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Abstract 
The multilayer neural network training errors when the optimization methods of learning Adam, 
AdamMax, AMSGrad used are considered. The multilayer neural network used for the recognition of 
printed numbers. It was established that with an increase of the learning speed value there are mode 
of underlearning, satisfactory learning, and a chaotic learning mode. The process of neuron retraining 
is characterized by the appearance of local minima of the error function. The chaotic mode of learning 
is described by the process of doubling the number of existing local minima. The work defines and 
describes the mechanism for determining the optimal learning speed, which corresponds to the 
appearance of the first harmonic of the error function, or the learning speed at which the first loss of 
stability of the learning system is observed on the branching diagram. The conducted studies of the 
learning error of multilayer neural network when using the optimization learning methods AMSGrad, 
Adam, AdamMax prove that these methods do not affect the value of the optimal learning speed, and it 
does not depend on the change of the optimization parameter β2. For all considered optimization 
methods, it is 0.45. 
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1. Introduction 

An important aspect in the process of learning and testing neural networks is to avoid the 
process of their retraining. This is a key task in the development of machine learning models. 
The most famous ways to avoid retraining: 

 using a validation set [1]. The data is divided into training, validation and test sets. The 
validation set is used to evaluate the performance of the model during training, which allows 
timely detection of overtraining and taking measures to avoid it. 
 use of regularization methods [2], such as L1 or L2 regularization, which add 
corrections to the magnitude of model parameters. This helps to avoid over-complexity of 
the model. 
 reducing the number of parameters, namely using fewer layers or neurons to avoid 
overtraining [3]. This is especially important when computing resources are limited. 
 application of cutting methods(dropout) [4] during training, when certain neurons are 
randomly dropped during each iteration. This prevents the model from adapting to specific 
noise dependencies in the training data. 
 cross check [5], that is, instead of a one-time division of the data set into training and 
validation, cross-validation is used, which allows for a more accurate assessment of the 
overall performance of the model. 
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 using an early stop (early stopping) [6], that is, the learning process is interrupted 
when the performance of the model on the validation set begins to deteriorate. This may 
indicate the beginning of retraining. 
 using deep learning architectures, which in themselves are less prone to retraining 
[7]. Some architectures, such as neural networks with multiple layers of abstraction, may be 
less prone to overtraining. 
 combining these methods to get the best results and avoid overtraining the neural 
network. 
All of the above methods are aimed at avoiding retraining, but not at the very cause of its 

appearance. According to the results of work [8], the process of retraining neural networks is 
associated with the appearance of local minima on the target error function. Thus, it was noted 
in [8] that when the error function approaches the global minimum, the appearance of local 
minima increases. Based on the analysis of the objective function of the learning error with the 
help of a logistic function describing the doubling process, it was noted in the paper [9] that the 
appearance of local minima is primarily caused by the retraining of neurons. When approaching 
the global minimum, due to the inhomogeneity of the learning process, the number of retrained 
neurons increases, and in the first approximation this process can be described as a frequency 
doubling process. This is particularly indicated by the Fourier spectra of the target error 
function and the obtained branching diagrams [9]. Also, as it was shown in [9], the process of 
relearning is related to the choice of the input array and its heterogeneity. Based on the maps of 
dynamic modes, according to [9], the heterogeneity of the input array serves as a catalyst for 
neuron retraining. It was also stated in [9] that the following learning modes are inherent in the 
neural network learning process: undertraining, satisfactory learning mode, and retraining 
mode. According to the branching diagrams obtained from the objective function of the error, 
the retraining mode of the neural network is characterized by both partial retraining and 
chaotic training. According to the Fourier spectra of the learning error function, the transition to 
the chaotic learning regime is accompanied by a doubling of the number of local minima. Along 
with this, transparency windows are observed on the branching diagrams, which testify to the 
emergence of a satisfactory learning process of the neural network. Based on the above, in [9] a 
model was proposed to describe the appearance of the relearning mode for a multilayer neural 
network with inverse error propagation. Since in neural networks, input values are processed 
on each neuron from all neurons of the previous layer (on the second layer from all input 
values), the existence of a significant number of periodicities will be inherent in the error 
function. This behavior of the error function is caused by the retraining of individual neurons. 
That is, the increase in the number of local minima of a multilayer neural network when 
approaching the global minimum is due to the process of retraining a certain number of 
neurons. Such retraining causes the periodic behavior of the error function to appear. Since the 
error function of the neural network is a symbiosis of the error functions of each neuron, its 
behavior will be characterized by a spectrum of possible oscillation frequencies. Depending on 
such a parameter as the learning rate (alpha), all learning modes will be inherent in the neural 
network, including the chaotic learning mode. In the retraining mode of a small number of 
neurons, the error function is a periodic function and is described by several different 
oscillations. Under this condition, the learning error function is characterized by the existence of 
several local minima. As a result of doubling the number of local minima, the neural network 
goes into a chaotic learning mode. In this learning mode, the error function of the neural 
network is described by a set of existing oscillations, and the average wave vector over such an 
ensemble of oscillations can take an incommensurate value to the existing oscillations. 
Therefore, the emerging chaotic learning mode of the neural network is characterized by the 
retraining of a significant number of neurons, and their number changes dramatically when the 
learning speed changes. 

This work is devoted to the consideration of the algorithm for avoiding the retraining mode 
of the neural network, and the comparative analysis of the learning and testing error function 
under the condition of practically no retraining mode of the neural network, when using the 



most effective optimization methods of training, such as Adam, AdamMax and AMSGrad. Since 
the process of relearning is strongly influenced by both the sample and the array of setting the 
numbers themselves, we will conduct this analysis by considering the influence of both the 
sample and the array of setting the number itself for both homogeneous and heterogeneous 
input arrays. 

