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Abstract 
This work is devoted to the development of a neural network method for detecting failures of sensors 
of helicopters turboshaft engines under on-board operation conditions. The proposed method is based 
on the use of the ANFIS neuro-fuzzy network with a modified hybrid method for its training. A 
modification of the hybrid method of training the neuro-fuzzy network ANFIS is proposed, which, 
through the use of the Adam method as a gradient-based optimization algorithm, as well as the adaptive 
k-means clustering method for optimizing the shape of fuzzy membership functions, allowed reducing 
the number of training epochs from 400 to 50 to obtain the minimum the standard deviation of the 
training error is 2.646 · 10–4 using the Gaussian membership function. An evolutionary system of fuzzy 
rules has been developed to determine the gas temperature in front of the compressor turbine sensor 
failure, the compressor defect, and the failure of the free turbine rotor speed sensor failure. The 
proposed system can be extended by adding new fuzzy rules in order to detect and identify other failures 
of sensors and components of helicopters turboshaft engines. An experiment was carried out, which 
consists of computer modeling of the gradual failure of a gas temperature sensor in front of a 
compressor turbine. The results of a comparative analysis of traditional and neural network methods 
for detecting failures in helicopters turboshaft engines sensors showed that the maximum errors of the 
first and second types when using neural network methods did not exceed 0.78 and 0.52 %, while for 
traditional methods they reached 2.48 and 1.91 %. 

Keywords  
Helicopters turboshaft engines, neuro-fuzzy network ANFIS, sensor failure, gas temperature in front of 
the compressor turbine, mathematical model, error, training1 

1. Introduction 

The movement control of modern helicopters has to be ensured under conditions of significant 
and varied uncertainties in the values of their parameters and characteristics, flight modes, and 
environmental influences. In addition, during the flight, various emergency situations may arise, 
in particular, engine failures and structural damage [1]. 

Some of these failures and damage have a direct impact on the dynamic characteristics of the 
helicopter as a control object. At the same time, it is extremely difficult to foresee all possible 
failures and their combinations in advance. From the above it follows that the situation in which 
the helicopter finds itself at any given moment in time can change in a significant and 
unpredictable way. 

In this regard, it seems appropriate from a management point of view to interpret possible 
sudden changes in the dynamic properties of helicopters turboshaft engines (TE) due to failures 
and damage as another class of uncertainty factors, the countering of which is assigned to 
adaptation mechanisms. They must provide fault-tolerant control, that is, control that is able to 
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adapt to changes in the dynamics of the control object generated by failures or damage, providing 
acceptable quality of control [2, 3]. 

With this approach, the task of providing fault-tolerant control is divided into two parts. The 
first of them is related to the reconfiguration of helicopters TE control algorithms when a failure 
situation occurs. But in addition to reconfiguration, it is necessary to simultaneously solve the 
task of identifying a failure situation, its nature and source of occurrence. Helicopters TE sensors 
failures are a serious problem, since the information received from them is used to control the 
movement of the helicopter. 

The use of classical failure detection methods to solve the task under consideration is 
associated with a number of difficulties caused by the nonlinearity of the models, inaccuracies in 
measuring the outputs of the control object, and the large amount of data used. In addition, 
classical methods work satisfactorily only for sufficiently large values of the signal-to-noise ratio, 
and also have high computational complexity. It is also significant that the use of classical 
identification methods usually involves linearization and significant simplification of the system 
model, which does not always correspond to the nature of the task being solved [4, 5]. 

Neural network methods [6] are one of the promising approaches to providing fault-tolerant 
control [7, 8]. Neural network tools can overcome many of these disadvantages [9, 10]. In 
particular, as the available research results show, neuro-fuzzy networks can provide an effective 
solution to identification tasks [11, 12]. 

Based on the above, an urgent scientific and practical task is the development of neuro-fuzzy 
methods for helicopters TE sensors failures detecting, since through timely detection of failures 
it is possible to prevent their development and the occurrence of emergency situations. In 
addition, a neural network failure classifier can help reduce helicopter downtime by more 
accurately and quickly diagnosing failures, as well as complement traditional monitoring and 
diagnostic methods, increasing their accuracy and efficiency. 

