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Abstract 
The article describes the development of a color image clustering algorithm for a real-time computer 
vision and AI system. An important feature of the algorithm is the preliminary use of a large number of 
fast image preprocessing algorithms to optimize the preparation of data for efficient clustering in the 
color space. The proposed clustering algorithm is focused on processing clusters of arbitrary shape. The 
paper presents the results of experiments on the processing of monochromatic and non-monochromatic 
color images. These clustering results are shown as images and as clusters in the Unity environment. 
Recommendations for practical use, conclusions and links to repositories of experiment results are 
given. The analysis of the results of a large number of experiments shows that the proposed adaptive 
clustering algorithm can be effectively used both in powerful computer vision and artificial intelligence 
systems and in relatively low-power embedded systems by adjusting the parameters to the specifics of 
the problem 
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1. Introduction 

The development of innovative tools [1-3] and modern technologies for pattern recognition [4, 
5] in our time is increasingly focused on the use of new models and algorithms of artificial 
intelligence (AI) [6], primarily clustering, artificial neural networks (NN) and classification. 
Although, pre-processing models [1, 6], solutions in the fields of ICT [7], in robotics with use of 
embedded systems [8-10] and security systems [11-13] are also of great interest in some aspects. 

Such a great interest in artificial intelligence systems is associated with their effective 
application in pattern recognition systems, which are enjoying commercial success. Currently, 
such (data-centric business) systems and applications are successfully used to search for goods 
in online stores using Image Based Search technology. In car and biometric identification systems, 
contactless payment systems in supermarkets based on face recognition technology, in many 
other applications. 

Concerning clustering, a large number of new models and algorithms have been proposed in 
recent years. At the same time, not all of them meet modern requirements in terms of 
computational efficiency, especially when used in embedded systems. What is the reason for this? 

Most of the algorithms iteratively recalculate the position of the centers over all observations 
of the cluster. The problem is that the number of observations may be too large. Taking into 
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account the size of modern images (from 8 to 64 MP), the number of observations in dense 
clusters and their surroundings can be estimated in hundreds of thousands [1]. 

At the same time, classic algorithms such as k-means, mean shift, and their analogs and 
modifications are relatively efficient at the construction of spherical clusters because of the usage 
of the distance function. However, they have problems with building arbitrary shaped clusters. 

As a result, clustering becomes a bottleneck in modern computer vision algorithms. Therefore, 
despite all the advantages of clustering, it is often abandoned due to the unacceptable 
computational complexity and/or inadequacy of processing clusters of arbitrary shape. 

To solve these problems, in this work we propose a fast algorithm for constructing clusters of 
arbitrary shape. The parameterization of the algorithm makes it possible to effectively adapt it 
both for relatively powerful server systems and relatively less powerful embedded systems. 
Unless otherwise stated, the input data is a color image in RGB format. 

 

2. Related Works 

In recent decades, the k-means clustering method has gained wide popularity in image analysis, 
serving as an effective and powerful tool for data grouping. Clustering color images using k-means 
is an active area of research that attracts the attention of researchers in the fields of computer 
vision and image processing. 

In their works, the authors explore the application of the k-means algorithm in various 
domains of human activity, such as color image quantization [14], sky image segmentation [15] 
and medicine[16]. 

The authors introduces a clustering algorithm to address cluster size bias, a common issue in 
conventional methods like K-means [17]. While balanced K-means provides equal-sized clusters, 
it is slow. The proposed heuristic algorithm offers a faster alternative with reduced bias. It 
successively divides larger clusters and optimizes centroids when the desired number is reached, 
allowing for bias and error adjustment.  

The accurate estimation of the number of materials in a hyperspectral image is crucial for 
various hyperspectral image-processing tasks, such as classification and unmixing. In a work [18], 
authors introduced an algorithm utilizing clustering principles for estimating the number of 
materials in the image.  

An important direction is the processing of low-quality images with noise or pixel losses.  
In paper [19], the authors propose to reduce the computational complexity of spectral image 

clustering methods by introducing a sub-sampling procedure that cuts the number of pixels for 
classification in half. This preserves the spatial structure of the image. 

One of the promising directions in the field of clustering is methods based on the principles of 
sparse subspace clustering, which group spectral signatures, ensuring their sparse 
representation. In recent years, there has been a growing number of works [20-22] on the topic 
of spectral clustering. 

