2

𝑘∑︁
𝑗=1

𝑓2(𝑎𝑗) + 𝑘3

𝑙∑︁
𝑗=1

𝑓3(𝑠𝑗) (4)

With the help of weighting coefficients, we can determine the importance of compliance with
the corresponding restriction. If the value of the coefficient is high, the priority in the algorithm
will be to minimize this limitation.

Planning training sessions is a complex combinatorial task, and traditional scheduling meth-
ods are not suitable for it. They use heuristic methods, such as genetic algorithms, which,
although they do not guarantee the best solution, effectively search for optimal options.

During the analysis of the available methods of solving the problem, it was established
that the most suitable algorithm for drawing up the optimal schedule of classes is the genetic
algorithm. Therefore, it was decided to develop an adapted and modified genetic algorithm for
solving the given problem.
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The scheduling algorithm should minimize the value of the defined objective function (4).
The work of the algorithm can be represented in the form of the following formula (5):

𝐹 (𝑆) → 𝑚𝑖𝑛, (5)

where S is the class schedule; 𝐹 (𝑆) is the objective function.
To evaluate the quality of the results of the algorithm, the objective function described above

will be used, which shows the number of violations of the specified restrictions.

3. The purpose and objectives of the research

The purpose of the research is to develop a mathematical model for solving the task of creating
an optimal schedule of classes for higher educational institutions.

To achieve this purpose, it was necessary to solve the following tasks:

• to develop an adapted classic genetic algorithm for drawing up an optimal class schedule;
• to develop a modified method of the classical genetic algorithm;
• to present an experimental study of the proposed genetic methods.

4. Development of genetic algorithm modification

An evolutionary genetic method was chosen to optimize the objective function. The genetic
algorithm gradually approaches the optimal schedule by selecting, combining, and varying
possible solutions.

The main steps of the genetic algorithm are [4, 5]:

1) initialization of input data and algorithm parameters;
2) initialization of the initial population;
3) calculation of the adaptability of individuals;
4) crossing of individuals;
5) mutation of individuals in the population;
6) calculation of the suitability of the obtained individuals;
7) selection;
8) continuation of steps until the stop criterion is satisfied.

The initial data for the system was obtained from the semester assignment information
from the software department. This document included a list of subjects, a list of groups
attending these subjects, the names of lecturers who give lectures or practical classes, and
recommendations for the classrooms needed for the classes. The task was to create a schedule
for 28 teachers and 40 groups, using 10 classrooms (6 lecture rooms and 4 laboratory rooms).

The input data for the algorithm were:

• a list of classes, each of which included a teacher or teachers, one or more groups, a
subject, a type of class, and the number of meetings;

• recommended schedule for classes;
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• the number of school days;
• the maximum number of classes per day;
• list of classrooms.

The algorithm has the following parameters;

• population size;
• the number of iterations;
• probability of mutation;
• probability of crossing;
• probability of gene mutation.

Initialization in the genetic algorithm is the process of creating an initial population of
individuals that will evolve in the future [6].

Two initialization methods were developed.
The first method is random initialization. Random initialization makes it possible to include

various solutions in the initial set, which increases the probability of finding an optimal sched-
ule. For each lesson, the day of the week, session number, type and audience are randomly
determined. If the class has a recommended schedule, it will be taken into account [6].

The second method is the initialization of the schedule, modification of the random one: we
randomly generate a day of the week, choose an audience, then look for a possible time of the
class. If this is the first lesson on the selected day, you can insert it randomly. If there is already
a class, then the number is selected in such a way as to minimize violation of the restriction.
As a result, we will get a schedule in which there will be no overlap of classes and a reduced
number of windows. Using this initialization method will significantly speed up the work of
the genetic algorithm.

Crossover is an operation in a genetic algorithm that is used to create a new population.
Crossbreeding consists in the exchange of genes between two parental individuals in order to
create offspring with a new combination of genes [6].

It was decided to exchange only one random activity in two random schedules. This allows
other genes to change in the next generation and preserve beneficial combinations.

The 𝑘-point crossover method involves choosing 𝑘 points on the parental chromosomes,
dividing the chromosomes into 𝑘 + 1 segments, and exchanging these segments to create two
offspring. An even multiple of 𝑘 ensures the division of segments into equal parts [6].

