
Research of the route planning algorithms on the
example of a drone delivery system software
development
Yevhen L. Turchyk1, Milana V. Puzino2, Olena H. Rybalchenko1 and
Svitlana V. Bilashenko1

1Kryvyi Rih National University, 11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
2Lviv Polytechnic National University, 12 Stepana Bandery Str., Lviv, 79000, Ukraine

Abstract
The paper analyzes the existing drone delivery systems all around the world. Different route building
algorithms are analyzed for navigating the drones through the cities, advantages and disadvantages of
all the approaches are highlighted. Requirements for the system are defined that must provide quick
and convenient operation; the system was planned and developed. It was concluded that the designed
system has a great potential for real usage and further development.

Keywords
drone delivery, UAV, path finding, route building, machine learning

1. Introduction

In the modern world, there is a noticeable acceleration of the pace of life in large cities. The
efficiency of businesses and the quality of life for individuals depend directly on well-established
logistics. This issue is particularly pronounced in “last-mile” delivery, where the transportation
of goods is influenced by various external factors that impact its speed and effectiveness. First
and foremost, human labor involved in product delivery is limited by physical and psychological
aspects, and the increasing demand for speed may exceed the capabilities of personnel. The
involvement of significant resources in the delivery process can result in increased delivery costs,
subsequently raising the prices of goods and services for both businesses and end consumers.

Drone delivery can address these challenges. The use of drones in delivery can reduce the
dependency on human labor. Unmanned aerial vehicles (UAVs) can operate around the clock
without rest, providing fast and precise product delivery when using advanced navigation and
route building algorithms [1].

CS&SE@SW 2023: 6th Workshop for Young Scientists in Computer Science & Software Engineering, February 2, 2024,
Kryvyi Rih, Ukraine
" itsjonny5757@gmail.com (Y. L. Turchyk); milana.puzino.mpzip.2022@lpnu.ua (M. V. Puzino);
rybalchenko@knu.edu.ua (O. H. Rybalchenko); bilashenko.s@knu.edu.ua (S. V. Bilashenko)
~ http://mpz.knu.edu.ua/vikladachi/olena-rybalchenko (O. H. Rybalchenko);
http://mpz.knu.edu.ua/vikladachi/Svetlana_Bilashenko (S. V. Bilashenko)
� 0009-0006-3254-9411 (Y. L. Turchyk); 0009-0007-9450-630X (M. V. Puzino); 0000-0001-8691-5401
(O. H. Rybalchenko); 0000-0002-4331-7425 (S. V. Bilashenko)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

86

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:itsjonny5757@gmail.com
mailto:milana.puzino.mpzip.2022@lpnu.ua
mailto:rybalchenko@knu.edu.ua
mailto:bilashenko.s@knu.edu.ua
http://mpz.knu.edu.ua/vikladachi/olena-rybalchenko
http://mpz.knu.edu.ua/vikladachi/Svetlana_Bilashenko
https://orcid.org/0009-0006-3254-9411
https://orcid.org/0009-0007-9450-630X
https://orcid.org/0000-0001-8691-5401
https://orcid.org/0000-0002-4331-7425
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Therefore, the primary idea of this work is to study the path finding algorithms and develop
a software for automated aerial drone delivery to address the issue of “same-day” delivery
between different city branches and accelerate it. To achieve this, a comprehensive software
solution is proposed to implement a similar service and explore the capabilities of route planning
algorithms for the automatic operation of UAVs.

2. Review of the subject area and existing solutions analysis for
the development of drone delivery system

2.1. Existing systems analysis

Currently, there are relatively few existing and fully operational drone delivery analogs on both
the Ukrainian and global markets. Most of the available services are either in the testing or
development stages or operate within limited geographical areas. Additionally, the majority
of these services are oriented towards “last-mile” delivery, which restricts users from utilizing
the service for non-commercial purposes. Let’s examine some of the most well-known analogs
within the mentioned category.

2.1.1. Amazon Prime Air

Amazon Prime Air is an aerial drone delivery project developed by Amazon since 2013, aiming
to provide rapid delivery of packages to recipients within 30 minutes [2].

Currently, the system is in the testing phase, conducted in the city of Lockford, California,
USA. It is expected that based on feedback from local residents using the delivery service, the
most problematic aspects will be identified and addressed. Through testing with a wide variety
of cargo sizes and weights, the reliability and durability of the project’s technical equipment
have been verified.