In the research addressed by this article [20], the authors tackle the issue of clustering spectral 
images, aiming to identify groups and distributions within spectral signatures without the need 
for a prior training stage. Methods based on sparse subspace clustering group spectral signatures 
into different subspaces, seeking the least dense representation for each pixel and ensuring their 
affiliation with the same class. Despite their high accuracy, these methods encounter the 
challenge of increasing computational complexity as the number of pixels grows. This work 
proposes an approach to reduce the number of pixels for the classification of spectral images by 
half through a subsampling procedure that eliminates every second adjacent pixel while 
preserving the spatial structure of the image. 

In the field of hyperspectral image (HSI) clustering, the extraction of valuable clustering 
information can be utilized for the classification of real objects, environmental monitoring, and 
other tasks. Spectral clustering stands out as one of the most popular clustering methods and has 
been successfully applied in hyperspectral image clustering, garnering significant attention. 



However, the majority of these methods do not take advantage of the spatial information in HSI, 
which could enhance pixel correlation and improve accuracy. In this paper [21], based on the 
physical characteristics of HSI, a new approach is proposed, named hyperspectral image 
clustering based on spatial information and spectral clustering (SISC). By combining spatial 
window and spectral factors, the algorithm utilizes joint spatial-spectral information, 
reconstructs the central point, and reveals local spatial structure using nearby spatial points. 

The field of compressive spectral imaging (CSI) involves acquiring random projections of a 
spectral scene. Conventionally, a computationally expensive reconstruction of the underlying 3D 
scene is required before applying any post-processing tasks such as clustering. To enhance the 
quality of reconstruction and subsequent post-processing results, prior works have focused on 
adaptively designing sensing matrices. In contrast, this paper [22] introduces a novel hierarchical 
adaptive approach for the design of a sensing matrix in the single-pixel camera. The proposed 
approach enables pixel clustering directly in the compressed domain. At each step of the 
hierarchical model, a sensing matrix is tailored to facilitate the extraction of clustering features 
directly from the compressed measurements. The final segmentation map is obtained through 
majority voting from partial clustering results at each hierarchy step.  

Neural networks provide a powerful tool for extracting high-level features from images, 
making them promising in the field of image clustering. Various architectures of neural networks, 
including deep convolutional neural networks (CNN), autoencoders, and generative adversarial 
networks (GAN), are actively explored to enhance the clustering process and improve accuracy 
in identifying similar patterns. Works [23-27] present key trends and outcomes of applying 
neural networks in image clustering tasks, while also identifying challenges and prospects in this 
research area. 

 

3. Methods and Materials 

3.1. Image Preprocessing  

Considering the architecture and algorithms of modern computer vision systems and, above all, 
neural networks, the stage of image preprocessing is usually distinguished. This stage is designed 
for the rapid preparation of the image for the most efficient processing. 

In this regard, the first step in the preprocessing stage is to downscale the image. 
The downscaling factor and the anti-aliasing filter are usually selected experimentally, 

according to efficiency requirements, taking into account the characteristics of the computer 
vision system equipment. The authors of this paper carried out a series of experiments, and the 
following conclusions were made. 

When the scale is reduced once, a square window with linear size being an integer greater than 
1 (2, 3, …) is used. If you plan to reduce the scale iteratively and work with the pyramid of images, 
then the linear size of the window, as when working with SNS [1], should be a multiple of a power 
of an integer greater than 1. To quickly and smoothly change the scale without losing significant 
details of the scene, powers of 2 (2, 4, 8, ...) are usually considered. 

With regard to smoothing filters, the authors have tested thinning, averaging, and a series of 
adaptive filters [8]. It was found that thinning is the best in terms of time efficiency, and in most 
cases is only slightly inferior in quality in comparison with other filters. With high input image 
quality, thinning is not inferior in quality with respect to other filters at all. Therefore, it is 
recommended to use the thinning filter by default. 

The following averaging filter (1) is optimal for the most realistic transmission of small details 
if enough computational resources are present and when processing small images. Also, in such 
conditions, this filter is optimal for noise smoothing in terms of the balance of time and quality 

𝑟 =
1

𝑊
∑ 𝑟𝑖 ∙ 𝑤𝑖

𝑛
𝑖=1 , 𝑊 = ∑ 𝑤𝑖

𝑛
𝑖=1 ,                                        (1) 

 



where 𝑟𝑖 is the brightness level for the component of the color model in the neighborhood (each 
component is processed separately from each other), and 𝑤𝑖 are the weight coefficients [1, 8]. In 
practice, the mean filter is most often used with 𝑤𝑖 = 1. 