Advantages of this method include diversity in offspring, preservation of useful genetic
combinations from parents, and prevention of collapse into a local minimum during optimization.
However, a large value of 𝑘 can lead to the loss of useful information from parental chromosomes
[6].

Mutation randomly changes one or more genes in a certain solution to increase diversity
and avoid local optima [6]. It is important not to change too many genes in one solution, as
this may render it unusable. Therefore, the mutation is often limited to the change of only one
random activity in the schedule [6].

Mutation of all genes with a certain probability is used to get out of local optima and find
more optimal solutions [6].

214



In the context of a scheduling problem, a population represents different schedule options.
A crossover involves changes in class numbers, days, or classrooms between two different
schedule variants for a particular group or instructor. Mutation makes similar random changes
in an individual schedule.

In the genetic algorithm, selection is the process of selecting the best solutions for forming
the next population. The essence of selection is to keep the best individuals and get rid of the
worst ones, which leads to a gradual improvement of decisions in each subsequent iteration.
The following selection methods were implemented [6]:

• tournament: two decisions are randomly chosen, priority is given to the decision with a
higher fitness value;

• ranking: a selection method based on their suitability ranking;
• roulette: selection of candidates of the next generation based on probabilities correspond-

ing to their fitness.

An individual’s fitness determines his or her ability to effectively solve a task or meet certain
optimality criteria. It is a numerical value that reflects how well a particular individual meets
the requirements.

In the case of scheduling, an individual’s fitness can be measured by the number of conflicts
in the schedule, the efficiency of resource use, and the satisfaction of students’ and teachers’
needs. In its algorithm, the function takes into account such strict constraints as overlapping
class schedules, inconsistencies with the recommended schedule, and the number of breaks
between classes.

Scaling of the adaptability of individuals was implemented in selection. Scaling of fitness
values is one of the optimization methods of genetic algorithms, which allows to increase the
speed of convergence, unit/s of the algorithm. The basic idea is to rescale the fitness values so
that they lie in the range from 𝑎 to 𝑏. This can be done using a scaling function that transforms
the original range of fitness values into a new range corresponding to the range from 𝑎 to 𝑏 [7].

Scaling of the fitness of individuals helps to reduce the influence of different scales of fitness
functions on the results of the genetic algorithm and allows to more efficiently find the optimal
solution [7].

Also, to increase the chances of finding an optimal solution, you can use elitism, which
preserves a part of the best individuals from one generation to another without changes. The
preservation of elite individuals from the previous population allows to preserve diversity and
prevent the loss of useful information [8].

Criteria for stopping the algorithm:

• if the maximum number of iterations is reached;
• if a schedule is found, the fitness value of which is equal to 0.

One of the methods for improving the classical genetic algorithm is its island model. The GA
island model is a model in which the population is divided into several groups (islands). Each
island contains its own subpopulation that evolves independently of other islands [9].

With the help of the migration mechanism, individuals can move from one island to another
to speed up the convergence of the algorithm. This will help reduce the risk of falling into local
minima [9].
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In the island model, subpopulations can use different algorithm parameters, different crossing,
mutation and selection operators [9].

Also, the genetic algorithm, like its island model, can be speeded up by parallel implementation.
Parallel implementation of GA will speed up the convergence time of the algorithm using several
processors [10].

5. Software implementation of the developed modification

The main idea of the genetic algorithm is to gradually create and improve schedules using
operators such as mutation, crossover, and selection. The basic steps of a genetic algorithm
include initialization, main cycle, crossover, mutation, calculation of fitness values, selection,
termination, and saving the results.

The island model of the genetic algorithm is similar to the classical genetic algorithm, but
involves the creation of separate groups of populations that function in parallel and can interact
by exchanging individuals.

The island model of the genetic algorithm includes such operations as the initialization of
individual islands with different parameters and the possibility of migration of individuals
between these islands.

The main steps of the GA island model include initialization, initialization of schedules, main
loop, island traversal, crossover, mutation, calculation of fitness values, selection, migration (if
necessary), selection of best individuals, search of best schedules, replacement of individuals,
termination, search of best individual, completing the algorithm and saving the results.