2.  Methodology 

Printed digit representation arrays such as TensorFlow and Keras, which have the MNIST 
dataset, which also includes handwritten digits, are used to train a digit recognition model. 
Since an array of 28x28 pixels in gradation of shades of gray is mainly used for displaying 
numbers, these arrays for displaying numbers can be classified as homogeneous arrays. The 
conducted preliminary studies of maps of dynamic modes show that these arrays can be 
considered as homogeneous. The analysis for these arrays will be given in our next work. We 
will focus at the analysis of the learning process of the neural network with the help of printed 
numbers. Due to their simple form of representation of digital data, as a set of zeros and ones, 
they are widely used for machine learning and pattern recognition. The paper deals with the 
array of 3x5 and 4x7 numbers. An increase in the number representation array will contribute 
to the movement towards the uniformity of the array. The sample will consist of five options for 
presenting the number. That is, one version without distortion of the numbers and four 
distorted with an error of 15-20% (for the 3x5 array) and 11-15% (for the 4x7 array). In this 
representation of the number, one unit is replaced by a zero or vice versa. In the first 
approximation, we will consider such an array to be homogeneous. A non-homogeneous array 
will be considered an array in which the number representation error is close to 50%. For this, 
two variants of the number representation with an error of ≈ 50% were added to the number 
array display sample. That is, such an array, which was given by a set of zeros and ones, did not 
correspond to any of the numbers. Calculations were performed in the Python programming 
environment for a neural network with three hidden layers of 15 and 28 neurons in each layer, 
respectively, for a 3x5 and 4x7 digit representation array. 

The learning error function was analyzed using a logistic function of the following form: 
 

хn+1= alpha - xn - xn2 

 
where n is a step, alpha is a parameter that determines the learning rate. The selection of β1 

and β2 parameter values for the considered optimization methods Adam, AdamMax and 
AMSGrad was carried out according to work. According to [9], the sigmoidal function played the 
role of the activation function. The architecture of the multilayer neural network was chosen 
according to [9], where it was noted that this architecture has the lowest learning error. Testing 
was carried out when presenting a number with an error of 15-20% (for a 3x5 array) and 11-
15% (for a 4x7 array). 

3. The Adam method 

3.1. Homogeneous array, representation of number in a 3x5 array 

Adam Method is quite popular in deep learning because it works effectively with different types 
of neural network architectures and different tasks. This method is an optimization algorithm 
used for neural network training, in particular in deep learning. It combines the ideas of 
gradient descent optimization methods (for example, the method of moments and RMSProp) 
with additional corrections. 

The main idea of the Adam method is to use the exponentially weighted mean gradient (from 
RMSProp) for each parameter, and also use the exponentially weighted mean square of the 



gradient (similar to the method of moments). This allows the algorithm to effectively adapt to 
different magnitudes and directions of gradients. 

This method is described by the following formulas: 
This is the calculation of the exponentially weighted mean gradient: mn=β1mn−1+(1−β1)gn 
This is the calculation of the exponentially weighted mean square of the gradient: 

vn=β2vn−1+(1−β2)gn2 
Offset correction: 𝑚𝑛̂ = 𝑚𝑛/(1 − 𝛽1

𝑛), : 𝑣𝑛̂ = 𝑣𝑛/(1 − 𝛽2
𝑛) 

Weights are updated according to the formula: 𝑤𝑛+1 = 𝑤𝑛 −𝜂𝑚𝑛̂/√𝑣𝑛̂ + 𝜖  

In these formulas: 
gn is the gradient of the target error function at point n, where n is the number of iterations, 
mn is exponentially weighted average of the gradient, 
vn is exponentially weighted average of the square of the gradient, 
β1 and β2 - parameters, usually close to 1, which control the degree of attenuation of the 

previous values, according to the work [10], respectively, 0.9 and 0.99, 0.999 or 0.9999 are 
chosen 

η - learning rate (learning rate), 
wn- parameters of the model at n, 
ϵ - a small addition for numerical stability (usually a very small number, for example, 10−8). 
Fig. 1 shows the Fourier spectra at the learning speed that corresponds to the retraining of 

the neural network (Fig. 1, a, alpha=0.9) and the branching diagram (Fig. 1, b) at N=100 
iterations. According to Fig. 1, the Fourier spectrum is characterized by a wide range of existing 
harmonics, which testify to the existence of the retraining mode of the neural network. 
According to the branching diagram shown in Fig. 1b, already at the initial stage of neural 
network training, the learning error function on each neuron is a complex functional 
dependence. Starting with a learning speed of alpha>0.45, the process of the appearance of local 
minima should be followed. According to the branching diagram, their number (and therefore 
the number of neurons that are inherent in the relearning process) doubles when the learning 
speed increases. That is, the further increase in the learning speed begins to be described by the 
process of doubling the number of local minima in the learning error function. In the final case, 
this leads to the appearance of chaotic behavior of the learning error function. Considering in 
combination with Fourier spectra and branching diagrams, the conclusion is suggested that the 
increase in the number of harmonics on the Fourier spectra and the number of branches on the 
branching diagram is associated with the appearance of local minima in the behavior of the 
target error function. And the appearance of local minima is due to the retraining of neurons. 

Therefore, a chaotic learning mode occurs in a multilayer neural network, which is caused by 
the appearance of local minima, which arise as a result of an increase in the learning speed, 
during which the process of relearning is traced. The resulting chaotic learning mode is 
sensitive to changes in the parameters of the multilayer neural network. A slight change in the 
multilayer neural network parameters causes significant changes in the multilayer neural 
network training mode. The appearance of local solutions (local minima) as a result of an 
increase in the speed of learning leads to the appearance of bifurcations on the dependence of 
the learning error on the number of epochs and all this associated with the process of relearning 
neurons. 

One of the ways to solve this problem (avoid the chaotic learning regime of multilayer neural 
network) is to determine the parameters of the appearance of the harmonics of the objective 
function of the learning error, and on the branching diagram, the presence of a bifurcation. 
Other words: the determination of the value of the learning speed, at which the process of the 
appearance of local minima due to the relearning process of neurons takes place. This 
mechanism assumes the absence of local minima, and therefore the retraining regime. The 
algorithm for solving this problem consists in determining the optimal value of the learning 
speed, and therefore the optimal value of the learning error at which the first harmonic occurs 
on the learning error function. 



Under these conditions, the obtained optimal value of the learning speed (alpha) is equal to 
0.4501 for each digit. This shows that the Adam method effectively selects the learning 
parameters for different input data. The learning error in this case varied from 2.608e-05 to 
2.6295e-05, which is a negligible value. Such results indicate the high accuracy of neural 
network learning and its ability to effectively implement the learning process. 

 

 
a) 

 
b) 

Figure 1: Fourier spectra a), and branch diagram for the function of the learning error from the 
number of iterations b), subject to the use of the Adam optimization method, for a homogeneous 
array of dimensions 3x5, with β1=0.9, β2=0.999 and N=100 iterations. 