Adaptive filters, especially with large window sizes, unacceptably smooth small details, lines 
and fragments of object boundaries [1, 8]. They are also characterized by a nonlinear (most often 
quadratic) estimate of the complexity. Therefore, their usage is unacceptable without special 
justification. 

To reduce the complexity of clustering, in addition to reducing the scale, it is proposed to 
optimize the partitioning grid of the RGBH space, where H(r, g, b) is the frequency of values (r, g, 
b) in the RGB space. 

When preparing data for clustering, an image is scanned and a matrix H(r, g, b) is formed. The 
cells of this matrix store data on the frequency of distribution of colors (r, g, b) in the pixels of the 
image. Then the clustering of color areas in RGB space is performed using this matrix. 

For a standard color image (type 24 bit) in the RGB model, 28 ∙ 28 ∙ 28 = 16 777 216 possible 
colors are defined. For many applications, given the iterative nature of clustering, processing such 
a large number of cells is not acceptable in terms of computational complexity.  

This is also unnecessary because the analysis of the experiment results shows that the 
contents of many cells are not informative. 

It is advisable to reduce the number of cells in RGB space in such a situation. To do this, we 
enlarge the RGB space partition grid using the factor 𝑑 = 2𝑛 (Fig. 1). 

Numerous experiments have shown that the best results are obtained for steps 4 and 8. In 
most experiments, it was possible to reduce the complexity of clustering by about 64 (512) times 
without reducing the quality by using enlarged cells 4 ∙ 4 ∙ 4 (or 8 ∙ 8 ∙ 8). 

Under such conditions, the RGB space is first divided into enlarged cells with a step 𝑑, after 
which the frequency is calculated for these cells by adding the frequencies of the unit cells (r, g, 
b). 

For an adequate construction of clusters of arbitrary shape, it is planned (this will be described 
below) to analyze the level lines of the function H(r, g, b). 

Analysis of typical distributions H(r, g, b) showed the following. 
Almost any image has one or several dominant objects. 
The frequency of the chromaticity region of the dominant object, as a rule, is several orders of 

magnitude higher than the frequencies of other objects in the image. Visually, this frequency looks 
like a separate peak on the histogram. In this situation, consideration of all lines of the 
distribution level H(r, g, b) is redundant and unnecessarily laborious. 

 
Figure 1: Enlarging the RGB space partition grid [28] 

 
It is proposed to quantize the frequency into a predetermined (optimized at the training stage) 

number of levels 𝑘 to find a balance between computational complexity and quality. For this, a 
non-linear quantization law (analog of log scale) is used to neutralize the influence of dominant 



objects in the image. For these purposes, a flexible function of forming the boundaries of 𝑘 
frequency quantization levels is proposed 

𝑏𝑗 =
𝑀𝑎𝑥

𝑘
(𝑘 − 𝑗) ∙ 𝑐𝑗,                                                    (2) 

where 𝑏 is the quantization boundary of the level 𝑗, 𝑗 = 0, … , 𝑘; 𝑀𝑎𝑥 is the maximum frequency, 
𝑐 is the peak frequency suppression coefficient of dominant objects (Fig. 2). 
 

 
a) 

 
b) 

Figure 2: Listing, where: a) family of functions for frequency quantization; b) boundaries of 
quantization levels in numerical form 

 
After all the parameters of the models are determined, the image preprocessing is performed 

according to the following algorithm: 
1) the image is resized to the required size; 
2) the resulting image is scanned: 
- cell frequencies are found on the enlarged grid in RGB space; 
- the found frequencies are quantized according to (2). After that, the quantization levels 𝑗 =

1, … , 𝑘 are used instead of frequencies. 
 



3.2. Data Clustering 
 
The clustering algorithm is iterative. External iterations of the algorithm are used to enumerate 
and sequentially consider the levels (𝑗 = 1, … , 𝑘) of quantizing the cell frequency in the RGB cube. 
Internal iterations are used to build clusters at the current quantization level, taking into account 
the clustering results at previous levels. 