 

2. Related works 

The contemporary digital control system for the helicopters TE manages engine operation across 
all modes, maintaining stability during transitions and averting emergencies (Fig. 1). Comprising 
three key components – a parameter measurement control unit, an onboard monitoring and 
diagnostic system, and an automatic control system [13] – it guarantees smooth and safe engine 
performance. 
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Figure 1: The overarching framework of the digital control system designed for helicopters TE [13] 

 
At present, failures within specified thresholds are detected over time, triggering a failure 

assessment when these limits are exceeded. In instances of measuring channel failure, the last 
dependable parameter value is utilized to restore lost data [14, 15]. However, this method proves 
ineffective in cases of gradual or intermittent failures, especially during engine transitions, 
leading to low accuracy in recovered data [16, 17]. Addressing this challenge necessitates 
augmenting traditional monitoring and diagnostic techniques for helicopters TE with intelligent 
methods, which exhibit superior efficacy across all operational modes [18]. Among these 



methods, hybrid intelligent algorithms, combining various intelligent techniques, alongside 
neural networks and fuzzy logic algorithms, present promising avenues [19]. Consequently, the 
objective of this research is to develop an intelligent system utilizing a neural network 
mathematical model in tandem with a neuro-fuzzy method to address this issue [20]. 

In connection with the above, the purpose of the article is to develop a neural network failure 
classifier for helicopters TE. The following questions will be considered in the work: 

1. Selection of neural network architecture. Within the framework of this task, various neural 
network architectures will be considered and the choice of the most suitable one for the task of 
failure classification will be justified. 

2. Training a neural network classifier. As part of this task, methods and algorithms for 
training a neural network classifier will be described. 

3. Evaluating the effectiveness of the neural network classifier. As part of this task, the results 
of assessing the effectiveness of a neural network classifier on test data will be presented. 

The construction of such a model can be considered as the introduction of analytical 
redundancy of critical elements. As with the introduction of physical redundancy, the location of 
a faulty sensor is determined using a voting scheme. With this approach, the consequences of a 
failure situation can be countered by replacing the readings of a faulty sensor element with the 
output of its model.  

 

3. Methods and materials 

Traditionally, failure detection includes two main stages: identifying an abnormal situation, as 
well as determining its location and symptoms [21, 22]. The implementation of these stages can 
be interpreted as a sequential solution to the task of identifying a dynamic system and classifying 
the signs of a failure situation. The paper proposes a failure detection algorithm that combines 
solutions to these two tasks using neural network methods using neuro-fuzzy networks. 

The implementation of the first stage is a typical task of monitoring a control object and 
measuring its outputs. A decision on the occurrence of a failure is made by comparing the current 
and predicted phase states of the dynamic system. If deviations reach a certain level, then a 
solution to the task of classifying failure signs is required. To obtain predicted phase states, a 
solution to the task of identifying the control object is required. 

The neural network model makes it possible to assess the state of the control object at each 
moment in time, therefore in the proposed algorithm it is used at the stage of identifying an 
emergency situation for both groups of failures. Each of the failure groups has its own impact on 
the dynamics of helicopters TE, therefore, the proposed algorithm uses classification methods 
specific to each of the failure groups. 

To address the aforementioned issue, an intelligent system can be employed, utilizing the FDI 
(Fault Detection and Identification) technique. This method relies on a neural network 
mathematical model of the engine in conjunction with a neuro-fuzzy classifier [20, 23]. By 
implementing this proposed intelligent system, it becomes feasible to detect and categorize 
abnormal operational states of a helicopters TE, as well as anomalies in measurement channels 
and actuators, all within onboard conditions (Fig. 2). 
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Figure 2: Helicopters TE control and diagnostic system configuration 

 



Helicopters TE mathematical model plays the role of a reference model as part of the on-board 
control and diagnostic system. Comparing the calculated data of the mathematical model with the 
data of the measuring channels allows you to track changes in the controlled object. In addition, 
this model can be used to restore data in a failed measuring channel. A mathematical model must 
have a number of qualities, the most important of which are the following [24]: the model 
describes the non-stationary nature of the work processes of a helicopters TE (thus, the use of a 
dynamic model is necessary); the structure of the mathematical model of the helicopters TE 
provides the practical possibility of its functioning in combination with mathematical models of 
helicopter other elements. 

