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Abstract 
The process of evaluating image similarity is a complex task, made more challenging by the complexity 
of the objects of study. As computational power continues to advance, it is becoming increasingly clear 
that neural networks are taking center stage in addressing a wide array of computer vision challenges. 
This study introduces a novel approach to this problem by leveraging the capabilities of the CLIP model. 
The unique feature of the proposed solution is that the calculation of similarity uses not the vector 
representation of the image, but the vector representation of textual descriptions, which were selected 
and encoded by the CLIP model. During the experimental stage, an image encoder based on ResNet-50 
and a text encoder based on the BERT neural network were used. The results of this research are 
promising, showing that the proposed method outperforms traditional methods like SSIM and FSIM by 
demonstrating higher accuracy and robustness in capturing perceptual image similarities. This 
indicates that the CLIP model is a suitable tool for comparing complex images that feature a multitude 
of objects and layers. The methodology presented in this work holds potential for a variety of 
applications where image comparison plays a crucial role, such as in semantic image search, image 
categorization, and clustering. This approach opens up new avenues for exploring image similarity, 
offering a fresh perspective that combines the visual and textual domains, utilizing CLIP model encoders. 
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1. Introduction 

With the growth of graphical data, the task of finding connections and relationships between 
images has become an important task that may find practical applications in solving various 
computer vision tasks. Identifying connections between images helps in mapping out how 
different images relate to each other within a collection. This is important for organizing the data 
effectively, making it easier to navigate through large datasets, and understanding the 
overarching themes or categories present. It can uncover hidden patterns, such as the repetition 
of specific objects or themes, which might not be immediately apparent, thereby aiding in 
understanding the complexity and diversity of modern datasets.   

By finding connections between images, systems can better interpret search queries to return 
more relevant results. This involves analyzing the images' visual and contextual similarities, 
allowing the return of more nuanced results that go beyond mere categorization by tags. 
Furthermore, this approach facilitates the creation of hierarchical graphs of image collections, 
which might significantly enhance the organization and accessibility of large datasets. 

This hierarchical graphing enables the visualization of data at various levels of granularity, 
from broad categorizations down to finely detailed relationships, providing a multi-layered 
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understanding of the dataset's structure. Such a structured representation is invaluable for tasks 
requiring detailed analysis of the connections and similarities within the dataset, such as 
advanced image retrieval systems, recommendation engines, and even the training of more 
sophisticated machine learning models that can learn from the complexity of relationships rather 
than just the presence of similar features. 

Neural networks can be an essential mechanism for finding the connections between images. 
The active development of models for image recognition has only accelerated the development 
of tools for solving this task. A particularly important milestone was the introduction of the CLIP 
model in 2021, which allows establishing relationships between text and images [1]. The 
flexibility of the model enables it to be adapted to a wide variety of tasks. 

The aim of this work is to create a mechanism that, using the CLIP model, can automatically 
analyze images and determine a numerical measure of image similarity. The proposed image 
similarity scoring mechanism utilizes CLIP model image and text encoders to seamlessly bridge 
the gap between visual and textual data, enabling a comprehensive analysis that incorporates 
both the semantic content of images and the contextual nuances of associated text. By leveraging 
the sophisticated capabilities of the CLIP model, this method can identify relationships between 
images by finding the best matching descriptions, transforming them into the same vector space, 
and comparing them through cosine similarity. During the experiments, the BERT [2] model was 
used for encoding text. Its application as a text encoder is due to its universality, accuracy, ease 
of training, and the ability to compare the semantic similarity of text through vector 
representation of sentences. For the encoding of images, the ResNet-50 [3] model was selected 
due to its robust performance in deep learning tasks related to image recognition. This model is 
distinguished by its deep convolutional neural network architecture, which incorporates residual 
connections to facilitate the training of deeper networks by alleviating the vanishing gradient 
problem. 

The flexibility of the proposed solution enables precise adjustments and customization to 
meet the unique needs of different domains. This adaptability guarantees that the proposed 
mechanism can be seamlessly incorporated into a variety of systems and platforms that stand to 
gain from identifying relationships between images. 