So, the levels of quantization are viewed from top to bottom, starting from the most significant 
levels, (𝑗 = 1, … , 𝑘). 

For level 𝑗, clusters of adjacent cells with a frequency at level 𝑗 are constructed using the wave 
method. In 3-dimensional RGB space, two distinct cells (𝑟𝜉 , 𝑔𝜉 , 𝑏𝜉) and (𝑟𝜂 , 𝑔𝜂 , 𝑏𝜂) are considered 

adjacent if the following condition is met  

|𝑟𝜉 − 𝑟𝜂| ≤ 1 𝐴𝑁𝐷 |𝑔𝜉 − 𝑔𝜂| ≤ 1 𝐴𝑁𝐷 |𝑏𝜉 − 𝑏𝜂| ≤ 1.                         (3) 

These clusters are numbered in ascending order. Clusters built from cells of the same level will 
be called simple. Adjacent clusters built on the current and one of the previous levels, if any, are 
merged. Clusters that have adjacent cells are considered adjacent. A cluster resulting from the 
merging of clusters is called a composite cluster. Just like a simple cluster, it gets a new number. 
We use continuous numbering for numbering of clusters (Fig. 3 – Fig. 5). 

For the stability of the clustering method to noise and shadows of objects (so that clusters are 
not falsely combined into one cluster), at least the lowest level 𝑗 = 𝑘 is not considered when 
constructing clusters.  

In this case, we can lose small-sized objects. In this case, we can lose small-sized objects, but 
we will maintain an adequate nested structure of large objects. During the process of building 
clusters, information about them at each iteration is stored in three tables. 

 

 
Figure 3: The result of the first iteration (𝑗 = 1). Two simple clusters at the highest level of 
significance have been formed. 

 

   

Figure 4: The result of the second iteration (𝑗 = 2). Two simple clusters numbered 3 and 4 have 
been formed. After that, a composite cluster with number 5 has been formed by combining 
clusters number 2 and 3. 

 
The first table (Cluster) is used to store general information about all clusters (Table 1, Table 

4, Table 7).  
This table stores the cluster number (continuous numbering), cluster type 

(simple/composite), level number (𝑗 = 1, … , 𝑘) on which the cluster is built and the cluster 
number in the simple/composite clusters table.  



The second table (S-Cluster) is used to store information about simple clusters (Table  2, Table 
5, Table 8).  

This table stores the number of a simple cluster in the continuous numbering system of simple 
clusters, the number of a simple cluster in the Cluster table and a reference to the array of 
coordinates of cells { [𝑟, 𝑔, 𝑏]𝑖}𝑖 from which the simple cluster is built.  

 

   

Figure 5: The result of the third iteration (𝑗 = 3). Three simple clusters with numbers 6, 7 and 8 
have been formed. After that, two composite clusters with numbers 9 and 10 have been formed. 

 
The third table (C-Cluster) is used to store information about composite clusters (Table 3, 

Table 6, Table 9).  
This table stores the composite cluster number in the continuous composite cluster 

numbering system, the composite cluster number in the Cluster table, and the tuple of clusters 
from which the composite cluster is built. 

 
Table 1 
Cluster (After 1st Iteration). 

Cluster Number Cluster Type Level Number Cluster Number in S- 
/ C-Cluster Table 

1 S 1 1 
2 S 1 2 

 
Table 2 
S-Cluster (After 1st Iteration) 

S-Cluster Number S-Cluster Number in Cluster 
Table 

S-Cluster Cell Array Reference 

1 1 SC[1] 
2 2 SC[2] 

 
Table 3 
C-Cluster (After 1st Iteration). 

C-Cluster Number C-Cluster Number in Cluster 
Table 

C-Cluster Tuple of Clusters 

   
   

 
Table 4 
Cluster (After 2nd Iteration). 

Cluster Number Cluster Type Level Number Cluster Number in S- 
/ C-Cluster Table 

1 S 1 1 
2 S 1 2 
3 S 2 3 



4 S 2 4 
5 C 2 1 

Table 5 
S-Cluster (After 2nd Iteration). 

S-Cluster Number S-Cluster Number in Cluster 
Table 

S-Cluster Cell Array Reference 

1 1 SC[1] 
2 2 SC[2] 
3 3 SC[3] 
4 4 SC[4] 

 
Table 6 
C-Cluster (After 2nd Iteration). 