 
Figure 2a shows the dependence of the quality of training (1) and testing (2) under the 

conditionβ1=0.9, β2=0.999 and N=100. The test curve shows a better result than the learning 
curve. Values of testing errors for different numbers are shown in Fig. 2, b. The test error for the 
digits "1", "7", "8" and "9" shows a worse result than for the other digits. 

 

 
a) 

 
b) 

Figure 2: Dependence of the value of digit recognition for the training array (1) and the test 
array (2) on the number of iterations, and the testing error for each digit, subject to the 
application of the Adam optimization method, for a homogeneous array of dimensions 3x5, with 
β1=0.9, β2=0.999 and N=100. 

 
At 1000 iterations, a significant improvement in the accuracy and efficiency of the training 

model can be seen. The training error values, which range from 8.129e-06 to 8.139e-06 for 
different figures, are significantly lower compared to the previous data obtained at 100 
iterations. According to the Fourier spectra and branching diagrams shown in Fig. 3, under the 
condition β1=0.9, β2=0.999 and 1000 iterations, the optimal learning rate was 0.4501. 

When studying the influence of the optimization parameter β2 the following results were 
obtained: 



β2=0.99, optimal alpha = 0.4501; learning error = 8.129e-06÷8.139e-06; 
β2=0.999, optimal alpha = 0.4501; learning error = 8.129e-06÷8.139e-06; 
β2=0.9999, optimal alpha = 0.4501; learning error = 8.129e-06÷8.139e-06. 
That is, changing the optimization parameter β2 within the accuracy of the experiment, it 

does not affect either the value of the optimal learning speed or learning errors. 
 

 
a) 

 
b) 

Figure 3: Fourier spectra a), and branch diagram for the function of the learning error from the 
number of iterations b), provided the optimization method is Adam, for a homogeneous array of 
dimensions 3x5, at β2=0.999 and N=1000 iterations. 

 

3.2. Heterogeneous array, representation of numbers in a 3x5 array 

Figure 4 shows the Fourier spectra of the error function and the branching diagram of the 
learning rate. The resulting Fourier spectra and branching diagrams are practically identical to 
the Fourier spectra and branching diagrams for a homogeneous array. 
 

 
a) 

 
b) 

Figure 4: Fourier spectra a), and branch diagram for the function of the learning error from the 
number of iterations b), provided the Adam optimization method, for a non-homogeneous 3x5 
array, with β2=0.99 and N=1000 iterations. 

 
When studying the influence of the optimization parameter β2 the following results were 

obtained: 
β2=0.99, optimal alpha = 0.4501; learning error = 6.429e-06÷6.434e-06; 
β2=0.999, optimal alpha = 0.4501; learning error = 6.429e-06÷6.434e-06; 
β2=0.9999, optimal alpha = 0.4501; learning error = 6.429e-06÷6.434e-06. 



That is, changing the optimization parameter β2 within the accuracy of the experiment does 
not affect either the value of the optimal speed of learning or the accuracy of learning for a 
heterogeneous array. So, the change of the β2 parameter for a homogeneous or non-
homogeneous input array does not affect the training result when using the Adam optimization 
method. 

Consider how the homogeneity or non-homogeneity of the input array affects the testing 
error. Fig. 5 shows the testing error for different numbers when the optimization parameter β2 
is changed and constant value β1=0.9, for homogeneous and heterogeneous input array. Within 
the accuracy of the experiment, the change in the value of the optimization parameter β2 
practically does not affect the testing error, both for a homogeneous array and for a non-
homogeneous array. For the testing process, it does not depend on the value of β2 there is a 
pattern that the testing error for the digits "1", "7", "8" and "9" shows a worse result than for 
other digits. 

 

3x5 homogeneous array, at 
β2=0.99. 

3x5 homogeneous array, at 
β2=0.999. 

3x5 homogeneous array, at 
β2=0.9999. 

3x5 non-homogeneous array, 
at β2=0.99. 

3x5 non-homogeneous array, 
at β2=0.999. 

3x5 non-homogeneous array, 
at β2=0.9999. 

Figure 5: Testing error for different numbers when changing the optimization parameter β2 and 
a constant value of β1=0.9, for a homogeneous and heterogeneous input array, provided the 
Adam optimization method is used, N=1000 iterations. 

 
Comparing the testing error for a homogeneous and non-homogeneous array, according to 

Fig. 5, a pattern can be observed that the testing error for a non-homogeneous array is almost 
two times smaller. If you compare the testing error with the learning error, the latter is almost 
an order of magnitude smaller. Although the dependences of training quality (1) and testing 
quality (2) shown in Fig. 6 do not reflect this. But comparing the dependencies obtained for a 
homogeneous input array and a non-homogeneous one, it should be noted that the steepness of 
the change in the quality of testing as well as training for a homogeneous array is greater and 
does not depend on the parameter β2. 

 



 
3x5 homogeneous array, at 

β2=0.99. 

 
3x5 homogeneous array, at 

β2=0.999. 

 
3x5 homogeneous array, at 

β2=0.9999. 

 
3x5 non-homogeneous array, 

at β2=0.99. 

 
3x5 non-homogeneous array, 

at β2=0.999. 

 
3x5 non-homogeneous array, 

at β2=0.9999. 

Figure 6: The quality of training (1) and testing (2) from the number of iterations (N=1000) and 
the optimization parameter β2 for a homogeneous and non-homogeneous array. 

 

3.3.  Homogeneous array, representation of numbers in a 4x7 array 

Fig. 7 shows the Fourier spectrum and the branching diagram for the learning error function 
from the learning speed, subject to the application of the Adam optimization method, for a 
homogeneous array of dimensions 4x7, with β2=0.999. The obtained Fourier spectra for both 
the 3x5 and 4x7 number arrays are characterized by the existence of harmonics, and the first, 
second and third are clearly visible in the spectra. The branching diagram shown in Fig. 7 is, in 
the first approximation, similar to the diagram for the 3x5 array (Fig. 4), with the only 
difference that the learning process in the interval alpha<0.4 is more uniform. That is, the 
correction of the magnitude of the weights for all neurons is almost the same. 
 

 
a) 

 
b) 

Figure 7: Fourier spectra a) and branch diagram for the function of the learning error from the 
number of iterations b), subject to the application of the Adam optimization method, for a 
homogeneous array of dimensions 4x7, with β2=0.999 and N=1000 iterations. 