 

2. Related works 

The concept of CLIP revolves around training a model using a vast collection of images paired 
with corresponding textual descriptions [1]. This approach enables the model to grasp and 
generalize visual concepts in a manner that resonates with human understanding. At its core, 
CLIP comprises two primary elements: an image encoder and a text encoder. The former 
processes and transforms input images into feature vectors, while the latter does the same for 
textual descriptions. The training goal is to enhance the similarity between feature vectors of 
matching pairs of images and text, while reducing the similarity for non-matching pairs, 
employing a contrastive learning strategy. A notable strength of CLIP is its capability for zero-
shot learning, allowing it to adapt to new tasks post-training without the need for further fine-
tuning. This makes it applicable for tasks like image classification and object detection, where it 
can operate based on relevant textual descriptions. The language-driven design of CLIP facilitates 
a more adaptable and user-friendly interaction with the model. By enabling users to direct the 
model's actions through simple natural language prompts, it enhances the potential for 
collaboration between humans and machines. Additionally, this approach lowers the barrier to 
entry, making the model more approachable for individuals lacking extensive technical 
knowledge. In our work, we explored the potential of this model to quantify the similarity 
between relationships. 

The task of finding similarities between images extends naturally into the construction of 
image graphs and ontologies, representing a more structured and interconnected approach to 
understanding visual data. Image graphs are visual representations where nodes correspond to 



individual images and edges represent the relationships or similarities between them. In work 
[4] the researchers describe a graph-based methodology for the analytical examination of 
extensive collections of images and texts. Through the analysis of a given image corpus, they 
ascertain the degrees of similarity among images and the semantic distances among texts, 
thereby constructing a composite graph representation. A significant limitation of this approach 
is the prerequisite for accurate annotations of all images involved. This requirement underscores 
the importance of precise metadata or annotations in leveraging graph-based techniques for 
effective visual analytics and relationship mapping in image and text datasets.  

Ontologies in the context of image analysis serve as a framework for organizing and 
categorizing images based on a hierarchy of concepts or classes. By defining a set of relationships 
and properties within a domain, ontologies help in structuring data in a way that reflects real-
world relationships. They add a layer of semantic depth, enabling the classification and retrieval 
of images based on a comprehensive understanding of their content, relationships and attributes. 
In the study [5] an innovative ontological bagging approach is introduced, which leverages 
discriminative weak attributes across multiple learning instances. This method employs the 
bagging technique to reduce error propagation across classifiers. The research utilizes an 
ensemble consisting of VGG-16[6], ResNet-50 and Xception[7] models to extract a comprehensive 
feature set. These features are then utilized by classifiers, which are trained within an ontological 
framework, to execute the image classification task. This approach enhances the accuracy and 
reliability of classifying forest images by effectively combining deep learning models with 
ontological insights. However, constructing a comprehensive ontology to uncover relationships 
within an image collection presents several challenges.  

 Clustering and finding relationships between images are complementary techniques in 
the realm of data analysis and computer vision, each with its unique approach to understanding 
and organizing visual information. At their core, both methods rely on the extraction and analysis 
of features from images—such as color, texture, shape, or deep learning embeddings—to discern 
patterns and similarities within large datasets. The study [8] introduces a clustering method that 
utilizes a shared nearest neighbors strategy, applicable to both content-based features and 
textual tags. This method's underlying principle posits that objects sharing a higher number of 
common neighbors are more likely to belong to the same cluster. It calculates weighted 
connections between objects based on shared neighbors and categorizes each object into one of 
three classes: core, noise, or aggregate, thereby enhancing the precision and utility of clustering 
in managing tagged image collections.  

The study [9] explores the application of various clustering techniques to uncover 
relationships within and organize large datasets. This research showcases how different 
clustering algorithms can be effectively utilized to segment big collections of images, facilitating 
their analysis, visualization, and tagging. While finding connections involves identifying and 
mapping relationships between individual items based on specific scoring criteria or attributes, 
clustering groups data points into subsets or clusters based on similarity measures without 
necessarily mapping the intricate relationships between each point within or across clusters.  

