
Implementing E2E tests with Cypress and Page Object
Model: evolution of approaches
Inessa V. Krasnokutska, Oleksandr S. Krasnokutskyi

Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskoho Str., Chernivtsi, 58002, Ukraine

Abstract
This article shows eight approaches how to construct Cypress tests using POM. The connections between
them are stressed as their evolution while writing code developing E2E tests. The authors highlight
advantages and disadvantages of the approaches and offer the solution of problems. This article can be
used both as a combined overview of different approaches and as a manual for those who are struggling
to write tests with Cypress in a better way.

Keywords
Cypress JS, Page Object Model, POM design pattern, automation testing, E2E tests

1. Introduction

Suppose we have a problem to cover the functionality of certain website with automation tests.
For instance we can consider the website https://www.saucedemo.com/v1/index.html without
loss of generality. The website is devoted to illustrating of different test cases that occur during
unsuccessful login process. It contains the form with username and password fields to get the
access to the next page, and in case of unsuccessful log in, the error message with corresponding
text is shown. This website is convenient to be used as a model example for all typical flows of
users behaviour that could be covered by tests with a minimum amount of effort.

Successful login without any doubt as a positive test case means inputting correct username
and password. Negative tests occur when a user is left on the same page and an appropriate
error message is shown. It can happen when a user enters an empty or wrong username or
password. Different tests can be considered to cover those cases. However, taking into account
that most of developed tests are quite similar and optimising the cases authors demonstrate
only valuable and significant of them in this article. More test cases can be found in the project
repository at https://github.com/InaKrasnokutska/CypressPOM. To run the solution you just
need to pull and run npm i to setup dependencies, and later npm run cy:open to see how it
works.

Cypress is chosen to demonstrate how to create tests in different manners. All pros and cons
of each approach are analysed and highlighted. There is a lack of good resources on the Internet

CS&SE@SW 2023: 6th Workshop for Young Scientists in Computer Science & Software Engineering, February 2, 2024,
Kryvyi Rih, Ukraine
" i.krasnokutska@chnu.edu.ua (I. V. Krasnokutska); okrasn.mail@gmail.com (O. S. Krasnokutskyi)
~ https://amit.chnu.edu.ua/pro-kafedru/personalii/krasnokutska-inessa-volodymyrivna (I. V. Krasnokutska)
� 0000-0002-7034-7291 (I. V. Krasnokutska)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

101

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://www.saucedemo.com/v1/index.html
https://github.com/InaKrasnokutska/CypressPOM
mailto:i.krasnokutska@chnu.edu.ua
mailto:okrasn.mail@gmail.com
https://amit.chnu.edu.ua/pro-kafedru/personalii/krasnokutska-inessa-volodymyrivna
https://orcid.org/0000-0002-7034-7291
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Figure 1: Test cases you can find at https://github.com/InaKrasnokutska/CypressPOM and run in
Cypress.

about usage of the Page Object design pattern in Cypress Cypress [1], and each resource shows
only one point of view and it is hard to understand the correlation between them.

2. Main results

All possible variations of implementing Page Object Model (POM) are constructed in this article.
It happens when a locked out user enters his/her username and password and receives an
appropriate error message.

Figure 2: Error message the locked out user tries to log in.

Other test cases can be found at https://github.com/InaKrasnokutska/CypressPOM. In the
next subsections we will discuss 9 approaches to organise selected test case. For convenience
and quick search of files with tests (specs) in the repository they have names according to
subsection numbers in this article where they are discussed.

2.1. Tests without POM

Before diving into the Page Object design pattern, let us create a Cypress test without it.
According to this decision the code appears very strict forward because in the spec file we

need to prescribe the interaction with each DOM element of the page. This interaction is done

102

https://github.com/InaKrasnokutska/CypressPOM
https://github.com/InaKrasnokutska/CypressPOM

Figure 3: Spec’s names corresponding to subsections where they were discussed.

with the help of the function cy.get() that locates an element with the corresponding selector
of the element passed into it as the parameter.

Next we emulate the user’s action by typing username and password and clicking the button
(.type() and .click() functions). At the end of the scenario we validate the error message using
.should() function for assertion.