C-Cluster Number C-Cluster Number in Cluster 
Table 

C-Cluster Tuple of Clusters 

1 5 (2,3) 

 
Table 7 
Cluster (After 3rd Iteration). 

Cluster Number Cluster Type Level Number Cluster Number in S- 
/ C-Cluster Table 

1 S 1 1 
2 S 1 2 
3 S 2 3 
4 S 2 4 
5 C 2 1 
6 S 3 5 
7 S 3 6 
8 S 3 7 
9 C 3 2 
10 C 3 3 

 
Table 8 
S-Cluster (After 3rd Iteration). 

S-Cluster Number S-Cluster Number in Cluster 
Table 

S-Cluster Cell Array Reference 

1 1 SC[1] 
2 2 SC[2] 
3 3 SC[3] 
4 4 SC[4] 
5 6 SC[5] 
6 7 SC[6] 
7 8 SC[7] 

 
Table 9 
C-Cluster (After 3rd Iteration). 

C-Cluster Number C-Cluster Number in Cluster 
Table 

C-Cluster Tuple of Clusters 

1 5 (2,3) 



2 9 (5,6) 
3 10 (4,8) 

The use of the proposed data structures makes it possible to effectively organize and use a 
relational-hierarchical model for storing and processing information about clusters, taking into 
account their nested content.  

Additionally, you can store the Levels table (Table 10) with the number of the first record of 
each clustering level (𝑗 = 1, … , 𝑘) in the Cluster table for convenience. 

 
Table 10 
Levels (After 3rd Iteration). 

Level Number First in Cluster Table 

1 1 
2 3 
3 6 

 

4. Experiment 

During the experiment, two images of automobiles were utilized (Fig. 6). The dimensions of each 
image were 1 megapixel. 
 

 
a) 

 
b) 



Figure 6: Images of car for experiments [29, 30]; dominant objects – sky, road surface, car 
 
To delineate homogeneous regions during the experiment, two stages were implemented. 
At the first stage, image preprocessing was conducted using the method described in Section 

3.1. To mitigate clustering complexity, an optimization of the RGBH color space partitioning grid 
was applied, where H(r, g, b) represents the frequency of values (r, g, b) in the RGB color space. 

For the second stage of the experiment, five data arrays were formed during preprocessing, 
each representing a one-dimensional matrix of color frequencies on the processed image in the 
RGB palette: 

Unoptimized RGB palette - 16,777,216 possible colors (2^8∙2^8∙2^8) 
Utilizing a 2x2x2 cell, where the frequency of consecutive, neighboring colors in the 2x2x2 cell 

is summed into one – 2,097,152 possible colors 
Utilizing a 4x4x4 cell, where the frequency of consecutive, neighboring colors in the 4x4x4 cell 

is summed into one – 262,144 possible colors 
Utilizing an 8x8x8 cell, where the frequency of consecutive, neighboring colors in the 8x8x8 

cell is summed into one – 32,768 possible colors 
Utilizing a 16x16x16 cell, where the frequency of consecutive, neighboring colors in the 

16x16x16 cell is summed into one – 4,096 possible colors 
The algorithm for the experiment was implemented in C# on the .NET Framework platform. 

Visualization of the second stage, specifically clustering, was conducted using the Unity 3D [31] 
Engine. 

The second stage, the clustering process, was implemented using the method described in 
Section 3.2, based on the dataset of color frequencies prepared during preprocessing. The 
execution time of the clustering stage was measured for each dataset. Unity 3D Engine was 
employed for visualizing the clustering process. 

 

5. Results 

We will use the Unity package and the classic image representation to visualize and assess the 
quality of clustering results. 

As the analysis of the experimental results shows, the low estimates of the complexity of 
clustering are fully confirmed. The time of even an unoptimized single-threaded clustering of a 1 
MP image (processor - Intel Core i5 6600k 3.7 GHz, RAM - 16 Gb DDR4) for practically significant 
4x4x4 cells is approximately 0.25 seconds, and for 8x8x8 cells is approximately 0.0225 seconds. 

In terms of quality, the situation is as follows. In the first approximation, all objects in the 
image can be divided into 2 main categories: monochromatic and non-monochromatic.  

The quality of clustering of monochromatic objects can be considered quite acceptable. As for 
non-monochromatic objects, instead of a single tone with a high frequency we get a large number 
of blurry tones of an object with a low frequency.  