The methodology presented in [10] incorporates the use of a semantic information extraction 
tool alongside a visual layout creation mechanism. The extraction tool leverages a convolutional 
neural network image captioning technique to generate descriptive captions for images, which 
are then converted into semantic keywords. Concurrently, the layout creation mechanism utilizes 
an innovative co-embedding model that aligns images and their corresponding semantic 
keywords within the same two-dimensional space. A significant benefit of this approach is its 
capacity for automated image annotation and the conversion of word embeddings into vector 
space. However, a notable limitation arises from the reliance on word-level embeddings, which 
may not always sufficiently encapsulate the full breadth of an image's content. This discrepancy 
highlights the potential need for more nuanced or comprehensive methods to fully convey the 
complexity and richness of visual data, a gap that the CLIP model is well-suited to bridge. Unlike 
methods dependent solely on word-level embeddings, CLIP can work with text embeddings 
containing multiple words, allowing for a deeper understanding of both textual and visual 
information. 



3. Method 

To train the CLIP model, pairs of text and images are used, which are fed into encoders that 
transform the data into vector representations. This process allows the model to learn from a 
wide range of visual and textual information, facilitating the understanding of complex concepts 
across different domains. Given pairs of image descriptions (terms) and images, the 
transformation process into vectors can be represented by the following formula: 

𝜈𝐼𝑖
= 𝑓𝐼(𝐼𝑖) (1) 

𝜈𝑇𝑖
= 𝑓𝑇(𝑇𝑖), (2) 

where 𝑖 is the ordinal number of the pair, 𝑖 ∈ {1, 2, … , 𝑛}, 𝑛 – is the number of pairs; 
𝜈𝐼𝑖

 – vector representation of the image; 

𝜈𝑇𝑖
 – vector representation of the textual description; 

𝑓𝐼 – image encoder; 
𝑓𝑇 – text encoder; 
The task of training the CLIP model is to optimize the parameters of the similarity function 𝑆, 

which can be used to find correspondences between image-text pairs: 
𝑠𝑖𝑚(𝜈𝐼𝑖

, 𝜈𝑇𝑖
) = 𝑆(𝜈𝐼𝑖

, 𝜈𝑇𝑖
) (3) 

 This function aims to maximize the similarity between representations of corresponding 
images and texts, thus facilitating effective cross-modal understanding. Using the function 𝑆 for 
any image, we can find 𝑁 descriptions with the highest similarity score (sim). Utilizing the text 
encoder 𝑓𝑇 based on BERT architecture, it becomes feasible to compute the pairwise cosine 
distances between the textual descriptions corresponding to two images, denoted as 𝐼 and 𝐼′. 
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where 𝑖 is the index of the textual description of image 𝐼; 
𝑘 – the index of the textual description of image 𝐼′; 
𝜈𝑇 – the vector representation of the textual description of image 𝐼; 
𝜈𝑇′–the vector representation of the textual description of image 𝐼′; 
The calculation of pairwise cosine similarity between vector representations of textual 

descriptions, which CLIP considers the best matches for pairs of images, enables the 
determination of the similarity level between these images. This approach is founded on the 
assumption that images with similar content will be associated with similar textual descriptions 
by CLIP. Consequently, their vector representations in the shared image-text space will be closer 
to each other. This metric quantifies the similarity between images based on how CLIP interprets 
their content through associated text. Instead of a subjective assessment of the similarity of two 
images, we obtain a quantitative indicator that can be compared across different experiments or 
even between different models. 

Using CLIP to calculate similarity between images in practice can be highly effective due to its 
ability to compare images even without knowing their initial descriptions. CLIP can effectively 
measure their similarity based on the semantic understanding it has gained during pre-training, 
thereby facilitating robust image analysis and retrieval tasks. This capability is particularly 
advantageous in scenarios where manual annotation or description of images is impractical or 
unavailable, allowing for efficient and scalable image processing pipelines. The number of 
descriptions used to calculate image similarity is an important parameter that must be carefully 
chosen. If the number is too high, there is a risk that the cosine distance between vectors created 
by the encoder may not accurately represent the true semantic similarity between images. This 
is because overly complex or redundant descriptions can introduce noise and dilute the 
meaningful information captured by the embeddings. On the other hand, if the number of 
descriptions is too low, the model may not capture enough contextual information to accurately 
assess similarity. 