 



Consider the influence of the optimization parameter β2 on the learning error at the optimal 
value of the learning speed for a homogeneous array of dimensions 4x7: 

β2=0.99, optimal alpha = 0.4501; learning error = 5.955e-06÷5.96e-06; 
β2=0.999, optimal alpha = 0.4501; learning error = 5.955e-06÷5.96e-06; 
β2=0.9999, optimal alpha = 0.4501; learning error = 5.955e-06÷5.96e-06. 
Changing the optimization parameter β2 within the accuracy of the experiment does not 

affect either the value of the optimal learning speed or the learning accuracy for a homogeneous 
array. 

Increasing the number display array from 3x5 to 4x7 caused a decrease in the learning error. 

3.4.  Non-homogeneous array, representation of numbers in a 4x7 array 

Fig. 8 shows the Fourier spectra and branching diagram obtained using the logistic function, for 
the learning error function under the condition of using the Adam optimization method, for a 
non-homogeneous 4x7 array, with β2=0.999 and at 1000 iterations. The resulting Fourier 
spectra and branching diagram are similar to those for a homogeneous array. This shows that 
increasing the size of the number representation has a positive effect on the learning process of 
the neural network. 
 

 
a) 

 
b) 

Figure 8: Fourier spectra a) and branching diagram for the function of the learning error from 
the number of iterations b), subject to the use of the Adam optimization method, for a non-
homogeneous array with the size of the representation of numbers 4x7, with β2=0.999 and 
N=1000 iterations. 

 
Consider the influence of the optimization parameter β2 on the learning error at the optimal 

value of the learning speed for a non-homogeneous array the size of the representation of the 
number is 4x7: 

β2=0.99, optimal alpha = 0.4501; learning error = 4.709e-06÷4.714e-06; 
β2=0.999, optimal alpha = 0.4501; learning error = 4.709e-06÷4.714e-06; 
β2=0.9999, optimal alpha = 0.4501; learning error = 4.709e-06÷4.714e-06. 
Changing the optimization parameter β2 does not affect either the value of the optimal 

learning speed or the learning error for a non-homogeneous array. 
Increasing the dimension of array from 3x5 to 4x7 caused a decrease in the learning error 

not only for the homogeneous array but also for the non-homogeneous array. 
Let's now consider how the homogeneity and non-homogeneity of the input array affects the 

testing error for the 4x7 digit display array. Fig. 9 shows the testing error for different numbers 
when the optimization parameter is changed β2 and constant value β1=0.9, for homogeneous 
and heterogeneous input array. Within the accuracy of the experiment, the change in the value 
of the optimization parameter β2 practically does not affect the testing error, both for a 
homogeneous array and for a non-homogeneous array. For the testing process, it does not 
depend on the value of β2 there is a pattern that the testing error for the digits "0" shows a 
worse result than for other digits. 



Comparing the testing error for a homogeneous and non-homogeneous array, according to 
Fig. 9, a pattern can be observed that the testing error for a non-homogeneous array is almost a 
third smaller. Comparing the testing error with the learning error, the latter is almost an order 
of magnitude smaller.  

 

4x7 homogeneous array 
β2=0.99. 

4x7 homogeneous array 
β2=0.999. 

4x7 homogeneous array 
β2=0.9999. 

4x7 non-homogeneous array 
β2=0.99. 

4x7 non-homogeneous array 
β2=0.999. 

4x7 non-homogeneous array 
β2=0.9999. 

Figure 9: Testing error for different numbers when changing the optimization parameter β2 and 
constant value β1=0.9, for homogeneous and non-homogeneous input array, N=1000 iterations. 

 
The dependencies of training quality (1) and testing quality (2) shown in Fig. 10 do not 

reflect this. Comparing the obtained dependencies for a homogeneous input array, it should be 
noted that they practically coincide. Their coincidence is followed even when the optimization 
parameter is changed β2. The interval of a sharp change in their dependence is followed up to 
100 iterations. For a non-homogeneous array, as mentioned above, the training error is smaller 
than the testing error. Therefore, the learning quality curve is higher than the corresponding 
test curve. But in comparison with a homogeneous array of numbers, with a non-homogeneous 
array, the quality of training and testing is characterized by a smaller change in the number of 
iterations. This leads to the need to carry out the training and testing process with a greater 
number of iterations. 

But an increase in the number of iterations when using a non-homogeneous array is 
accompanied by a smaller value of both training and testing errors. With a homogeneous input 
array, the learning speed is higher at the beginning, which then sharply slows down starting 
with 100 iterations. 

 



4x7 homogeneous array 
β2=0.99. 

4x7 homogeneous array 
β2=0.999. 

4x7 homogeneous array 
β2=0.9999. 

 
4x7 non-homogeneous array 

β2=0.99. 

 
4x7 non-homogeneous array 

β2=0.999. 
4x7 non-homogeneous array 

β2=0.9999. 
Figure 10: The quality of training (1) and testing (2) from the number of iterations and the 
optimization parameter β2 for a homogeneous and non-homogeneous array. 

4. Method AdamMax 

4.1.  Homogeneous array, representation of numbers in a 3x5 array 

The AdamMax optimization method is an improved version of the Adam optimization 
algorithm. AdamMax can be useful for training deep neural networks, especially in cases where 
problems with instability or large gradients may arise. The main idea of AdamMax is to use the 
maximum norm for regularization [10]. AdamMax uses the maximum value of the absolute 
values of the gradients for each parameter instead of using the average of the squares of the 
gradients (as in Adam). This allows you to focus on large gradients, which can improve the 
stability and learning speed of the model. 

The general AdamMax optimization algorithm consists in initializing the following values: 
learning rate, exponential average moments of the first and second orders, β1 and β2, the 
maximum norm (max_norm) used to limit the gradients. 