6. Experiments and results

Input data for the system are:

• data on classrooms: classroom name, type, capacity, established departments;
• data on departments: name of the department and its abbreviated name;
• data on specialties: specialty name, code, department;
• data on disciplines: name, specialty, semester in which the discipline is taught;
• group data: group name, number of students, current semester, specialty;
• data on teachers: full name of the teacher and the department where he works;
• data about classes: discipline, class type, number of classes per week, teachers, groups,

recommended audiences, recommended time.

The initial data is the optimal schedule of classes compiled for the selected department,
which takes into account the recommendations for conducting and minimizes the following
parameters:

• the number of overlapping classes for groups, teachers and classrooms;
• the number of windows between classes for groups and teachers.
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A computer with the following characteristics was used for the tests: processor AMD Ryzen
5 2600 with a frequency of 3.9 GHz, 6 cores and 6 threads, the amount of RAM is 8.00 GB with
a speed of 3200 MHz, the type of hard disk is SSD, and the operating system is the Virtual
Machine Windows Server 2022.

The speed of convergence parameter was used to compare the performance of the algorithm.
The speed of convergence shows how quickly or efficiently the algorithm approaches its optimal
solution. This parameter can be calculated using the following formula (6):

𝑆 =
|𝐹𝑠 − 𝐹𝑓 |
|𝑡𝑓 − 𝑡𝑠|

(6)

where 𝑆 is the speed of convergence; 𝐹𝑠 is the initial fitness value;𝐹(𝑓) is the final value of
fitness; 𝑡𝑠 is the initial time of the algorithm; 𝑡𝑓 is the final time.

The following abbreviations should also be noted: 𝑃𝑒 is the value of elitism, i.e. the percentage
of the total population; 𝑇𝑐 is type of crossing: 1 – “custom one gene”, 2 – “𝑘-point”; 𝑁𝑘 is the
number of 𝑘 crossing points; 𝑃𝑐 is the probability of crossing; 𝑇𝑚 is mutation type: 1 – “custom
one gene”, 2 – “all genes”; 𝑃𝑚𝑔 is probability of gene mutation; 𝑃𝑚 is probability of mutation;
𝑇𝑠 is selection type: 1 – “roulette”, 2 – “ranging”, 3 – “tournament”; 𝑇𝑠 is initialization type: 1 –
“random”, 2 – “simple algorithm”; 𝑁𝑔 is the maximum number of iterations of the algorithm;
𝑁𝑝 is the size of the population.

The following parameters were used for the tests: number of days for making a schedule –
6, number of classes for making a schedule – 6, penalty for windows in groups – 1, penalty
for windows in teachers – 1, penalty for overlapping classes – 5, and penalty for inconsistency
recommended class time – 5.

Table 1 lists the test run parameters for the genetic algorithm, including the population size
(500) and the maximum number of iterations (2000). According to table 1, the results of these
tests are given. It is important to note that each entry in table 2 represents the average value of
the results of three conducted experiments with the same parameters.

Genetic algorithm parameters, such as population size and maximum number of iterations,
were kept constant for all tests to ensure comparability of results between different experiments.

Table 3 presents the parameters used during tests of the genetic algorithm modification – the
island model. Table 4 contains the results of these tests, and each test was performed three times,
after which the average value of the results was calculated. All tests used the same parameters:
a population size of 500 and a maximum number of iterations of 2000.

The following designations should be entered: 𝑁𝑖 is the number of islands; 𝑁𝑠𝑡 is a step of
increasing the values in the islands; 𝑁𝑖𝑡 is the number of iterations through which to migrate
between islands; 𝑃𝑚𝑖𝑔 is the number individuals participated in migration.

7. Discussion of research results

Analyzing table 2, we can draw the following conclusions about the highest convergence rate for
the GA parameters: mutation probability – 0.2; mutation type – single gene mutation; crossover
probability – 0.6; elitism value – 0.2; sampling type – roulette; crossover type – single gene
crossover.
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Table 1
Parameters for running genetic algorithm tests.