Given that for any pair of images 𝐷 > 0, it becomes practical to incorporate a scalar parameter 
𝜏 (threshold) to build relationship graph between images. This parameter becomes essential to 



prevent the formation of correlations, or groupings, between semantically distinct images. The 
introduction of 𝜏 facilitates the clustering of similar images, thereby ensuring the avoidance of 
erroneous associations and improving the accuracy of the similarity measurement process. 

 

4. Experiments 

For pre-training ResNet-50 image encoder, we utilized model pretrained on the ImageNet-1k 
dataset [11], which contains around one million photographs belonging to 1000 different 
categories. For training the CLIP model, we used the public datasets Flickr8k [12] and its 
extension Flickr30k [13]. These datasets are commonly applied for training models specialized 
in image recognition or description. Together, the datasets comprise nearly 40000 illustrations, 
each accompanied by 5 unique descriptions that can vary in length and content, providing a 
diverse range of textual data for model training. The images were carefully selected to ensure that 
they are suitable for use in a machine learning context without infringing on any individual's 
rights. Additionally, the datasets used, such as ImageNet and Flickr, have guidelines and policies 
in place to address privacy and ethical concerns.  

The evaluation process was conducted on images with semantically and structurally diverse 
characteristics to ensure that the model's performance was tested across a wide range of 
scenarios. This approach helped to ascertain the model's robustness and adaptability in handling 
various types of visual information, thereby providing a comprehensive understanding of its 
capabilities. By including images that varied in terms of content, style, and complexity, the 
evaluation aimed to mimic real-world conditions where the model might be deployed. This 
rigorous testing methodology not only highlighted the strengths of the model in accurately 
identifying and interpreting diverse visual cues but also exposed any potential limitations or 
areas for improvement. The training process involved a sequence of standard transformations 
applied to each image. The images were first resized to a dimension of 256x256 pixels, followed 
by cropping the central region to a dimension of 224x224 pixels to emphasize the most significant 
part of the image. Normalization was performed on each of the RGB channels to ensure that the 
pixel values were in a similar range, which is crucial for the effective training of neural networks. 
This preprocessing step is common in image classification tasks as it helps in reducing 
computational complexity while retaining the essential features of the images. 

To transform textual descriptions, we utilized a BERT tokenizer with an output vector size 
capped at 256, enabling the conversion of text into a format compatible with the BERT model's 
processing capabilities. This preprocessing pipeline ensures that the input data is consistent and 
optimized for the learning algorithms, facilitating efficient and effective model training. Since we 
employ BERT as the text encoder, utilizing this model to assess the accuracy of CLIP ensures 
methodological consistency in our experiments. BERT's architecture, based on transformers, is 
capable of detecting complex semantic connections in textual data. This guarantees that during 
the evaluation, the effect of text encoder structure on model accuracy is considered. 

The model training was conducted utilizing the PyTorch framework [14], with parameter 
optimization achieved through the Adam optimizer [15] at a learning rate of 1e-5. This approach 
was adopted to ensure incremental updates of the model's weights. A batch size of 5 was 
maintained, and the total image count was capped at 35,000 to achieve a balance between 
computational efficiency and the need for a diverse and representative dataset. 

For each of the five training epochs of the CLIP model, the identical images were utilized, yet 
they were shuffled randomly along with their corresponding text descriptions to inject variation 
in the sequence of presentation. This strategy aimed to enhance the training process by exposing 
the model to diverse arrangements of the same data set in each epoch. By doing so, the model is 
encouraged to learn more robust and generalized features, reducing the risk of overfitting to a 
specific order of data. 

The cross-entropy loss function was used for training. The utilization of the cross-entropy loss 
function was crucial in assessing the model's ability to accurately associate text with images, 



thereby enhancing the performance of the encoders. The CLIP model, designed to interpret both 
visual and textual data, heavily relies on the loss function for effective integration of these two 
data types. The selection of an appropriate loss function is essential for the model's performance, 
as it ensures stable training and guarantees that semantically similar images or text fragments 
are positioned closer in vector space.  