The following advantages of this service can be highlighted:

• According to reports from Amazon Prime Air project specialists, unique software for
drones has been developed, allowing UAVs to safely detect and avoid potential obstacles,
making the point-to-point flight process more reliable.

• Amazon Prime Air drones have a high payload capacity from the outset.

However, it is worth noting the drawbacks of such a system:

• The process of delivering cargo to the recipient involves dropping it from a specified
height onto the backyard of a private house, limiting the potential user base to those
with suitable delivery locations. This approach may not guarantee the safe delivery of
potentially fragile cargo.

• This system is planned to be used exclusively for delivering goods from the Amazon store,
which narrows down the pool of potential users.

It is expected that users will have the option to order drone delivery of selected items through
the Amazon online store, and as such, this service will not have its own separate user software
but will be integrated into the existing services of the company.

87

2.1.2. Starship Technologies

Starship Technologies is an Estonian startup (later becoming a company) initiated in 2014,
addressing the “last-mile” delivery problem using ground-based drones [3].

This service operates in London, Tallinn, Düsseldorf, Hamburg, Bern, and in some cities
in the United States, such as Washington, D.C., and Mountain View, California. Among the
advantages of this startup, the following points are noteworthy:

• The drones are fully autonomous, allowing them to independently locate and load the
required product into their cargo compartment.

• Delivery is secure for the recipient since receiving an order is only possible after entering
a personal security code.

• In case of navigation issues with the drone, the system provides remote control by a
human pilot.

However, there are some limitations to the startup:

• Deliveries are only made within a 5-kilometer radius.
• The maximum drone speed is determined by the quality of the terrain and does not exceed

6.5 km/h, which is nearly equivalent to human walking speed.
• The project is exclusively oriented towards delivering food weighing up to 9 kg.

This described service has a dedicated user application through which the ordering, payment,
package tracking, and other processes are conducted.

2.1.3. Zipline

Zipline is an American project involved in the manufacturing and delivery of air drones/aircraft
[4]. The main concept of the company is to address the issue of delivering cargo to hard-to-reach
locations.

Currently, the Zipline service is available in Rwanda, Ghana, Nigeria, Japan, and the United
States. Additionally, it is expected that the company’s services will soon become available
in Côte d’Ivoire and Kenya. Furthermore, the Ministry of Health of Ukraine has announced
negotiations regarding a potential partnership with the company.

Notable advantages of the Zipline service include:

• Ensuring high delivery speed, even for long distances, thanks to the mobility of the
drone-aircraft (UAV speed reaches 101 km/h).

• Autonomous drone flights are possible under normal weather conditions.
• Drones have the capability to move between pre-established airstrips, where pilots can

manually replace batteries or cargo for delivery, thus ensuring improved logistics and the
range of package dispatch.

Among the drawbacks of the project, the following points should be noted:

• The cargo capacity of the drone is limited to 1.8 kg.

88

• Delivery to the destination occurs by dropping the package from an elevated position (20-
35 m), and the pre-packed package descends slowly using a paper parachute. Consequently,
the distance from the actual landing point to the anticipated one may vary up to 5 meters.

• The service primarily deals with the delivery of medicines or related medical items. The
list of possible non-medical types of packages is limited to restaurant or grocery products,
and the like.

It is also worth adding that the company has developed the next generation of drones that
deliver cargo via a tether instead of deploying a parachute. However, this type of delivery
significantly reduces the range and speed.

Users of the service can place orders on the company’s website and monitor the delivery
process through a dedicated mobile application.

2.2. Analysis of the latest research for drone delivery systems

The delivery by drones involves the management of a large number of Unmanned Aerial Vehicles
(UAVs) simultaneously. The logistics challenges of such operations have been extensively
discussed in [5], where a multi-physics model at the system level is presented for optimal
control of multi-engine UAVs. This model can be utilized in the development and evaluation
of control strategies. The authors demonstrate the capability of using this model for basic
maneuvers and lay the groundwork for planning more complex maneuvers and complete
missions. For instance, drones may employ different control strategies for achieving maximum
energy efficiency under high and low battery levels.