№ 𝑃𝑒 𝑇𝑐 𝑁𝑘 𝑃𝑐 𝑇𝑚 𝑃𝑚𝑔 𝑃𝑚 𝑇𝑠 𝑇𝑖

1 0.1 1 - 0.7 1 - 0.2 1 1
2 0.1 1 - 0.7 1 - 0.4 1 1
3 0.1 1 - 0.7 1 - 0.6 1 1
4 0.1 1 - 0.7 2 0.05 0.2 1 1
5 0.1 1 - 0.7 2 0.1 0.2 1 1
6 0.1 1 - 0.7 2 0.2 0.2 1 1
7 0.1 1 - 0.4 1 - 0.2 1 1
8 0.1 1 - 0.6 1 - 0.2 1 1
9 0.1 1 - 0.8 1 - 0.2 1 1
10 0.2 1 - 0.6 1 - 0.2 1 1
11 0.3 1 - 0.6 1 - 0.2 1 1
12 0.1 1 - 0.6 1 - 0.2 2 1
13 0.1 1 - 0.6 1 - 0.2 3 1
14 0.1 2 2 0.6 1 - 0.2 3 1
15 0.1 2 4 0.6 1 - 0.2 3 1
16 0.1 2 6 0.6 1 - 0.2 3 1
17 0.1 1 - 0.6 1 - 0.2 3 2
18 0.1 1 - 0.6 1 - 0.4 3 2
19 0.1 1 - 0.8 1 - 0.2 3 2
20 0.1 1 - 0.6 2 0.1 0.2 3 2
21 0.3 1 - 0.6 1 - 0.2 3 2
22 0.1 2 4 0.6 1 - 0.2 3 2

To analyze the effect of the parameter 𝑇𝑖 = 2 (using a modified initialization parameter), we
calculate how much the algorithm’s running time has decreased on average compared to the
values of 𝑇𝑖 = 1. To do this, let’s calculate the average value of the algorithm execution time
for both variants.

The average value of the GA running time at 𝑇𝑖 = 1 is 1888.429 s.
The average value of the GA running time at 𝑇𝑖 = 2 is 1115.938 s.
The reduction in the running time of the GA algorithm with 𝑇𝑖 = 2 compared to 𝑇𝑖 = 1 is

approximately 40.9%. A 40.9% reduction in running time indicates an improvement in algorithm
performance by using 𝑇𝑖 = 2.

After analyzing table 4, we can draw the following conclusions about the fastest convergence
rate for the island model parameters: number of islands – 6 (number of logical processor cores);
parameter divergence step – 7; number of iterations to perform migration – 10; number of
individuals to participate in migration – 0.1.

The average running time of the island model at 𝑇𝑖 = 1 is 2335.027 s.
The average running time of the island model at 𝑇𝑖 = 2 is 1313.531 s.
When using the modified initialization method, the island GA model is on average 1.8 times

faster. This can improve the performance of the algorithm, which saves time and resources in
solving the problem.
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Table 2
Genetic algorithm results.

№ 𝑡𝑠, s 𝑡𝑓 , s 𝐹𝑠 𝐹𝑓 𝑆

1 0.983 1937.365 1128.667 22.000 0.577
2 0.968 1852.033 1157.333 24.667 0.613
3 0.981 1884.862 1148.000 119.000 0.546
4 0.991 1840.709 1178.667 75.000 0.600
5 0.964 1865.484 1164.333 80.333 0.581
6 1.008 1881.805 1156.667 54.333 0.586
7 0.953 1851.585 1183.667 22.000 0.628
8 0.952 1796.640 1165.000 17.667 0.639
9 0.966 1808.654 1164.000 15.000 0.636
10 0.960 1794.841 1158.333 14.000 0.638
11 0.979 1840.432 1148.333 18.000 0.615
12 0.983 1878.421 1165.333 10.000 0.615
13 1.003 1839.763 1155.333 14.667 0.620
14 1.023 1980.765 1159.000 15.667 0.578
15 1.135 2196.617 1156.667 10.000 0.522
16 1.023 1980.765 1159.000 15.667 0.578
17 1.116 947.481 8.333 1.333 0.014
18 0.922 1334.211 9.667 1.333 0.008
19 0.914 1320.637 9.667 2.000 0.009
20 0.929 680.211 10.333 2.667 0.076
21 1.021 859.483 14.667 1.000 0.019
22 1.075 1559.583 6.333 1.333 0.016

Let’s test the algorithms with the parameters that give the best results (table 5).

8. Conclusion

A modified genetic method has been developed that uses an initialization operator based on
a priori information about the learning process that is available from the given constraints.
The use of the developed approach to initializing the genetic method can significantly (several
times) reduce the search time.