 

5. Results 

The effectiveness of the CLIP model in identifying relationships between images was evaluated 
by comparing its results with established image similarity metrics, such as SSIM [16] and FSIM 
[16]. This comparison aimed to assess the model's ability to detect semantic and structural 
similarities in images, which are critical aspects measured by both metrics. By analyzing how the 
CLIP model's performance aligns with these metrics, the study sought to determine if the CLIP 
model could offer a deeper understanding of image relationships beyond what traditional 
similarity measures can provide. 

To assess the effectiveness of the proposed solution in measuring image similarity, we 
calculated similarity scores for each pair of images in the evaluation dataset. For each metric, we 
employed different similarity thresholds, meaning that if the value was below the specified 
threshold, the images were considered dissimilar. Subsequently, we determined the number of 
correctly identified image pairs. The results are presented in Table 1. 
Table 1 
Image Similarity Calculation Results 

Metric Threshhold(𝜏) Accuracy 

SSIM 0.7 64% 
FSIM 0.3 56% 
CLIP-score 0.5 82% 

 
Compared to the standard model, the approach based on the CLIP model didn't demonstrate 

significant gains in finding relationships between images in the training dataset. For example, in 
Figure 1, we can see that the scores are quite similar, and all three compared methods correctly 
identified the relationships between images. 

 
Figure 1: Comparison of Image A and Image B. The similarity scores are as follows: FSIM = 0.34, 
SSIM = 0.81, CLIP-score = 0.65. 



 
Nevertheless, it showed promising results in terms of generalization and robustness when 

applied to a diverse set of images in the test dataset. Figures 2, 3 and 4 show that CLIP can 
accurately identify images that are perceptually similar or have differences, even when FSIM and 
SSIM metrics indicate errors and their scores fall below (or above) the threshold outlined in the 
Table 1. The CLIP-based image similarity score model demonstrates its superiority in identifying 
semantic relationships, such as distinguishing between a "sitting dog" and simply a "dog," or 
discerning subtle differences between "running" and "walking" poses in human figures. This 
ability to recognize subtle differences and understand the context within images sets it apart from 
traditional models that might rely solely on pixel-level comparisons.  

 
Figure 2: Comparison of Image A and Image B. The similarity scores are as follows: FSIM = 0.28, 
SSIM = 0.69, CLIP-score = 0.67. 

 

 
Figure 3: Comparison of Image A and Image B. The similarity scores are as follows: FSIM = 0.34, 
SSIM = 0.80, CLIP-score = 0.21. 



 
Figure 4: Comparison of Image A and Image B. The similarity scores are as follows: FSIM = 0.32, 
SSIM = 0.72, CLIP-score = 0.28. 

 
By harnessing the rich semantic information encoded in its embeddings and leveraging the 

power of the BERT text encoder, the CLIP-based approach provides a more nuanced and 
comprehensive understanding of image content compared to traditional pixel-based methods , 
which often rely solely on the visual features of an image. This often leads to a superficial 
interpretation of the image content, focusing primarily on the appearance rather than the 
underlying context or semantics. This integration of visual and linguistic features enables the 
model to capture the subtleties of image details. 

 

6. Discussion 

The training process of the CLIP model was challenging due to its dual nature, which involves 
handling both image and text data simultaneously. This duality requires the model to learn 
complex visual-linguistic representations, making the training process more intricate than that 
of models focused on a single modality. Additionally, ensuring that the image and text 
components of the model are effectively aligned and integrated adds another layer of complexity 
to the training process. During training, it is essential to focus on the quality of textual data, as 
generating inaccurate text vectors can result in less than optimal model performance. Incorrect 
or noisy text data can produce misleading representations, which may hinder the model's ability 
to accurately link images with their corresponding textual descriptions. This can result in poor 
performance in identifying relationships between images.  

The results indicate that the image comparison method based on the CLIP model is effective 
and outperforms methods such as FSIM and SSIM.  This approach allows for the analysis of images 
and the scoring of their similarity, making it applicable in various tasks such as image retrieval, 
categorization, and visual search. Despite its effectiveness, there are definitely areas for 
improvement.  