The proposed system offers the following advantages:

• The multi-physics model enables a more comprehensive and accurate representation of
the dynamics and interaction between different physical systems of multi-engine UAVs.

• An optimal control strategy is developed to minimize a cost function that considers time
and energy consumption.

• The proposed methods are flexible and adaptable to various types of UAVs or other
aerial systems, making them valuable for a wide range of applications in transportation,
surveillance, mapping, etc.

During drone flight, a significant amount of computation is required to adjust the process
and mission specifics of UAVs. The transfer of computational load from the drone to a cloud
structure is discussed in [6]. The described framework features a client-server architecture,
positioning the drone as a client and the cloud as a scalable server. Overall, it has potential
applications in various fields requiring efficient drone management, especially in the delivery
sector.

The proposed system has the following advantages:

• Scalability: The client-server architecture of the framework ensures effective communica-
tion between multiple drones and the cloud server, enabling real-time control of a large
number of drones.

• Efficiency: By offloading certain tasks to the cloud server, the workload on individual
drones is reduced, allowing them to operate more efficiently.

89

• Open source: The framework is open source, allowing developers to freely use and modify
it.

• Versatility: The framework has potential applications in various industrial sectors.

A crucial aspect of a drone’s mission during delivery is the route planning from the collection
point to the delivery point. The optimization of the sequence of these processes is discussed
in [7]. The delivery problem involves a group of couriers (drones) timely delivering orders
to clients. The goal of the algorithm is to increase profit over a specific time interval and
reduce the overall delivery time. The authors propose a Markov decision process model for
the “courier” assignment task, using deep learning algorithms to address the problem in a
dynamic environment. Successful implementation of this algorithm could significantly impact
the delivery industry, enhancing its speed and increasing company profits.

An important task for optimizing the algorithm in a drone delivery system is to consider
the drone’s battery usage. Aiello et al. [8] presents a model of energy consumption for a
similar urban logistics infrastructure. This methodology allows considering various factors
affecting drone battery consumption, such as cargo weight, the size of the serviced urban area,
population density, flight range, built-in battery capacity, etc. The model was developed to help
researchers better understand the energy needs of delivery systems using UAVs and identify
ways to optimize their performance.

2.3. Review of common approaches and algorithms for drone delivery route
planning

The main stage in any type of cargo transportation is the process of route planning, for which
there are currently numerous algorithms aimed at solving transportation problems efficiently and
quickly. These algorithms are a crucial component of logistics and transportation infrastructure.

Such problems arise when it is necessary to determine the optimal delivery route from the
point of origin to the destination, taking into account various external factors such as distance,
cost, time constraints, and resources. As a result, this algorithmic process can become quite
complex, especially when dealing with a large number of delivery points in complex urban
conditions.

Navigating the UAV through the city is a tough task involving many safety preconditions, so
an optimal way would be to deliver the packages to the delivery offices all around the city. Such
an approach would allow to manually build the safe routes between many adjacent departments,
thus creating a graph with nodes and branches of given cost (routes length), where we need to
find a path to navigate.

Let’s consider the most common approaches to solving such a problem.

2.3.1. Traveling Salesman Problem algorithm

One of the most common and straightforward methods for building a delivery route is the
Traveling Salesman Problem (TSP) algorithm. It is based on a mathematical model that helps
find the shortest path that connects all given pickup and delivery points. The TSP algorithm
takes into account various factors, such as the distance between points, loading and unloading
times, vehicle capacity constraints, and other limitations.

90

The main advantage of the Traveling Salesman Problem algorithm is its simplicity and ease
of implementation. This algorithm uses a brute-force approach, where all possible combinations
between points are considered. This makes it accessible for use in various fields and research
and simplifies its integration with other parts of the software code.

There are many variations of the Traveling Salesman Problem-solving methods, such as the
Monte Carlo method, the method of averaged coefficients, or the nearest neighbor method. The
nearest neighbor method uses heuristic estimation in its calculations, significantly speeding up
the search for the optimal route but not guaranteeing absolute optimality.

However, it is worth noting the disadvantages of this algorithm. Since the Traveling Salesman
Problem algorithm, at each point, must choose the next point from those it has not yet visited,
there are (𝑛 − 1)! routes for the asymmetric and (𝑛−1)!