This method is given by the following formulas: 
Calculation of the exponentially weighted mean gradient: mn=β1mn−1+(1−β1)gn 
Calculation of the exponentially weighted mean square of the gradient: vn=β2vn−1+(1−β2)gn2 
vn=max(β2⋅vn-1, ∣g∣), 
Offset correction: 𝑚𝑛̂ = 𝑚𝑛/(1 − 𝛽1

𝑛), : 𝑣𝑛̂ = 𝑣𝑛/(1 − 𝛽2
𝑛) 

Then the weights are updated according to the formula: 𝑤𝑛+1 = 𝑤𝑛 −𝜂𝑚𝑛̂/√𝑣𝑛̂ + 𝜖  

Since this method is related to maximizing of the value of the absolute gradients, we will 
consider the error of training and testing under the condition of 100 iterations. Figure 11 shows 
Fourier spectra and branching diagram, for the function of the learning error from the number 
of iterations, subject to the application of the optimization method AdamMax, for a 
homogeneous array of dimensions 3x5, at β2=0.999 and 1000 iterations. Harmonics can be 
traced on the Fourier spectra, which prove that when the learning speed is greater than the 
optimal speed, this method is also characterized by overlearning, which can be associated with 
the appearance of local minima in the learning error function. The resulting branch diagram for 
the method AdamMax, provided that the array size is 3x5, in comparison with the Adam 



method, under the same conditions, proves that the learning process in the interval alpha<0.4 it 
is more homogeneous. 

 
a) 

 
b) 

Figure 11: Fourier spectra a) and branching diagram for the learning error function from the 
number of iterations b), subject to the application of the optimization method AdamMax, for a 
homogeneous array of dimensions 3x5, at β2=0.999 and 1000 iterations. 

 
Consider the influence of the optimization parameter β2 on the learning error at the optimal 

value of the learning speed for a homogeneous array with a given size of 3x5 digits: 
β2=0.99, optimal alpha = 0.4501; learning error = 2.6065e-05÷2.6291e-05; 
β2=0.999, optimal alpha = 0.4501; learning error = 2.6026e-05÷2.6285e-05; 
β2=0.9999, optimal alpha = 0.4501; training error = 2.6029e-05÷2.6292e-05. 
Changing the optimization parameter β2, within the accuracy of the experiment, does not 

affect the value of the optimal learning speed. As for the learning error, as it was noted in the 
paper [12], with an increase in the value β2 a decrease in its value is observed at first (at 
β2=0.999), and then an increase (at β2=0.9999). As noted in the paper [11], the smallest learning 
error is observed when the value of the optimization parameter β2=0.999. So, unlike the method 
Adam in the AdamMax method, the dependence of the learning error on the value of the 
parameter β2 is observed. 

4.2.  A non-homogeneous array, displaying numbers in a 3x5 array 

When studying the influence of the optimization parameter β2 the following results were 
obtained for the learning error under the condition of the optimal value of the learning speed 
for a non-homogeneous array of a given size of 3x5 digits: 

β2=0.99, optimal alpha = 0.4501; learning error = 2.0633e-05÷2.0784e-05; 
β2=0.999, optimal alpha = 0.4501; learning error = 2.0614e-05÷2.0785e-05; 
β2=0.9999, optimal alpha = 0.4501; training error = 2.0635e-05÷2.0786e-05. 
Changing the optimization parameter β2 within the accuracy of the experiment, both for a 

homogeneous input array and for a non-homogeneous one, does not affect the value of the 
optimal learning speed. As for the learning error, here, as noted in the paper [12], with an 
increase in β2 first its decrease and then its increase can be traced. According to work [12], the 
best value of the value of the optimization parameter β2=0.999. So, in the AdamMax method, the 
dependence of the learning error on the value of the parameter β2 can be traced both with a 
homogeneous and with a non-homogeneous input array. To understand the mechanism of the 
dependence of the learning error on the parameter β2, consider the testing error and the 
dependence of the quality of learning and testing on the number of iterations. 

Let's consider how the homogeneity and non-homogeneity of the input array affects the 
testing error for the 3x5 digit display array. Fig. 12 shows the testing error for different 
numbers when the optimization parameter is changed β2 and constant value β1=0.9, for 
homogeneous and non-homogeneous input array. Changing the value of the optimization 
parameter β2 affects the testing error, both for a homogeneous array and for a non-



homogeneous array. Increasing the value of β2 causes a decrease in the testing error by almost 
an order of magnitude at 100 iterations. For the testing process, it does not depend on the value 
of β2 there is a pattern that the testing error for the digits "0" shows a worse result than for 
other digits. 

Comparing the testing error for a homogeneous and non-homogeneous array, according to 
Fig. 12, a pattern can be observed that the testing error for a non-homogeneous array is almost 
a third smaller. Comparing the testing error with the learning error, the latter is approximately 
an order of magnitude smaller. This reflects the dependence of the quality of training (1) and 
quality of testing (2) on the number of iterations shown in Fig. 13. The interval of a sharp 
change in their dependence depends both on the optimization parameter β2 and on the 
homogeneity of the input array. For a non-homogeneous array, as mentioned above, the 
training error is smaller than the testing error. Therefore, the learning quality curve is higher 
than the corresponding test curve. By increasing the parameter β2 there is a narrowing of the 
interval in terms of the number of iterations in which a sharp change in the steepness of this 
dependence takes place. That is, the larger the value of the β2 parameter, the smaller the 
number of iterations required to achieve a certain testing accuracy. But compared to a 
homogeneous array of numbers, with a non-homogeneous array, the quality of training and 
testing is characterized by a steeper change in the number of iterations. Such a feature of the 
behavior of both learning and testing errors from the number of iterations proves an important 
role of large gradients, which improve the stability and learning speed of the neural network 
when applying the optimization method AdamMax compared to the Adam optimization method. 

Comparing the test error for different numbers for an optimization method Adam and 
AdamMax, it can be noted that for the numbers from "2" to "9" the testing error is 
approximately the same. The largest testing error is observed for the number "0". 
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Figure 12: Testing error for different numbers when changing the optimization parameter β2 
and a constant value of β1=0.9, for a homogeneous and non-homogeneous input array, provided 
the method is usedAdamMax, N=100 iterations. 
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Figure 13: The quality of training (1) and testing (2) from the number of iterations and the 
optimization parameter β2 for a homogeneous and non-homogeneous array, provided the 
method is usedAdamMax, N=100 iterations. 

 

4.3.  Homogeneous array, representation of numbers in a 4x7 array 

Under the influence of the optimization parameter β2 the following values were obtained for 
the learning error at the optimal value of the learning speed for a homogeneous array of the 
target digit of size 4x7: 

β2=0.99, optimal alpha = 0.451; learning error = 1.9111e-05÷1.9266e-05; 
β2=0.999, optimal alpha = 0.451; learning error = 1.9112e-05÷1.9261e-05; 
β2=0.9999, optimal alpha = 0.451; training error = 1.9109e-05÷1.9268e-05. 
Changing the optimization parameter β2 within the accuracy of the experiment for a 

homogeneous input array does not affect the value of the optimal learning speed. In comparison 
with the 3x5 digit presentation array, for the 4x7 array there is a slight increase in the optimal 
learning speed from 0.4501 to 0.451. As for the learning error, here, as noted in [11], within the 
accuracy of the experiment, with an increase in β2 first its decrease and then its increase can be 
traced. The best value of the value of the optimization parameter β2=0.999, at which the 
minimum learning error is observed for the given number of iterations. So, for the AdamMax 
method, the dependence of the learning error on the value of the parameter β2 can be traced for 
both the 3x5 and 4x7 number representation arrays, as described in [12]. 