In experiments, the model showed excellent performance in comparing images similar to 
those in the training dataset. However, when evaluating images not well-represented in the 
training data, the results were often less reliable. Therefore, it is advisable to pre-train the model 
on a diverse and comprehensive dataset to improve its generalization capabilities. Moreover, it is 
essential to continuously update and refine the model with new data to ensure its effectiveness 



across various real-world scenarios. If there was not a single text description among the set that 
can describe the image, the result might be unsatisfactory, which means that it is crucial to have 
a rich and varied set of textual descriptions to effectively describe and interpret images. This 
highlights the importance of not only having a diverse set of images in the training dataset but 
also ensuring that the textual descriptions are comprehensive and cover a wide range of possible 
scenarios and characteristics. 

The text encoder, which identifies textual descriptions for an image, is crucial in the developed 
method. The vectors it produces are used for comparison with image vectors and with vector 
representations of the text of another image to assess image similarity. Therefore, the encoder's 
ability to understand semantic relationships between sentences is important, as deficiencies can 
negatively affect the outcome. During experiments, we repeatedly noticed that although BERT 
typically finds semantic connections between sentences, the cosine similarity between vectors of 
sentences with similar structure but describing completely different objects is usually higher than 
that of sentences with different structures but similar objects. This suggests that the model may 
prioritize structural similarities over semantic content in some cases, which could lead to 
misinterpretations of the actual meaning and relevance of the sentences. This observation 
indicates a potential area for improvement. Addressing this issue could involve refining the model 
to better balance the importance of structural or semantic features, or experimenting with 
different language models that can be used as text encoders, thereby enhancing its ability to 
accurately interpret and compare sentences based on their true semantic content, detecting 
tonality of the sentence [17, 18]. 

A significant drawback of the proposed approach, identified during the model evaluation 
process, is that calculating the similarity between images requires identifying the most 
appropriate textual descriptions from all available descriptions. This process can be time-
consuming, as enhancing results often involves searching for multiple optimal textual 
descriptions for comparison with those of other images. To mitigate this issue, several strategies 
can be employed, such as refining the search algorithm for more efficient navigation through the 
extensive set of descriptions, adopting caching methods or storing precomputed text vectors to 
expedite the retrieval process. Furthermore, leveraging parallel processing or distributed 
computing can decrease the time needed to find the best textual descriptions, rendering the 
approach more feasible for real-world applications. 

 

7. Conclusions 

In the research, the approach to using cosine similarity for evaluating the accuracy of 
similarity between images is leveraged, utilizing the capabilities of the CLIP model. This method 
utilizes trained encoders for both text and images, allowing it to effectively evaluate the semantic 
similarity between images. By analyzing the content and context of the images, the metric 
provides a more nuanced understanding of their similarity, beyond just pixel-level comparisons. 
The results showcase the metric's ability to accurately match similar images, demonstrating a 
high capacity to understand complex images containing multiple objects. This performance 
surpasses that of traditional metrics such as FSIM and SSIM, highlighting its effectiveness in 
capturing the nuanced details and semantic relationships within images. 

The proposed image comparison metric offers a versatile tool for addressing a wide range of 
computer vision challenges. It can be effectively employed in semantic search applications, where 
it can enhance the accuracy of retrieving relevant images based on their content. In image 
classification tasks, the metric can contribute to more precise categorization by understanding 
the semantic similarities between different images. Additionally, it holds significant potential for 
recommendation systems, where it can be used to suggest visually similar products to users, 
thereby improving the user experience and increasing engagement. 

Although the metric demonstrates satisfactory results, it still faces limitations related to 
performance, a high dependency on the data used for training the model, and accuracy in 



analyzing complex images with multiple objects. These limitations underscore the need for 
further refinement and testing, especially in real-world scenarios where computational efficiency 
and robustness are crucial.  

Future work should explore addressing these issues, optimizing the metric, and adapting it to 
a broader range of tasks. This could involve experimenting with different algorithms and 
architectures to reduce the metric's reliance on training data and improve its generalizability. 
Investigating the impact of using different types of text encoders on the model's accuracy is 
particularly important. Utilizing a model that positions semantically related sentences closer in 
vector space will inherently enhance the metric's accuracy. This could lead to more precise image 
comparisons and better performance in tasks such as image retrieval and classification. 
Additionally, examining how alterations in the image encoder influence the metric's parameters 
is also crucial. Changes in the image encoder could affect the metric's sensitivity to visual features 
and its ability to capture semantic similarities.  
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