2 routes for the symmetric Traveling
Salesman Problem. This means that the size of the search space depends exponentially on
the number of points. For an average-sized problem, finding the optimal route can take an
unacceptably long time, as most of it is spent on the enumeration of all possible combinations
between points, which requires significant computational resources.

Another drawback of the Traveling Salesman Problem algorithm is that it provides only
an approximate solution and does not guarantee finding the shortest path. Consequently, the
accuracy of these calculations decreases proportionally as the problem size increases.

2.3.2. Dijkstra’s algorithm

Dijkstra’s algorithm is one of the most common algorithms for finding the optimal path in a
graph and has broad applications in various fields, including telecommunications, transportation
networks, routing, and logistics planning.

The working principle of the Dijkstra’s algorithm involves iteratively updating the shortest
distances from the initial node of the graph to all other nodes. During its operation, each vertex
is examined, and the distance to adjacent vertices is calculated using the corresponding edges
[9]. As a result of its work, the Dijkstra’s algorithm not only determines the shortest distances
from the initial node to all other nodes but also memorizes the corresponding routes.

The Dijkstra’s algorithm is quite efficient and performs well at optimal scales. Its execution
time depends on the number of vertices and edges in the graph, but with proper implementation,
it has a time complexity of 𝑂(𝑛2), where n is the number of vertices. Despite the fact that
finding a route involves exploring all possible path variations, this feature can be considered
an advantage to some extent because having data about all available routes guarantees the
optimality of the found solution.

It is evident that as the number of vertices and edges in the input graph increases, exploring
all possible variations will significantly slow down the process of finding the shortest path,
rendering the algorithm unsuitable for use with such input data.

2.3.3. A* algorithm

The A* (A-star) algorithm is also aimed at finding a path in a graph and is an improved version
of the Dijkstra’s algorithm.

91

To achieve maximum efficiency with the A* algorithm, the heuristic function should be chosen
according to the specific problem, as there is no one-size-fits-all solution. When tying the final
path cost to the distance, more efficient heuristic functions such as the Euclidean distance or
the Manhattan metric should become the preference.

One of the key advantages of the A* algorithm is its efficiency compared to the Dijkstra’s
algorithm. It uses a heuristic estimate (denoted as “h”) to calculate the distance from the current
node to the final destination. This heuristic helps the algorithm make decisions about which
node is likely to lead to the shortest path. When the heuristic function is optimistic (i.e., it
doesn’t overestimate the distance), the A* algorithm guarantees finding the shortest path.

All of these factors make A* a popular choice and an efficient tool for route planning and
optimization in various fields, including robotics, artificial intelligence development, and routing.

Another advantage of the A* algorithm is its ability to handle graphs of moderate size and
relatively complex problems efficiently. While the computational complexity depends on the
graph’s size, A* demonstrates high efficiency with optimal implementation. It can quickly find
the shortest path when using a heuristic function that provides spatial orientation information.

Therefore, this algorithm is faster and more optimized for larger tasks compared to the
Dijkstra’s algorithm or the Traveling Salesman algorithm since it doesn’t require exploring all
possible route combinations.

However, one significant drawback of the A* algorithm is its potential to get trapped in
local maxima. This means that an incorrectly defined heuristic function or an insufficiently
informative estimate of a particular distance can influence the algorithm to choose the wrong
path, which consequently is not the shortest. This can be problematic, especially when solution
accuracy is critical, such as in robotics or automated route planning.

Another issue with the A* algorithm is high memory usage. Since it keeps track of all visited
nodes, the memory requirements for storing this information can significantly increase for large
input graphs or complex-sized problems. This may necessitate size limitations on problems that
can be effectively solved using this algorithm without compromising its performance.

2.3.4. Reinforced learning

The fourth algorithm, considered when choosing a method for constructing an optimal route,
employs a reinforcement learning approach to build delivery routes. It is based on machine
learning concepts and uses the learning process to make decisions regarding the selection of
the shortest and most efficient routes [7].

One of the advantages of reinforcement learning algorithm is its ability to self-learn and
adapt to a dynamic environment. It can interact with the environment, learn based on provided
rewards, and refine its strategy over time. This allows the algorithm to effectively operate in
dynamic and uncertain situations, where predefined rules may be insufficient or inefficient.