The corresponding clusters are built and combined with each other at the lower levels. In the 
worst conditions, they are combined at the lowest level. At the same time, they are also combined 
with adjacent clusters for other objects. As a result, the colors of several objects form one cluster. 

Let's consider the situation with examples. As initial data, consider the cars shown in Fig. 6 
(clustering parameters: number of levels 𝑘 = 20, suppression coefficient 𝑐 = 0.75, cell size 8 ∙ 8 ∙ 
8).  

Let's start by analyzing the “good” data for the comparatively monochromatic car in Fig. 6.a. 
As expected, the dominant objects with a high frequency were the first to stand out relatively 
well. At first, a monochromatic sky was clustered by the 9th level (Fig. 7.a). Then a cluster with 
shades of black stood out by the 13th level (Fig. 7.b). After that, the cluster corresponding to the 
one-color part of the car was constructed by the 15th level (Fig. 7.c). 

After that, at level 15, the unsaturated colors (located near the axis of grayscale) began to 
clearly combine with each other (Fig. 8).  



 

   

a)                                                           b) 

 

 c) 

Figure 7: The result of clustering of monochrome fragments of the scene in Fig. 6.a.  
 

Why does that happen? To understand the reasons, let's look at what happens in the color 
space at levels 13 (top left) to 20 (bottom right) without levels 18 and 19 using Unity (Fig. 9). 
Starting from level 14, the clusters gradually merge in the color space, especially near the gray 
scale axis. This is due to the construction of clusters with colors corresponding to different 
objects.  

 

   
a)                                                                     b) 

Figure 8: The result of combining unsaturated fragments of the scene in Fig. 6.a. (Level 15). 

  

   



   
Figure 9: The result visualization in Unity (distribution of pixel color frequencies in the RGB (0-
256) palette for the analyzed image, with color values on the axes (red, green, blue)). 

 

Now, let’s consider the "bad" data in the same initial conditions. Let’s consider a non-
monochromatic (due to uneven lighting) car in Fig. 6.b. In terms of dominant objects, blue, gray, 
and black objects clustered relatively well by the 10th level (Fig. 10.a-c).  The colored fragment 
of the car appears only at the 11th level (Fig. 10.d). And at the same level, the merging of clusters 
begins significantly in the region of unsaturated colors (Fig. 10.e). This is even more noticeable at 
the 12th level (Fig. 10.f).  

 

   
a)                                                                         b)    

   

c)                                                                        d)    

   

e)                                                                        f)    
Figure 10: The result of car clustering in Fig. 6.b. 

 



The colored part of the car stands out more or less only at the 14th level and immediately 
merges into one cluster with other objects (Fig. 11). This is because of the significant range of 
colors of the red-violet part of the car. This is because of the significant spread of colors of the 
red-violet part of the car and the inseparability of this cloud in the RGB cube from adjacent colors 
(Fig. 12).  

 

   

a)                                                                        b) 

Figure 11: The result of car clustering in Fig. 6.b. 
 

  

  

  

   



   
 
Figure 12: The result visualization in Unity (distribution of pixel color frequencies in the RGB (0-
256) palette for the analyzed image, with color values on the axes (red, green, blue)) (levels 10 – 
18, 20). 

 

All clustering results (Fig. 9 and Fig. 12) show an interesting effect. Saturated colors of objects, 
whatever their spread in the RGB cube is, are rather compactly located in the plane along the H 
component of the HSV model. Further, this 3D data can be further processed and filtered. 

Moreover, the saturation S of the object also changes slightly for "good" data (orange car in 
Fig. 9). Because of this, the shape of the object's cluster clearly repeats the triangular section 
formed by the color half-plane and the edges of the RGB cube. 

The clustering results of the considered images at all levels can be found here [32]. 
 

6. Discussions 

The obtained results of the experiments indicate the high efficiency of the proposed method for 
clustering color images. The clustering demonstrates the capability of effectively extracting color 
regions, rendering it promising in the context of real-time computer vision and artificial 
intelligence systems. 

One of the key merits of the developed system is its high processing speed in real-time mode. 
As evident from the table, the utilization of merging adjacent color frequencies into 4x4x4 and 
8x8x8 cells during the preprocessing stage yields minimal temporal delays in clustering while 
maintaining satisfactory quality. This feature renders the system effective and swift in conditions 
requiring prompt data processing. 