4.4.  Non-homogeneous array, representation of numbers in a 4x7 array 

Consider addiction learning errors at the optimal value of the learning speed for a non-
homogeneous array of size 4x7 when changing optimization parameter β2: 

β2=0.99, optimal alpha = 0.4501; learning error = 1.5144e-05÷1.5282e-05; 
β2=0.999, optimal alpha = 0.4501; training error = 1.5144e-05÷1.5284e-05; 
β2=0.9999, optimal alpha = 0.4501; learning error = 1.5154e-05÷1.5283e-05. 
Changing the optimization parameter β2 within the accuracy of the experiment, for a non-

homogeneous input array, does not affect the value of the optimal learning speed. As for the 



learning error, here, within the accuracy of the experiment, there is a slight increase in the 
learning error with an increase in the value of β2. So, in the AdamMax method, the dependence 
of the learning error on the value of the parameter β2 can be traced for both a homogeneous and 
non-homogeneous arrays. 

Fig. 14 shows the testing error for different numbers when the optimization parameter β2 is 
changed and a constant value of β1=0.9, for a homogeneous and non-homogeneous input array, 
provided that the number is represented by a 4x7 array. Changing the value of the optimization 
parameter β2 affects the testing error, both for a homogeneous array and for a non-
homogeneous array. Increasing the value of β2 causes a decrease in the testing error by almost 
two times for a homogeneous array, and three times for a non-homogeneous array, at 100 
iterations. For the testing process, it does not depend on the value of β2 there is a pattern that 
the testing error for numbers "1", "2", "3", "4", "5" shows a worse result than for other numbers. 

Comparing the testing error for a homogeneous and non-homogeneous array, according to 
Fig. 14, we observe the pattern that the testing error for a non-homogeneous array is almost a 
third larger and depends on the parameter β2. If we compare the testing error with the training 
error, the latter is about an order of magnitude smaller. The dependencies of training quality (1) 
and testing quality (2) shown in Fig. 15 reflect this. The interval of a sharp change in their 
dependence depends both on the optimization parameter β2 and on the homogeneity of the 
input array. For a non-homogeneous array, as mentioned above, the training error is smaller 
than the testing error.  
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Figure 14: Testing error for different numbers when changing the optimization parameter β2 
and a constant value of β1=0.9, for a homogeneous and non-homogeneous input array, provided 
the method is usedAdamMax, N=100. 

 
Therefore, the learning quality curve is higher than the corresponding test curve. Although at 

small iteration values (in the interval of sharp changes in the quality of testing), the opposite 
trend is observed. By increasing the parameter β2 for a homogeneous array, the expansion of 
the iteration interval in which there is a sharp change in the steepness of this dependence can 
be traced. That is, the larger the value of the β2 parameter, the greater the number of iterations 
required to achieve a certain testing accuracy. For a non-homogeneous array, the quality of 
training and testing when the parameter β2 increases improves, the interval of sharp changes in 
each iteration decreases at the beginning, but then increases again. Such a feature of behavior, 
both learning and testing errors from the number of iterations, as noted above, attests to the 



important role of large gradients that improve the stability and learning speed of the neural 
network when using the optimization method AdamMax compared to the Adam optimization 
method. 
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Figure 15: The quality of training (1) and testing (2) from the number of iterations and the 
optimization parameter β2 for a homogeneous and non-homogeneous array, provided the 
method is usedAdamMax, N=100. 

 

5. The AMSGrad method 

5.1.  Homogeneous array, representation of numbers in a 3x5 array 

AMSGrad (Adaptive Moment Estimation with Squared Gradient) is a variant of the optimization 
algorithm, which is a modification of Adam (Adaptive Moment Estimation) [12]. 

The main idea of AMSGrad is to fix the problem of increasing the values of vn second-order 
moment estimates in Adam. In regular Adam, vn increases with each iteration, which can lead to 
an increase in the learning rate and, as a result, to large changes in the model parameters, which 
is not always desirable. 

AMSGrad solves the problem of excessive vn growth in Adam by saving the maximum value of 
vn from all past steps. That is, AMSGrad allows you to ensure stability of training and more 
accurate adaptation of the speed of training for each parameter. 

The AMSGrad optimization algorithm initializes parameters such as learning rate, 
exponential averages of the first and second order moment, β1, β2, initial values of the first and 
second order moment m=0, v=0, vmax=0 [13]. 

This method is given by the following formulas: 
The calculation of the exponentially weighted mean gradient: mn=β1mn−1+(1−β1)gn 
The calculation of the exponentially weighted mean square of the gradient: 

vn=β2vn−1+(1−β2)gn2 
vn=max(β2⋅vn-1,∣g∣), 
Offset correction: 𝑚𝑛̂ = 𝑚𝑛/(1 − 𝛽1

𝑛), : 𝑣𝑛̂ = 𝑣𝑛/(1 − 𝛽2
𝑛) 



Then the weights are updated according to the formula : 𝑤𝑛+1 = 𝑤𝑛 −𝜂𝑚𝑛̂/√𝑣𝑛̂ + 𝜖  
Model parameter update: 𝑣𝑚𝑎𝑥,𝑛̂  -maximum with vmax,n and 𝑣𝑛̂,  

ϵ is a small number for numerical stability. 
The obtained Fourier spectra (Fig. 16) are similar to the spectra obtained for the Adam and 

AdamMax optimization methods. These Fourier spectra prove the existence of harmonics, 
which indicate the presence of a neural network retraining process at a learning speed greater 
than the optimal speed. The resulting branch diagram for the method AMSGrad provided that 
the array size is 3x5, in comparison with the Adam method and AdamMax, under the same 
conditions certifies that the learning process in the interval alpha<0.4 it is more homogeneous. 
Based on the Fourier spectra and branching diagrams, the optimization method AMSGrad also 
has an inherent chaotic learning mode, which is caused by the appearance of local minima of the 
learning error function, which in turn are associated with the process of retraining neurons 
when approaching the global minimum. 