Listing 1: File spec_2.1.cy.js
d e s c r i b e (’CHECK SWAG LABS LOG IN WITHOUT POM 2 . 1 ’ , () => {

i t (’ V a l i d a t e l o c k e d out u s e r ’ , () => {
cy . g e t (’ # user −name ’) . type (’ l o c k e d _ o u t _ u s e r ’) ;
cy . g e t (’ # password ’) . type (’ s e c r e t _ s a u c e ’) ;
cy . g e t (’ # l o g i n − b u t t o n ’) . c l i c k () ;
cy . g e t (’ [data − t e s t =" e r r o r "] ’) . shou ld (’ be . v i s i b l e ’)

. and (’ c o n t a i n . t e x t ’ ,
’ Ep i c s a d f a c e : Sorry , t h i s u s e r has been l o c k e d out . ’) ;

}) ;
}) ;

This approach lets us to obtain expected result of testing but in the same time it does not fit
list of quality criteria [2] because of

• complexity of maintenance and updating,
• level of duplication increase dependent on covered scenarios growth,
• violation of principles: KISS, DRY, SOLID etc.

2.2. Tests with POM using selectors for elements

For improving the code above let us use the Page Object design pattern and update the code
according to style used in Selenium/Java [3].

103

2.2.1. POM using selectors

First of all, we describe the class that contains selectors of elements in variables. Then, im-
plementing functions and locators we use selectors predefined in variables. Here locators are
implemented with cy.get() help and are used to perform actions on page.

Listing 2: File login_2.2.1.page.js
c l a s s MainPage {

u s e r n a m e I n p u t S e l e c t o r = ’ # user −name ’ ;
p a s s w o r d I n p u t S e l e c t o r = ’ # password ’ ;
l o g i n B u t t o n S e l e c t o r = ’ # l o g i n − b u t t o n ’ ;
e r r o r M e s s a g e S e l e c t o r = ’ [data − t e s t =" e r r o r "] ’ ;

typeUsernameInput (username)
{ cy . g e t (t h i s . u s e r n a m e I n p u t S e l e c t o r) . type (username) ; }

t y p e P a s s w o r d I n p u t (password)
{ cy . g e t (t h i s . p a s s w o r d I n p u t S e l e c t o r) . type (password) ; }

c l i c k L o g i n B u t t o n ()
{ cy . g e t (t h i s . l o g i n B u t t o n S e l e c t o r) . c l i c k () ; }

checkEr rorMessage (message)
{ cy . g e t (t h i s . e r r o r M e s s a g e S e l e c t o r) . shou ld (’ be . v i s i b l e ’)

. and (’ c o n t a i n . t e x t ’ , message) ; }
}
module . e x p o r t s = new LoginPage () ;

As a result spec file will take the following form.

Listing 3: File spec_2.2.1.cy.js
import l o g i n P a g e from " . . / pages / l o g i n _ 2 . 2 . 1 . page " ;

d e s c r i b e (’CHECK SWAG LABS LOG IN WITH POM 2 . 2 . 1 ’ , () => {
i t (’ V a l i d a t e l o c k e d out u s e r ’ , () => {

l o g i n P a g e . typeUsernameInput (’ l o c k e d _ o u t _ u s e r ’) ;
l o g i n P a g e . t y p e P a s s w o r d I n p u t (’ s e c r e t _ s a u c e ’) ;
l o g i n P a g e . c l i c k L o g i n B u t t o n () ;
l o g i n P a g e . checkErrorMessage (’ Ep i c s a d f a c e : " +

 ’ Sorry , t h i s u s e r has been l o c k e d out . ’) ;
 }) ;

Considering pros and cons of this approach, we can say that it isolates the logics of selecting
elements apart from processing scenarios. This isolation improves disadvantages illuminated in
the previous approach. At the same time this approach has disadvantage because assertions are
performed by class methods, and it is better to leave assertions in the spec file.

104

2.2.2. POM using getter for error message

Thus, the next step of optimization is extension of class functionality for providing a possibility
to make assertions within the spec file.

With this aim, let us define a function in class that will give access to the element, a kind of
getter for error messages.

Listing 4: File login_2.2.2.page.js
g e t E r r o r M e s s a g e ()

{ return cy . g e t (t h i s . e r r o r M e s s a g e S e l e c t o r) ; }

Listing 5: File spec_2.2.2.cy.js
import l o g i n P a g e from " . . / pages / l o g i n _ 2 . 2 . 2 . page " ;

d e s c r i b e (’CHECK SWAG LABS LOG IN WITH POM 2 . 2 . 2 ’ , () => {
i t (’ V a l i d a t e l o c k e d out u s e r ’ , () => {

l o g i n P a g e . typeUsernameInput (’ l o c k e d _ o u t _ u s e r ’) ;
l o g i n P a g e . t y p e P a s s w o r d I n p u t (’ s e c r e t _ s a u c e ’) ;
l o g i n P a g e . c l i c k L o g i n B u t t o n () ;
l o g i n P a g e . g e t E r r o r M e s s a g e () . shou ld (’ be . v i s i b l e ’)

. and (’ c o n t a i n . t e x t ’ ,
’ Ep i c s a d f a c e : Sorry , t h i s u s e r has been l o c k e d out . ’) ;

}) ;

As a result of optimisation we obtained improvement of code. However, at the same time, the
code is still not uniformed, as one element on the page has accessor function, and others do not
have. Code can be understood better when we suppose that the necessity to call those elements
directly in a spec file exists. For instance, when we need to verify that in case of unsuccessful
username input the element changes its style (red color etc.).