The mathematical model, described in [25], is tailored for determining the specific fuel 
consumption of helicopters TE installed in helicopters, using the TV3-117 engine of the Mi-8MTV 
helicopter as an illustrative example. According to the insights provided in [23], the specific fuel 
consumption of such engines depends on factors like air intake in the combustion chamber, 
specific engine output, and the ratio of fuel to air consumption within the chamber, with the 
choice of aviation fuel exerting a direct influence. 

The computation of helicopters TE thermogas-dynamic parameters, encompassing air intake 
in the combustion chamber, specific engine output, and the fuel-to-air consumption ratio within 
the chamber, is accomplished through a neural network model specifically designed for 
helicopters TE. This model, developed by the author and elaborated upon in [26, 27], is utilized 
(Fig. 3). The author performs the creation and setup of a trial version of the helicopters 
mathematical model using the Neural Network Toolbox, an extension package within the 
MATLAB environment. 

 
Figure 3: A fragment of the mathematical model for helicopters TE within the Matlab/Simulink 
environment, where 11 thermogas-dynamic parameters governing the engine's operational 
dynamics are calculated [26, 27] 

 
One promising avenue in this domain involves crafting a mathematical model grounded in 

neural networks, renowned for their capacity to train and generalize accumulated knowledge. 



This feature facilitates the adjustment of model parameters to suit the characteristics of specific 
engines, leveraging data derived from both bench and flight tests. Recurrent neural networks, 
such as Elman networks, Jordan networks, and multilayer perceptron with general feedback 
(NARX), fulfill these requirements for the mathematical model [28, 29]. 

Despite the advantages of recurrent neural networks like Elman, Jordan, and NARX networks, 
they also pose certain drawbacks. Chief among them is the challenge of training and fine-tuning 
network parameters, particularly when confronted with vast datasets or intricate nonlinear 
relations between input and output data. Achieving an acceptable level of model performance 
under such circumstances may demand significant time and computational resources. Moreover, 
recurrent neural networks may encounter issues like decay and gradient explosion when trained 
on lengthy sequences of data, leading to difficulties in consistent training and a decline in the 
network's generalization ability to new data. 

To address these limitations, ongoing research is pivoting towards the adoption of neuro-fuzzy 
networks. These systems amalgamate the strengths of neural networks and fuzzy logic, rendering 
them more adaptable and flexible across diverse datasets and conditions. Neuro-fuzzy systems 
possess the capability to autonomously adapt to variations in input data and environmental 
factors, making them well-suited for modeling complex systems like engines, which contend with 
highly variable operating conditions [30, 31]. 

Approaches grounded in neuro-fuzzy networks enable the incorporation of uncertainty and 
fuzziness in data, a crucial aspect when dealing with real-world data susceptible to noise and 
errors. This adaptive capacity allows neuro-fuzzy networks to more effectively accommodate 
diverse operating conditions, furnishing more precise predictions and engine control. 

Hence, the shift towards utilizing neuro-fuzzy networks represents a promising trajectory for 
advancing the mathematical modeling of helicopters TE, facilitating more efficient and accurate 
control and monitoring of their operations. 

Fig. 4 shows the structure of a neural network model of a helicopter TE construct on a five-
layer feed-forward network, in contrast to [20, 23], where it was proposed to use a multilayer 
recurrent perceptron (NARX). The adaptive neuro-fuzzy network (inference system) ANFIS 
(Adaptive Network-based Fuzzy Inference System) is a hybrid multilayer artificial neural 
network of a special structure without feedback [32]. The values of the inputs, outputs and 
synaptic weights of the hybrid neural network are real numbers on the interval [0, 1]. The 
adaptive network ANFIS in its functions is analogous to a fuzzy inference system [33]. The ANFIS 
network uses a hybrid training algorithm. Neurons in the ANFIS network have different 
structures and purposes, corresponding to the fuzzy inference system and implementing the 
main stages of its operation [34]: 

• Fuzzification (introduction of fuzziness) using membership functions of input variables – 
the first layer of neurons of the network (layer 1); 

• Aggregation (determining the degree of truth of conditions) by processing a base of fuzzy 
linguistic rules – the second layer of neurons in the network (layer 2); 

• Activation (determining the degrees of truth of statements) by normalizing the activation 
levels of fuzzy rules – the third layer of neurons in the network (layer 3); 

• Accumulation (combination of degrees of truth) using membership functions of output 
variables – the fourth layer of neurons in the network (layer 4); 

• Defuzzification (transition to clarity) with obtaining a clear value of the output variable – 
the fifth layer of neurons in the network (layer 5). 