 

 
a) 

 
b) 

Figure 16: Fourier spectra a), branching diagram training and testing error depending on the 
number of iterations b), subject to the application of the AMSGrad optimization method, for a 
homogeneous array of dimensions 3x5, with β2=0.999 and 100 iterations. 

 
As for optimization methods Adam and AdamMax, and for the AMSGrad optimization 

method, we will consider the influence of the optimization parameter β2 on the learning error at 
the optimal value of the learning speed for a homogeneous array with a given size of 3x5 digits: 

β2=0.99, optimal alpha = 0.4501; learning error = 1.908e-05÷1.9233e-05; 
β2=0.999, optimal alpha = 0.4501; training error = 1.9068e-05÷1.9242e-05; 
β2=0.9999, optimal alpha = 0.4501; training error = 1.909e-05÷1.9244e-05. 
Changing the optimization parameter β2 within the accuracy of the experiment for a 

homogeneous input array does not affect the value of the optimal learning speed. As for the 
learning error, as in the AdamMax method, within the accuracy of the experiment, with an 
increase in β2 its increase can be traced. The best value of the value of the optimization 
parameter in which the minimum learning error is observed for the given number of iterations 
is β2=0.999. So, in neural networks using the optimization method AMSGrad to display numbers 
in a 3x5 array as in the method AdamMax the dependence of the learning error on the value of 
the parameter β2 is traced. 

5.2.  A non-homogeneous array, displaying numbers in a 3x5 array 

When considering the influence of the optimization parameter β2 the following parameters are 
obtained for the learning error at the optimal value of the learning speed for a non-
homogeneous 3x5 array: 

β2=0.99, optimal alpha = 0.4501; learning error = 1.5006e-05÷1.519e-05; 
β2=0.999, optimal alpha = 0.4501; learning error = 1.496e-05÷1.5192e-05; 



β2=0.9999, optimal alpha = 0.4501; learning error = 1.5075e-05÷1.5196e-05. 
Changing the optimization parameter β2 for a non-homogeneous input array does not affect 

the value of the optimal learning speed. As for the learning error, here, as noted in [12], within 
the accuracy of the experiment, with an increase in β2 first its decrease and then its increase can 
be traced. The best value of the value of the optimization parameter in which the minimum 
learning error is observed for a given number of iterations, as well as for a homogeneous array, 
is β2=0.999. So, in neural networks using the optimization method AMSGrad the dependence of 
the learning error on the value of the parameter β2 is traced. 

Consider how the homogeneity and non-homogeneity of the input array affects the testing 
error for the 3x5 array when using the optimization method AMSGrad. Fig. 17 shows the testing 
error for different numbers when the optimization parameter β2 is changed and constant value 
β1=0.9, for homogeneous and heterogeneous input array. Changing the value of the optimization 
parameter β2 affects the testing error, both for a homogeneous array and for a non-
homogeneous array. Increasing the value of β2 causes a decrease in the testing error by almost 
an order of magnitude for a homogeneous array, and almost by an order of magnitude for a non-
homogeneous array at 100 iterations. For the testing process, regardless of the value of β2 there 
is a pattern that the testing error for the digits "0" shows a worse result than for other digits. 

Comparing the testing error for a homogeneous and non-homogeneous array, according to 
Fig. 17, a pattern can be observed that the testing error for a non-homogeneous array is smaller.  
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Figure 17: Testing error for different numbers when changing the optimization parameter β2 
and a constant value of β1=0.9, for a homogeneous and non-homogeneous input array, provided 
the method is used AMSGrad, N=100. 

 
Comparing the testing error with the learning error, the latter is about an order of magnitude 

smaller. The dependencies of training quality (1) and testing quality (2) shown in Fig. 18 reflect 
this. The interval of a sharp change in their dependence on the number of iterations depends 
both on the optimization parameter β2 and on the homogeneity of the input array. For a non-
homogeneous array, as mentioned above, the training error is smaller than the testing error. 
Therefore, the curve of the quality of learning is higher than the corresponding curve for testing 
in the interval outside of its sharp changes. In the interval of iterations, where a sharp change in 
the quality of learning is observed, this process is the opposite. By increasing the parameter β2 a 



narrowing of the iteration interval in which there is a sharp change in the steepness of this 
dependence can be traced. That is, the larger the value of the β2 parameter, the smaller the 
number of iterations required to achieve a certain testing accuracy. But compared to a 
homogeneous array of numbers, with a non-homogeneous array, the quality of training and 
testing is characterized by a steeper change in the number of iterations. Such a feature of the 
behavior of both learning and testing errors from the number of iterations testifies to the 
important role of large gradients, which improve the stability and learning speed of the neural 
network when using the optimization method AMSGrad compared to the Adam optimization 
method. 
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Figure 18: The quality of training (1) and testing (2) from the number of iterations and the 
optimization parameter β2 for a homogeneous and non-homogeneous array, provided the 
method is usedAMSGrad, N=100. 

 

5.3.  Homogeneous array, representation of numbers in a 4x7 array 

Changing the optimization parameter β2 at the optimal value of the learning speed for a 
homogeneous array, the given size of digits 4x7 causes the following change in the learning 
error: 

β2=0.99, optimal alpha = 0.4501; learning error = 1.9154e-05÷1.9308e-05; 
β2=0.999, optimal alpha= 0.4501; training error = 1.915e-05÷.1.9292e-05; 
β2=0.9999, optimal alpha= 0.4501; training error = 1.915e-05÷1.9292e-05. 
As for optimization methods Adam, AdamMax and so on for AMSGrad changing the 

optimization parameter β2 within the accuracy of the experiment for a non-homogeneous input 
array does not affect the value of the optimal learning speed. The learning error decreases whit 
increases. The best value related to the minimum learning error of the value of the optimization 
parameter β2 is observed for the given number of iterations is β2=0.999. So, in the method 
AMSGrad for both the 3x5 and 4x7 digit display arrays, the dependence of the learning error on 
the value of the β2 parameter can be traced. 