2.2.3. POM using getters for all elements

Let us eliminate the shortcomings of the previous version and define functions for access to
each page element.

Listing 6: File login_2.2.3.page.js
c l a s s MainPage {

u s e r n a m e I n p u t S e l e c t o r = ’ # user −name ’ ;
p a s s w o r d I n p u t S e l e c t o r = ’ # password ’ ;
l o g i n B u t t o n S e l e c t o r = ’ # l o g i n − b u t t o n ’ ;
e r r o r M e s s a g e S e l e c t o r = ’ [data − t e s t =" e r r o r "] ’ ;

ge tUsernameInput () { return cy . g e t (t h i s . u s e r n a m e I n p u t S e l e c t o r) ; }
g e t P a s s w o r d I n p u t () { return cy . g e t (t h i s . p a s s w o r d I n p u t S e l e c t o r) ; }
g e t L o g i n B u t t o n () { return cy . g e t (t h i s . l o g i n B u t t o n S e l e c t o r) ; }

105

g e t E r r o r M e s s a g e () { return cy . g e t (t h i s . e r r o r M e s s a g e S e l e c t o r) ; }
typeUsernameInput (username)

{ t h i s . ge tUsernameInput () . type (username) ; }
t y p e P a s s w o r d I n p u t (password)

{ t h i s . g e t P a s s w o r d I n p u t () . type (password) ; }
c l i c k L o g i n B u t t o n ()

{ t h i s . g e t L o g i n B u t t o n () . c l i c k () ; }
}
module . e x p o r t s = new LoginPage () ;

Tests in spec_2.2.3.cy.js file are the same as in spec_2.2.2.cy.js file. At the same time, the
new version contains more functionality for further extension and can cover bigger amount of
user behavior scenarios with slight updates.

Evaluating the code, we observe that it currently seems overloaded with functions. That
happens because we keep separately selectors of each element and create distinct functions to
access each element that with help of selectors return us the locators of elements.

2.3. Tests with POM using locators for elements

One of the methods to simplify and optimise the code is the union of selectors and locators. It
can be done because out of class only wrapped elements are used to perform actions on them.
That is why there is no sense to keep distinct properties only for selectors.

2.3.1. POM using named functions as locators

Let us delete from the previous variant all the variables for selectors and strictly pass selectors
as arguments in cy.get(). Each locator is obtained as a method that returns the element.

Listing 7: Part of file login_2.3.1.page.js
ge tUsernameInput () { return cy . g e t (’ # user −name ’) ; }
g e t P a s s w o r d I n p u t () { return cy . g e t (’ # password ’) ; }
g e t L o g i n B u t t o n () { return cy . g e t (’ # l o g i n − b u t t o n ’) ; }
g e t E r r o r M e s s a g e () { return cy . g e t (’ [data − t e s t =" e r r o r "] ’) ; }

We obtain 4 getter functions and focus on the necessary functionality. Then when we work
with functions (typeUsernameInput(), typePasswordInput(), clickLoginButton()), we use
the predefined locators of this class.

As a consequence the tests in spec_2.3.1.cy.js look the same as ones in spec_2.2.2.cy.js and
work as well.

2.3.2. POM with anonymous functions as locators

Another way to define methods is the usage of anonymous functions. Function expressions are
not hoisted, which means it is created only when the execution flow reaches it and can be used
from that moment onwards.

106

Listing 8: Part of file login_2.3.2.page.js
ge tUsernameInput = f u n c t i o n () { return cy . g e t (’ # user −name ’) ; }
g e t P a s s w o r d I n p u t = f u n c t i o n () { return cy . g e t (’ # password ’) ; }
g e t L o g i n B u t t o n = f u n c t i o n () { return cy . g e t (’ # l o g i n − b u t t o n ’) ; }
g e t E r r o r M e s s a g e = f u n c t i o n ()

{ return cy . g e t (’ [data − t e s t =" e r r o r "] ’) ; }

The same as in the previous case, tests do not have changes (tests in spec_2.2.3.cy.js are the
same as in spec_2.2.2.cy.js).