Also, a modified island model of the developed genetic method was developed to solve the
problem of drawing up an optimal schedule of classes. The fundamental difference between the
proposed method and existing analogues is the use of a modified initialization operator that
tries to reduce the initial fitness value by simply searching through possible options. Using
the modified initialization operator, the running time of the classical genetic algorithm was
reduced by 40.9%. It is also worth noting that the running time of the island model of the genetic
algorithm with the modified initialization operator was reduced by 1.8 times compared to the
use of the classical initialization method. This means that the application of this method has
significantly saved the algorithm execution time. The modified initialization method improves
the performance and speed of the genetic algorithm for scheduling classes, which is important
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Table 3
Parameters for launching genetic algorithm modification tests – island model.

№ 𝑃𝑒 𝑇𝑐 𝑃𝑐 𝑇𝑚 𝑃𝑚 𝑇𝑠 𝑇𝑖 𝑁𝑖 𝑁𝑠𝑡 𝑁𝑖𝑡 𝑃𝑚𝑖𝑔

1 0.1 1 0.4 1 0.2 1 1 6 2 10 0.1
2 0.1 1 0.4 1 0.2 1 1 12 2 10 0.1
3 0.1 1 0.4 1 0.2 1 1 18 2 10 0.1
4 0.1 1 0.4 1 0.2 1 1 6 3 10 0.1
5 0.1 1 0.4 1 0.2 1 1 6 5 10 0.1
6 0.1 1 0.4 1 0.2 1 1 6 7 10 0.1
7 0.1 1 0.4 1 0.2 1 1 6 7 5 0.1
8 0.1 1 0.4 1 0.2 1 1 6 7 8 0.1
9 0.1 1 0.4 1 0.2 1 1 6 7 13 0.1
10 0.1 1 0.4 1 0.2 1 1 6 7 5 0.05
11 0.1 1 0.4 1 0.2 1 1 6 7 5 0.15
12 0.1 1 0.4 1 0.2 1 1 6 7 5 0.25
13 0.1 1 0.4 1 0.2 1 2 12 5 5 0.05
14 0.1 1 0.4 1 0.4 1 2 12 5 5 0.05
15 0.1 1 0.6 1 0.4 1 2 12 5 5 0.05
16 0.3 1 0.6 1 0.4 1 2 12 5 5 0.05

Table 4
Results of tests of modification of the genetic algorithm – island model.

№ 𝑡𝑠, s 𝑡𝑓 , s 𝐹𝑠 𝐹𝑓 𝑆

1 1.144 1924.096 1123.667 14.667 0.577
2 2.211 3663.413 1101.000 6.333 0.299
3 3.068 5399.514 1118.667 4.000 0.207
4 1.123 1835.984 1119.333 9.333 0.605
5 1.121 1892.263 1112.667 6.000 0.585
6 1.100 1893.736 1094.333 5.333 0.576
7 1.160 1898.343 1131.000 5.000 0.593
8 1.060 1929.846 1124.000 8.000 0.579
9 1.120 1880.434 1152.333 10.667 0.608
10 1.070 1899.741 1143.000 5.667 0.599
11 1.080 1913.294 1109.000 7.000 0.576
12 1.161 1906.083 1146.667 11.000 0.596
13 1.497 1314.078 383.000 3.333 0.217
14 1.640 1819.898 10.667 0.667 0.012
15 1.606 1485.881 7.000 1.000 0.011
16 1.971 640.981 9.667 0.000 0.015

for effective problem solving.
An experimental study of the proposed genetic methods was performed. The island model

of the genetic algorithm proved to be more efficient both in terms of speed and quality of the
solutions obtained. On average, the island model of the GA works much faster – the execution
time was reduced by 41.3% on average, it has a better fitness function result, the average fitness

220



Table 5
Test results of algorithms with the best parameters.

Algorithm № 𝑡𝑠, s 𝑡𝑓 , s 𝐹𝑠 𝐹𝑓

Genetic algorithm
1 1.077 847.888 8.000 0.000
2 1.020 1320.838 11.000 0.000
3 1.178 1946.044 12.000 2.000

Average 1.092 1371.590 10.333 0.667

Island model of GA
4 1.857 2016.956 3.000 0.000
5 1.009 349.973 12.000 0.000
6 1.048 50.780 4.000 0.000

Average 1.305 805.903 6.333 0.000

value is 0, which means that the algorithm has found the ideal solution and makes it a more
efficient algorithm for this problem.
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