Another advantage of the reinforcement learning algorithm is its ability to optimally utilize
resources [10]. It can find a balance between exploring new possibilities and exploiting existing
knowledge, maintaining a trade-off between exploration and task execution. This makes it
valuable for real-time decision-making and managing complex systems like drone delivery.

The main drawback of this algorithm is the need for a large amount of data and proper data
preparation. Reinforcement learning algorithm requires an adequate quantity of high-quality

92

initial data for effective learning. Improper data preparation can lead to errors during the model
training phase, as the algorithm is sensitive to noise.

2.3.5. Choosing the final algorithm

To choose the appropriate algorithm for solving the drone delivery route problem, we first
identified the main criteria and requirements for the developed software. Let’s examine the
identified issues in detail:

• Execution speed: the selected algorithm should be highly efficient in terms of computation
time, as this ensures reduced delays in drone management.

• Scalability: the limitations of the algorithm regarding its maximum computational capacity
and the size of the problem it can handle should be taken into account, ensuring scalability.

• Implementation simplicity: due to the extensive work involved in creating the software
for the drone delivery system, the chosen algorithm should be relatively easy to integrate
with other software modules. Guided by these requirements and criteria, let’s evaluate
the suitability of the previously analyzed most common route optimization algorithms.

The traveling salesman algorithm aims to find the shortest path that passes through each
node in the graph and returns to the starting node. While it guarantees finding the shortest
path and is relatively simple to implement, its computational complexity increases rapidly with
the number of delivery points. This, in turn, affects processing speed and scalability, making it
potentially less suitable for large-scale problems.

Dijkstra’s algorithm is a classic approach to finding the shortest path in a graph with non-
negative edge weights. It works by layer-wise propagation from the starting node to the
destination. Its effectiveness lies in its ability to find the shortest path to every node in the graph.
However, as the number of nodes and edges grows, the exhaustive search of all possible route
combinations slows down the search process, affecting both processing speed and scalability.

The A* algorithm combines ideas from Dijkstra’s algorithm and heuristic methods. It uses
estimates of distances to the destination to expedite the search process. It can find the shortest
path when information about the graph’s structure is available. A* is particularly useful in
complex state space problems or situations with limited resources. However, its computational
complexity depends directly on the efficiency of the heuristic estimate. Additionally, it may
require significant memory resources during route computation, which correlates with the
input problem’s size.

Reinforcement learning is a different approach to solving route optimization problems. It’s
based on the idea of training a model through trial and error. An agent learns to make decisions
based on rewards and penalties received during specific actions. This approach allows the agent
to adapt to changing environmental conditions and seek optimal solutions. While reinforcement
learning can be time and resource-intensive during the training phase, the computational
demands are primarily associated with the training phase rather than the actual deployment.

Considering the outlined criteria and requirements, the choice of algorithm for solving the
drone delivery route problem depends on the specific characteristics and constraints of the
problem, the availability of domain-specific information, and the balance between computational

93

complexity and scalability. Each of the algorithms mentioned has its strengths and weaknesses,
making them suitable for different scenarios. The selection should be driven by the specific
needs and goals of the drone delivery system.

Based on the analysis of the mentioned algorithms, it can be argued that reinforcement
learning is the most optimal solution for the drone delivery route problem. Its ability to self-
learn and adapt to changing conditions makes it an ideal choice. Reinforcement learning enables
the system to quickly and efficiently determine the best route, avoid obstacles, and optimize
delivery. Considering the need for speed and accuracy, this algorithm will facilitate optimal
delivery with minimal resource consumption.

3. System development

3.1. General system architecture

Within the research of the main algorithms for the drone delivery software, a necessary step is to
identify its key structural elements, essential for the implementation and operation of the chosen
algorithm, and the methods of communication between them. It has been determined that such
software should consist of three main modules, which, during the actual implementation, form
a client-server architecture. The architectural structure of the system is schematically depicted
in figure 1.

Figure 1: The architecture of the drone delivery system.

The client in this system is a user application, the purpose of which is to facilitate the user’s
interaction with the system.

Using the REST API interface, the application sends HTTP requests to a web server, which,
in turn, processes them and performs necessary actions on the data, specifically basic CRUD
operations (Create, Read, Update, Delete). This way, all client actions regarding interaction with
the system, such as registration, creating or viewing lists of shipments, and their statuses, are
handled.