The first adaptive layer of the ANFIS network contains neurons that calculate the values of the 
membership functions of input variables μi(GT) and μj(nTC), where GT and nTC are input variables, 
i = 1, 2 and j = 3, 4. The adaptability of the layer is achieved by selecting type of membership 
functions of input variables. 

The second fixed layer of the ANFIS network contains neurons that calculate the products of 
the values of the membership functions obtained on the first layer: 

( ) ( ) ,i i T j TCw G n =        (1) 

where wi is the network synaptic weights. 



The third fixed layer of the ANFIS network contains neurons that calculate normalized 
activation levels of fuzzy rules: 
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The fourth adaptive layer of the ANFIS network contains neurons that calculate the values of 
the membership functions of the output variables, as well as the product of the values of synaptic 
weights and membership functions: 

( )_ _ , , , , ,average i i average i i T TC i i iw w G n     =      (3) 

where i is the output variables membership functions values, αi, βi, γi are the parameters of the 
membership functions. The adaptability of the layer is achieved by selecting the type of 
membership functions of the output variables. 

The fifth fixed layer of the ANFIS network contains a neuron that calculates the sum of the 
products of the values of the membership functions of the output variables and synaptic weights 

_i average i iQ w =  . 
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Figure 4: Helicopters TE neural network model structure in the form of adaptive neuro-fuzzy 
network (inference system) ANFIS 
 

As an algorithm for training the adaptive neuro-fuzzy network ANFIS, an algorithm consisting 
of two stages is proposed [35]: 

• first stage (algorithm direct course): we set the initial values of the parameters of the first 
adaptive layer, perform calculations on the second and third layers, determine the parameters of 
the fourth adaptive layer and calculate the value of the error function. If the value of the error 
function is within acceptable limits, then training of the adaptive neuro-fuzzy network ANFIS is 
completed, otherwise we proceed to the second stage; 

• second stage (reverse algorithm): using the backpropagation method, we refine the 
parameters of the first adaptive layer. 

At the same time, to adjust the parameters of the neuro-fuzzy network ANFIS, instead of the 
least square’s method, it is proposed to use a more effective optimization algorithm based on 
gradients, for example, the Adam method [36]. To optimize the shape of fuzzy membership 
functions, it is proposed to use an adaptive training method, for example, the k-means clustering 
method. Thus, the use of a gradient-based optimization algorithm allows you to more accurately 
adjust the parameters of the ANFIS neuro-fuzzy network, and the use of the k-means clustering 
method allows you to reduce its training time. 



For the mathematical description of the proposed modifications of the hybrid algorithm for 
training the neuro-fuzzy network ANFIS, the following notations are introduced: x is the vector 
of input data (GT, nTC), y is the vector of output data, w is the vector of weights of the neuro-fuzzy 
network, μi is the fuzzy membership function of the i-th rule, fi is the output function of the i-th 
rule, N is the number of rules, α is the training parameter, η is the regularization parameter. The 
proposed modification of the hybrid algorithm for training the neuro-fuzzy network ANFIS 
consists of two stages: 

1. Gradient-based optimization algorithm: 
1.1. Initialization of weights of the neuro-fuzzy network ANFIS w. 
1.2. Calculation of the gradient of the loss function L(w) by weights w. 
1.3. Update weights w: 

( ),w w L w= −         (4) 

where w represents the parameters of a model that we're optimizing; α is the training rate, a small 
positive scalar that determines the step size in each iteration; ∇L(w) is the gradient of the loss 
function L(w) with respect to the parameters w. The gradient points in the direction of the 
steepest increase of the function. 