2.4. Tests using POM using locators in elements object

The usage of previous approach does not make semantic separation between different parts
of the Page Object file, that is why we can perform aggregation and place locators into the
elements object thereby dividing the functions into two groups: functions devoted to access
elements and functions devoted to actions.

2.4.1. POM using locators as functions in elements object

Let us use getters names as the keys and locators functions as the values in elements.

Listing 9: File login_2.4.1.page.js
c l a s s MainPage {

e l e m e n t s = {
ge tUsernameInput : f u n c t i o n () { return cy . g e t (’ # user −name ’) ; } ,
g e t P a s s w o r d I n p u t : f u n c t i o n () { return cy . g e t (’ # password ’) ; } ,
g e t L o g i n B u t t o n : f u n c t i o n ()

{ return cy . g e t (’ # l o g i n − b u t t o n ’) ; } ,
g e t E r r o r M e s s a g e : f u n c t i o n ()

{ return cy . g e t (’ [data − t e s t =" e r r o r "] ’) ; }
}
typeUsernameInput (username)

{ t h i s . e l e m e n t s . ge tUsernameInput () . type (username) ; }
t y p e P a s s w o r d I n p u t (password)

{ t h i s . e l e m e n t s . g e t P a s s w o r d I n p u t () . type (password) ; }
c l i c k L o g i n B u t t o n ()

{ t h i s . e l e m e n t s . g e t L o g i n B u t t o n () . c l i c k () ; }
}
module . e x p o r t s = new LoginPage () ;

According to this approach we refer firstly to the elements object and then to corresponding
function every time we need to refer to the locators functions in code of action functions. Similar
style we need to keep in the spec code also.

Listing 10: File spec_2.4.1.cy.js
import l o g i n P a g e from " . . / pages / l o g i n _ 2 . 4 . 1 . page " ;

107

d e s c r i b e (’CHECK SWAG LABS LOG IN WITH POM 2 . 4 . 1 ’ , () => {
i t (’ V a l i d a t e l o c k e d out u s e r ’ , () => {

l o g i n P a g e . typeUsernameInput (’ l o c k e d _ o u t _ u s e r ’) ;
l o g i n P a g e . t y p e P a s s w o r d I n p u t (’ s e c r e t _ s a u c e ’) ;
l o g i n P a g e . c l i c k L o g i n B u t t o n () ;
l o g i n P a g e . e l e m e n t s . g e t E r r o r M e s s a g e () . shou ld (’ be . v i s i b l e ’)

. and (’ c o n t a i n . t e x t ’ ,
’ Ep i c s a d f a c e : Sorry , t h i s u s e r has been l o c k e d out . ’) ;

}) ;
}) ;

This approach can be found on some legacy projects or on projects not supporting modern
stack.

2.4.2. POM using arrow functions as locators in elements object

Analyzing a block of elements we can note that it contains a long construction function() {
return . . . } and the idea to shorten or optimize it appears. It can be done if the project uses
standard JavaScript EcmaScript 6 or higher. Then, using arrow functions syntax we can
obtain a more concise look of code.

Listing 11: Part of file login_2.4.2.page.js
e l e m e n t s = {

ge tUsernameInput : () => cy . g e t (’ # user −name ’) ,
g e t P a s s w o r d I n p u t : () => cy . g e t (’ # password ’) ,
g e t L o g i n B u t t o n : () => cy . g e t (’ # l o g i n − b u t t o n ’) ,
g e t E r r o r M e s s a g e : () => cy . g e t (’ [data − t e s t =" e r r o r "] ’)

}

Due to point localization of the file, no updates needed for tests in spec_2.4.2.cy.js (they
look the same as in spec_2.4.1.cy.js).

Investigating available articles on this topic we found out that most of the resources on the
Internet recommend writing code with POM as it is shown in this subsection. However, in most
cases they use incorrect names for functions in the elements object. The emphasis is on the
subject and not on performing an action over the subject (verbs get, take etc. are omitted), for
instance usernameInput(), loginButton(). When we need to refer to the part of elements in
the tests definitely we want to name the elements as a noun, but round brackets for function
call cannot be omitted. In that way code looks incomprehensible and weird violating name
convention (loginPage.elements.errorMessage().should(’be.visible’)).

On the one hand this kind of names has benefits because they are used to denote locators
of elements. But on the other hand it has the drawback: this part of code is performing some
action and first of all it is a function and it should respect the name conventions for functions.

108

2.5. Tests with POM using assessor properties

The drawback described above can be avoided by using assessor properties. They are property
getters, new types of properties (along with the regular data properties). They are essentially
functions that execute on getting value, but look like regular properties to an external code.
“getter” methods are accessor properties . In an object literal they are denoted by get. Descriptor
for accessor properties has get – a function without arguments, that works when a property is
read.