A separate component of the system is the drone management module, which accumulates all
the necessary methods and communication protocols. It also calculates optimal delivery routes.
Utilizing the MQTT protocol [6], this part of the software creates a “Publisher-Subscriber”
environment with the drones. This approach is commonly used in the Internet of Things
[11, 12, 13] because it allows the server and hardware components to exchange messages freely

94

without the need for continuous monitoring of the system’s status, as is required to receive
updates through HTTP requests.

The data being transmitted consists of commands for drone control described using the
“MavLink" protocol, which is a universal communication method with unmanned vehicles [14].
It enables both the sending of commands and receiving telemetry data from the drone, loading
mission routes, and switching flight modes.

3.2. Hardware simulation

Due to limited testing capabilities caused by military actions in the territory of Ukraine, a
crucial step is the selection of a sufficiently powerful and flexible technology for simulating the
system’s operation in a real environment. According to Chen et al. [15], one such technology is
ArduPilot SITL, open-source autopilot software that allows the simulation of the control process
for various types of unmanned vehicles, including drones. It provides access to a wide range of
functionalities such as UAV mission planning, autonomous takeoff and landing, GPS waypoint
navigation, and more. Thanks to ArduPilot, critical points of the system and the possibility of
its further physical implementation can be easily assessed.

ArduPilot SITL also allows to monitor the position of a simulated quadcopter on an interactive
map with satellite images, which comes very handy when looking on the actual navigation
path in the cities.

Figure 2: ArduPilot SITL Map view with multiple simulated quadcopters [16].

95

3.3. Route building subprogram

The code blocks below show the final path finding code which was developed during the
research work. It utilizes Q-Learning – a popular approach of reinforced learning that allows an
agent to effectively learn efficient routes based on the given transportation costs in the graph.
By tuning the hyperparameters the code was optimized to work reliably on any given set of
waypoints.

The two main functions of a Q-Learning agent are the ones responsible for choosing an
action and learning the consequences of executing a chosen action. Depending on a random
choice and the current exploration probability (which decreases after each learning epoch) the
agent will either choose a random action available from the current state, or utilize an action
which brought the most reward during past iterations. On the each subsequent episode it will
less likely explore the new moves and will instead exploit the collected route building data that
is stored in his Q-table.

def choose_action(self, state):
if np.random.uniform(0, 1) < self.exploration_prob:

return np.random.choice(self.num_actions) # Explore
else:

return np.argmax(self.q_table[state, :]) # Exploit

In order to remember the efficiency of all the action combinations, the agent is updating its
Q-Table after taking each action by comparing the predicted outcome based on the past runs
with the real reward obtained after the latest move.

def learn(self, state, action, reward, next_state):
predict = self.q_table[state, action]
target = reward + self.discount_factor *

np.max(self.q_table[next_state, :])
self.q_table[state, action] += self.learning_rate *

(target - predict)

The overall learning process consists of moving across the graph and calculating the total cost
of a route, repeating until a given amount of episodes (epochs) is not completed. By collecting
the different rewards the agent is able to successfully learn the valid behavior that is leading
him to maximum reward, thus finding the most optimal route.

Make agent learn the graph for given episodes count
for episode in range(max_episodes):

state = start
total_reward = 0
visited_nodes = []

While all necessary nodes are not visited
while len(visited_nodes) != len(nodes_to_visit):

96

Choose a random move or exploit known data
action = agent.choose_action(state)
next_state = action

Add a negative reward for revisiting the same waypoint
if action == state:

reward = -100
else:

Negative cost for shortest path
reward = -graph[state, action]

Slightly increase the reward when agent visits a route he
had to visit and didn’t visit yet
if next_state in nodes_to_visit and

not (next_state in visited_nodes):
reward *= 0.001
visited_nodes.append(next_state)

elif next_state in visited_nodes:
Add a negative reward for revisiting the same waypoint
reward -= 100

agent.learn(state, action, reward, next_state)
state = next_state
total_reward += reward

Decay exploration probability
agent.exploration_prob *= agent.exploration_decay

After the agent is done learning it is building the final path once again, which will eventually
be the most efficient one, based on the pre-set hyperparameters and reward calculation logic.