5.4.  Non-homogeneous array, representation of numbers in a 4x7 array 

When changing the optimization parameter β2 under the condition of the optimal value of the 
learning speed for a non-homogeneous array of a given size of 4x7 digits, the following values of 
the learning error at 100 iterations were obtained: 

β2=0.99, optimal alpha = 0.4501; learning error = 1.5144e-05÷1.526e-05; 
β2=0.999, optimal alpha= 0.4501; training error = 1.5144e-05÷1.5284e-05; 
β2=0.9999, optimal alpha= 0.4501; learning error = 1.5154e-05÷1.5283e-05. 
Changing the optimization parameter β2 within the accuracy of the experiment for a non-

homogeneous input array does not affect the value of the optimal learning speed. As for the 
learning error, with an increase in value β2 its increase can be traced. 

Fig. 19 shows the testing error for different numbers when the optimization parameter β2 is 
changed and a constant value of β1=0.9, for homogeneous and non-homogeneous input array at 
display numbers in a 4x7 array. Changing the value of the optimization parameter β2 affects the 
testing error, both for a homogeneous array and for a non-homogeneous array. Increasing the 
value of β2 causes a similar dependence of the testing error for a non-homogeneous array as for 
a homogeneous one. For the testing process, regardless of the value of β2 there is a pattern that 
the testing error for numbers "1", "2", "3", "4" and "5" shows a worse result than for other 
numbers. 

Comparing the testing error for a homogeneous and non-homogeneous array at submission 
of an array of numbers 4x7 in size, according to Fig. 19, there is a pattern that the testing error 
is smaller for a non-homogeneous array.  

 

4x7 homogeneous array, 
β2=0.99. 

4x7 homogeneous array, 
β2=0.999. 

4x7 homogeneous array, 
β2=0.9999. 

4x7 non-homogeneous array, 
β2=0.99. 

4x7 non-homogeneous array, 
β2=0.999. 

4x7 non-homogeneous array, 
β2=0.9999. 

Figure 19: Testing error for different numbers when changing the optimization parameter β2 
and a constant value of β1=0.9, for a homogeneous and non-homogeneous input array, provided 
the method is used AMSGrad, N=100. 

 
Comparing the testing error with the learning error, the latter is approximately an order of 

magnitude smaller. The dependencies of training quality (1) and testing quality (2) shown in 
Fig. 20 reflect this. The interval of a sharp change in their dependence on the number of 
iterations depends on both the optimization parameter β2 and the homogeneity of the input 
array. For a non-homogeneous array, as mentioned above, the training error is smaller than the 



testing error. Therefore, the curve of the quality of learning is higher than the corresponding 
curve for testing in the interval outside of its sharp changes. In the interval of iterations, where a 
sharp change in the quality of learning is observed, this process is the opposite. By increasing 
the parameter β2 a narrowing of the iteration interval in which there is a sharp change in the 
steepness of this dependence can be traced. That is, the larger the value of the β2 parameter, the 
smaller the number of iterations required to achieve a certain testing accuracy. But compared to 
a homogeneous array of numbers, with a non-homogeneous array, the quality of training and 
testing is characterized by a steeper change in the number of iterations. Such a feature of the 
behavior of both learning and testing errors from the number of iterations proves an important 
role of large gradients, which improve the stability and learning speed of the neural network 
when using the optimization method AMSGrad compared to the Adam optimization method. 
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Figure 20: The quality of training (1) and testing (2) from the number of iterations and the 
optimization parameter β2 for a homogeneous and non-homogeneous array, provided the 
method is used AMSGrad, N=100. 

 

6. Conclusions 

Therefore, the conducted studies of learning error and testing error prove that the learning 
process, depending on the learning speed (learning step), demonstrates the existence of a 
number of learning modes. Under the condition that the learning rate is less than optimal, a 
non-learning mode is observed, which can be characterized as a learning mode with an error > 
10%. Provided that training takes place in the vicinity of the learning speed values equal to the 
optimum, a satisfactory learning process with minimal learning error can be observed. The 
process of relearning takes place when the learning speed is greater than its optimal value. It is 
accompanied by the appearance of local minima, and therefore, an increase in the learning 
error. A further increase in the learning speed leads to an increase in the number of neurons 
that are inherent in the relearning process, and therefore to an increase in the number of local 
minima. A sharp increase in the number of local minima (which in the first approximation can 
be described by the process of doubling their number) leads to the emergence of a chaotic state. 
In this paper, the optimal learning speed was determined from the Fourier spectra of the 



learning error function and corresponded to the value of the learning speed at which the 
Fourier spectra are characterized by the appearance of the first harmonic. The conducted 
studies of the learning error of neural networks when using the optimization methods of 
learning AMSGrad, Adam, AdamMax prove that these methods do not affect the value of the 
optimal learning speed, and it does not depend on the change of the optimization parameter β2. 
For all considered optimization methods, it is 0.450. It is approximately equal to the default 
value used in all known machine learning libraries that use neural networks. In our 
experimental studies on the influence of the sample and the size of the array of numbers on the 
value of the optimal learning speed, we demonstrate that it does not change. Although 
conducting similar studies for an array of handwritten digits, which were set with a display size 
of 28x28 pixels, showed an increase in its value to 0.5 when using the Adam optimization 
method. As for the learning error, its value depends on the sample, from the size of the number 
display array, from the homogeneity of the input array, from the application of optimization 
learning methods, and the value of the optimization parameters. The change in the slope of the 
dependence of the learning error on the number of iterations for the considered optimization 
methods is especially noteworthy. Moving from the Adam optimization method to AdamMax 
and AMSGrad can be traced to an increase in the steepness of the slope of the dependence of the 
learning error on the number of iterations. This is due to what is in the methods AdamMax and 
AMSGrad instead of using the average value of the squares of the gradients, as is done in the 
Adam method, the maximum value of the absolute values of the gradients for each parameter is 
used. This allows focusing on large gradients, which improves stability and learning speed. 
Along with this, it should be noted that the retraining process is associated with the appearance 
of local minima, which in the final case, when the learning speed changes, lead to a chaotic 
learning mode of the neural network. The mechanism of transition to the chaotic learning mode 
of the neural network is related to the process of doubling the number of local minima of the 
error function. The obtained Fourier spectra of the learning error function, branching diagrams, 
and the special behavior of the error function when using optimization learning methods prove 
that the main reason for the appearance of local minima of the error function is the relearning 
process. As for the smaller value of the learning error for a non-homogeneous input array 
compared to a homogeneous array, according to the authors, this confirms the important role of 
large gradients in improved stability and speed of learning. 
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