 
Table 11 
Clustering results. 

Size of cell Number of colors Time, sec Сlustering efficiency 

1x1x1 16 777 216 120-180 Excellent 
2x2x2 2 097 152 10 Excellent 
4x4x4 262144 0,25 Excellent 
8x8x8 32768 0,0225 Good 
16x16x16 4096 <0,01 Bad 

 
The assessment of clustering quality confirms a sufficiently high accuracy and reliability in 

delineating various color regions in images. The algorithm's performance leads to clear and 
distinguishable groups, affirming its applicability across a broad spectrum of visual data. 

Furthermore, the system demonstrated robustness to variations in conditions, such as 
changes in lighting, image resolution, and the presence of noise. Comparative analysis with other 
methods highlights a key advantage of the developed system in that, unlike the k-means method, 
it does not necessitate a predetermined number of clusters. The k-means method assumes that 
the number of clusters is known in advance, which can be a limitation in real-world scenarios 
where the number of clusters may be variable and unknown. 



The developed system showcases automatic determination of the optimal number of clusters 
based on intrinsic data characteristics. This significantly enhances the method's flexibility and 
applicability in situations where the number of clusters to be delineated in an image is not pre-
determined. Such an approach is particularly valuable in real-time conditions where 
instantaneous adaptation to changing conditions and data dynamics is required. The automatic 
determination of the number of clusters reduces the need for preconfiguration, making the 
method more convenient and versatile for various usage scenarios. 

The developed clustering method has a wide range of practical applications, including real-
time streaming data processing, automatic object recognition in images, and optimization of 
computer vision processes in the field of artificial intelligence. 

Possible directions for future research include refining the method to handle different types 
of images, expanding functionality for multitasking scenarios, and conducting in-depth 
investigations into the impact of parameters on clustering outcomes. 

 

7. Conclusions 

The paper proposes a fast clustering algorithm based on the consistent use of preprocessing and 
clustering of image pixels in RGB space. 

At the preprocessing stage (a), the scale is first reduced and (optionally) the image is 
smoothed, (b) the aggregated color frequencies are found on the enlarged RGB space grid, (c) the 
adaptive quantization of the cell frequencies of such a grid in RGBH is performed. 

The proposed preprocessing algorithm allows you to quickly prepare data and reduce by 
several orders of magnitude the number of enumerated space cells when building clusters in 
RGBH. Accordingly, the complexity of data clustering in RGBH is decreased. We obtain the 
following conclusions based on the averaged experimental data (scaling is not taken into account 
as a standard procedure): 1) the grid sampling is most often done with a factor of 4 (or 8), so the 
number of cells in the RGBH space is reduced by 64 (or 512) times; 2) the number of quantization 
levels usually ranges between 16 and 32, while the frequency of some cells can be up to 10,000 
or more. In this situation, the number of frequency gradations decreases from 100 to 1000 times. 

As a result, the proposed algorithm makes it possible to cluster data almost instantly. 
The following computing system was used for the purposes of the experiments: CPU - Intel 

Core i5 6600k 3.7 GHz, RAM - 16 Gb DDR4. The software was run locally in a single thread. Color 
images with a size of 1 MP are processed, the number of levels is 𝑘 = 20. In these conditions, the 
clustering time is: a) for 1x1x1 cells - several minutes, the result is not very stable (it has no 
practical sense); b) for 2x2x2 cells - about 10 seconds; c) for 4x4x4 cells - about 0.25 seconds; d) 
for 8x8x8 cells - about 0.0225 seconds. Such a high efficiency of the proposed algorithm (taking 
into account the possibility of parallel data processing) makes it possible to use it for clustering 
and segmentation in even relatively low-powered embedded systems.  

Due to the wide parameterization, preprocessing algorithms can be fine-tuned to the features 
of the problem that is being solved. 

The proposed clustering algorithm allows to adequately build clusters of arbitrary shape for 
relatively monochromatic objects taking into account the position of the level lines. It also allows 
to create a hierarchy of nesting clusters (corresponding to the level lines), which is important for 
separating objects close in color in the image during subsequent processing. Unfortunately, non-
solid objects (usually unevenly lit) may not be processed adequately, since their colors are highly 
diffused and become adjacent to the colors of other objects. 
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