Graph array represents the costs for traveling from
node A to B (graph[A][B])
graph = np.array([

[0, 50, 20, 30, 40],
[50, 0, 10, 30, 80],
[20, 10, 0, 40, 10],
[30, 30, 40, 0, 20],
[40, 80, 10, 20, 0]

])

start = 0
nodes_to_visit = [4, 2] # Destination routes
visited_nodes = []

97

path = [start]
while len(visited_nodes) != len(nodes_to_visit):

Choose new actions until all nodes_to_visit are visited
action = agent.choose_action(path[-1])
if action in nodes_to_visit:

visited_nodes.append(action)
path.append(action)

print("Shortest Path:", path)

The example graph used in the code is assuming each waypoint is accessible from any
other waypoint and the travel cost is the same when moving in both directions. In reality
the departments graph could be dynamically generated by modifying the costs regarding the
weather and wind directions, thus also optimizing the route built for the real world conditions.
The agent itself could also utilize the drones battery level, maximum travel distance left, total
cargo capacity and multi-package delivery optimizations in his reward system to even better
improve the UAV path for maximum productivity.

4. Conclusion

The research allowed us to examine the overall aspects of drone delivery system creation. After
analyzing the existing commercial systems and research in the area we were able to determine
the crucial aspects of such systems and develop the necessary architecture. The key focus

Figure 3: Examples of the user interface of the developed client application.

98

was given to the route planning algorithm that should create a valid path between start and
destination location through a given set on departments (waypoints).

A backend and mobile applications were developed to be used by both regular users and
delivery managers. The developed mobile app screenshots are displayed in figure 3.

In order to properly test all the system aspects, the drone flights were simulated in the
ArduPilot SITL environment. This will also allow to directly apply the developed code to the
UAVs running ArduPilot flight controller firmware.

Speaking of further development, the reinforced learning agent used for path finding can
be improved by including different aircraft sensor data and environment conditions into the
calculations. This will allow to embed such aspects as the payload weight, battery level or wind
speed before the flight or even during the flight itself to better navigate the drone through the
area.

The developed system had shown itself as a well working prototype that is easy to adapt and
scale according to the desired conditions and requirements.

Acknowledgments

We acknowledge the contribution of ChatGPT to the refinement of this paper. ChatGPT’s
assistance in language enhancement and phrase generation significantly contributed to the
quality of the final manuscript. It’s imperative to highlight that the responsibility for reviewing
and aligning the generated content with the narrative of our manuscript solely rests with the
authors. We ensured that all content generated by AI tools, particularly regarding well-known
concepts or definitions, underwent meticulous scrutiny to verify accuracy and relevance. Proper
references to the original content were included to maintain academic integrity and acknowledge
the intellectual contributions of others.

References

[1] A. R. Petrosian, R. V. Petrosyan, I. A. Pilkevych, M. S. Graf, Efficient model of PID
controller of unmanned aerial vehicle, Journal of Edge Computing 2 (2023) 104–124.
doi:10.55056/jec.593.

[2] Amazon Prime Air prepares for drone deliveries, 2022. URL: https://www.aboutamazon.
com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries.

[3] Starship Technologies: Autonomous robot delivery, 2023. URL: https://www.starship.xyz.
[4] Zipline Instant Delivery & Logistics, 2023. URL: https://www.flyzipline.com.
[5] N. Michel, Z. Kong, X. Lin, Optimal Control of a Multirotor Unmanned Aerial Vehicle Based

on a Multiphysical Model, volume Volume 2: Intelligent Transportation/Vehicles; Manu-
facturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators;
Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Sys-
tems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy
of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned
Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Sys-

99

http://dx.doi.org/10.55056/jec.593
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://www.starship.xyz
https://www.flyzipline.com

tems; Vibrations of Dynamic Systems and Control Conference, 2020, p. V002T36A004.
doi:10.1115/DSCC2020-3239.

[6] G. Mehrooz, E. Ebeid, P. Schneider-Kamp, System Design of an Open-Source Cloud-Based
Framework for Internet of Drones Application, in: 2019 22nd Euromicro Conference on
Digital System Design (DSD), 2019, pp. 572–579. doi:10.1109/DSD.2019.00087.

[7] H. Jahanshahi, A. Bozanta, M. Cevik, E. M. Kavuk, A. Tosun, S. B. Sonuc, B. Kosucu, A. Başar,
A deep reinforcement learning approach for the meal delivery problem, Knowledge-Based
Systems 243 (2022) 108489. doi:10.1016/j.knosys.2022.108489.