Listing 12: File login_2.5.page.js
c l a s s MainPage {

g e t usernameInput () { return cy . g e t (’ # user −name ’) ; }
g e t pas sword Input () { return cy . g e t (’ # password ’) ; }
g e t l o g i n B u t t o n () { return cy . g e t (’ # l o g i n − b u t t o n ’) ; }
g e t e r r o r M e s s a g e () { return cy . g e t (’ [data − t e s t =" e r r o r "] ’) ; }

typeUsernameInput (username)
{ t h i s . usernameInput . type (username) ; }

t y p e P a s s w o r d I n p u t (password)
{ t h i s . pas sword Input . type (password) ; }

c l i c k L o g i n B u t t o n ()
{ t h i s . l o g i n B u t t o n . c l i c k () ; }

}
module . e x p o r t s = new LoginPage () ;

Listing 13: File spec_2.5.cy.js
import l o g i n P a g e from " . . / pages / l o g i n _ 2 . 5 . page " ;
d e s c r i b e (’CHECK SWAG LABS LOG IN WITH POM 2 . 5 ’ , () => {

i t (’ V a l i d a t e l o c k e d out u s e r ’ , () => {
l o g i n P a g e . typeUsernameInput (’ l o c k e d _ o u t _ u s e r ’) ;
l o g i n P a g e . t y p e P a s s w o r d I n p u t (’ s e c r e t _ s a u c e ’) ;
l o g i n P a g e . c l i c k L o g i n B u t t o n () ;
l o g i n P a g e . e r r o r M e s s a g e . shou ld (’ be . v i s i b l e ’)

. and (’ c o n t a i n . t e x t ’ ,
’ Ep i c s a d f a c e : Sorry , t h i s u s e r has been l o c k e d out . ’) ;

}) ;

The getter works when errorMessage is read in spec. From the outside, an accessor property
looks like a regular one. That’s the idea of accessor properties. We don’t call errorMessage as
a function, we read it normally: the getter runs behind the scenes.

A minor drawback of this approach is that sometimes it is necessary to pass a parameter
to the locator functions (for example referring to the i-th row of the table), then we need to
combine the use of ordinary functions and assessor properties.

109

3. Conclusions

This article shows eight approaches how to construct Cypress tests using POM. The connections
between them are stressed as their evolution while writing code developing E2E tests. Project
using approaches highlighted in first subsections still can be found on the Internet while studying
how to write tests with Cypress JS. The authors highlight advantages and disadvantages of the
approaches and offer the solution of problems. This article can be used both as a combined
overview of different approaches and as a manual for those who are struggling to write tests
with Cypress in a better way. For further investigation other patterns and solutions like Cypress
commands, aliases, application actions, could be discovered.

References

[1] J. T. Othayoth, S. Anuar, Modern web automation with cypress.IO, Open International
Journal of Informatics 10 (2022) 182–196. URL: https://oiji.utm.my/index.php/oiji/article/
view/229.

[2] M. Leotta, M. Biagiola, F. Ricca, M. Ceccato, P. Tonella, A Family of Experiments to Assess
the Impact of Page Object Pattern in Web Test Suite Development, in: 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST), 2020, pp.
263–273. doi:10.1109/ICST46399.2020.00035.

[3] E. Vila, G. Novakova, D. Todorova, Automation Testing Framework for Web Applications
with Selenium WebDriver: Opportunities and Threats, in: Proceedings of the Interna-
tional Conference on Advances in Image Processing, ICAIP ’17, Association for Computing
Machinery, New York, NY, USA, 2017, p. 144–150. doi:10.1145/3133264.3133300.

110

https://oiji.utm.my/index.php/oiji/article/view/229
https://oiji.utm.my/index.php/oiji/article/view/229
http://dx.doi.org/10.1109/ICST46399.2020.00035
http://dx.doi.org/10.1145/3133264.3133300

	1 Introduction
	2 Main results
	2.1 Tests without POM
	2.2 Tests with POM using selectors for elements
	2.2.1 POM using selectors
	2.2.2 POM using getter for error message
	2.2.3 POM using getters for all elements

	2.3 Tests with POM using locators for elements
	2.3.1 POM using named functions as locators
	2.3.2 POM with anonymous functions as locators

	2.4 Tests using POM using locators in elements object
	2.4.1 POM using locators as functions in elements object
	2.4.2 POM using arrow functions as locators in elements object

	2.5 Tests with POM using assessor properties

	3 Conclusions