[8] G. Aiello, R. Inguanta, G. D’Angelo, M. Venticinque, Energy Consumption Model of Aerial
Urban Logistic Infrastructures, Energies 14 (2021) 5998. doi:10.3390/en14185998.

[9] H. Huang, A. V. Savkin, C. Huang, Drone Routing in a Time-Dependent Network: Toward
Low-Cost and Large-Range Parcel Delivery, IEEE Transactions on Industrial Informatics
17 (2021) 1526–1534. doi:10.1109/TII.2020.3012162.

[10] T. Lorido-Botran, M. K. Bhatti, ImpalaE: Towards an optimal policy for efficient resource
management at the edge, Journal of Edge Computing 1 (2022) 43–54. doi:10.55056/jec.
572.

[11] N. M. Lobanchykova, I. A. Pilkevych, O. Korchenko, Analysis and protection of iot systems:
Edge computing and decentralized decision-making, Journal of Edge Computing 1 (2022)
55–67. doi:10.55056/jec.573.

[12] O. V. Klochko, V. M. Fedorets, M. V. Mazur, Y. P. Liulko, An IoT system based on open APIs
and geolocation for human health data analysis, CTE Workshop Proceedings 10 (2023)
399–413. doi:10.55056/cte.567.

[13] Y. B. Shapovalov, Z. I. Bilyk, S. A. Usenko, V. B. Shapovalov, K. H. Postova, S. O. Zhadan, P. D.
Antonenko, Harnessing personal smart tools for enhanced STEM education: exploring
IoT integration, Educational Technology Quarterly 2023 (2023) 210–232. doi:10.55056/
etq.604.

[14] A. Sharma, P. Vanjani, N. Paliwal, C. M. Basnayaka, D. N. K. Jayakody, H.-C. Wang,
P. Muthuchidambaranathan, Communication and networking technologies for UAVs: A
survey, Journal of Network and Computer Applications 168 (2020) 102739. doi:10.1016/
j.jnca.2020.102739.

[15] W. Chen, Y. Dong, Z. Duan, DPM: Towards Accurate Drone Position Manipulation, IEEE
Transactions on Dependable and Secure Computing 20 (2023) 813–826. doi:10.1109/
TDSC.2022.3144319.

[16] Multiple Vehicles with MAVProxy, 2023. URL: https://ardupilot.org/mavproxy/docs/
getting_started/multi.html.

100

http://dx.doi.org/10.1115/DSCC2020-3239
http://dx.doi.org/10.1109/DSD.2019.00087
http://dx.doi.org/10.1016/j.knosys.2022.108489
http://dx.doi.org/10.3390/en14185998
http://dx.doi.org/10.1109/TII.2020.3012162
http://dx.doi.org/10.55056/jec.572
http://dx.doi.org/10.55056/jec.572
http://dx.doi.org/10.55056/jec.573
http://dx.doi.org/10.55056/cte.567
http://dx.doi.org/10.55056/etq.604
http://dx.doi.org/10.55056/etq.604
http://dx.doi.org/10.1016/j.jnca.2020.102739
http://dx.doi.org/10.1016/j.jnca.2020.102739
http://dx.doi.org/10.1109/TDSC.2022.3144319
http://dx.doi.org/10.1109/TDSC.2022.3144319
https://ardupilot.org/mavproxy/docs/getting_started/multi.html
https://ardupilot.org/mavproxy/docs/getting_started/multi.html

	1 Introduction
	2 Review of the subject area and existing solutions analysis for the development of drone delivery system
	2.1 Existing systems analysis
	2.1.1 Amazon Prime Air
	2.1.2 Starship Technologies
	2.1.3 Zipline

	2.2 Analysis of the latest research for drone delivery systems
	2.3 Review of common approaches and algorithms for drone delivery route planning
	2.3.1 Traveling Salesman Problem algorithm
	2.3.2 Dijkstra's algorithm
	2.3.3 A* algorithm
	2.3.4 Reinforced learning
	2.3.5 Choosing the final algorithm

	3 System development
	3.1 General system architecture
	3.2 Hardware simulation
	3.3 Route building subprogram

	4 Conclusion