1.4. Repeat steps 1.1–1.3 until stopping criterion is reached. 
2. Adaptive teaching method: 
2.1. Clustering training data into N clusters using the k-means method. 
2.2. For each cluster i, the centroid of the cluster ci is determined, and the parameters of the 
fuzzy membership function μi are also initialized. 
2.3. Training of the ANFIS neuro-fuzzy network with fixed parameters of fuzzy membership 
functions. 
2.4. Update parameters of fuzzy membership functions: 
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where ci is the i-th center (centroid) in the feature space; σ is the smoothing parameter that 

controls the width of the Gaussian function curve; 
2

ix c−  is the square of the distance between 

the input vector x and the center ci. 
2.5. Repeat steps 2.3–2.4 until stopping criterion is reached. 
The root mean square error can be used as the loss function L(w): 
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where iy  is the output of the ANFIS neuro-fuzzy network for the i-th example. 

To prevent overfitting, Tikhonov regularization can be used: 
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where M is the number of weights of the ANFIS neuro-fuzzy network; η is the regularization 
coefficient, which controls the importance of regularization in relation to the error. 

 

4. Experiment 

Table 1 presents a segment of the expert knowledge matrix for the neuro-fuzzy network ANFIS 
designed for helicopters TE. The general fuzzy rule with serial number k has the form: IF GT(t) 
<value> and nTC(t – 1) <value> THEN {1, 2, 3} <output>, where 1 is the output “gas temperature 
in front of the compressor turbine sensor failure”, 2 is the output “gas generator defect”, 3 is the 
output “failure of the measuring channel nFT”. By expanding the expert knowledge base and, 
accordingly, adding the number of outputs of the neuro-fuzzy network ANFIS, it is possible to 
identify other defects and failures of helicopters TE. 



Table 1 
Expert knowledge matrix 

Rule number IF <input> THEN <output> Rule weight 
GT(t) nTC(t – 1) 

1 0.985 0.995 1 1 
2 0.975 0.995 1 1 
3 0.965 0.950 2 1 
4 0.955 0.950 2 1 
5 0.945 0.920 3 1 
6 0.935 0.920 3 1 

 

The input parameters for the mathematical model of helicopters TE comprise atmospheric 
variables (h is the flight altitude, TN is the temperature, PN is the pressure, ρ is the air density). 
These parameters, obtained from onboard recordings (nTC is the gas generator rotor r.p.m., nFT is 
the free turbine rotor speed, TG is the gas temperature in front of the compressor turbine, GT is 
the fuel consumption, calculated according [37]), are standardized to absolute values using the 
theory of gas-dynamic similarity (Table 1). It is assumed in this study that the atmospheric 
conditions remain constant (h is the flight altitude, TN is the temperature, PN is the pressure, ρ is 
the air density) [38, 39]. A thorough analysis and preprocessing of the input data are elaborated 
upon in [38, 39] (Table 2). 

 

Table 2 
Training sample fragment [38, 39] 

Number nTC nFT TG GT 

1 0.929 0.943 0.932 0.952 
2 0.933 0.982 0.964 0.963 
3 0.952 0.962 0.917 0.947 
4 0.988 0.987 0.908 0.949 
… … … … … 

256 0.973 0.981 0.953 0.960 
 

The helicopters TE operational status and its subsystems determining relies on a neuro-fuzzy 
network ANFIS. Its operational principle is as follows: the vector of calculated model data, denoted 
as Ym (Fig. 5, where 1 is the nTC, 2 is the nFT, 3 is the TG, 4 is the GT), is compared element-wise with 
the vector of measured data Y. Subsequently, the resulting error vector ε is inputted into the 
neuro-fuzzy network ANFIS. This neuro-fuzzy network ANFIS, leveraging the magnitude of errors 
and their temporal derivatives, generates conclusions regarding the engine's operational status or 
that of its subsystems. The output signals of the neuro-fuzzy classifier encompass various states, 
including optimal operational status (S1), faults in measurement channels (S2), actuator 
malfunctions (S3), engine failures (S4), and automatic control system faults (S5). 

 

 
Figure 5: The computational data utilized in the neural network model for helicopters TE 



The development of the neuro-fuzzy network ANFIS involves modeling using the ANFIS editor 
toolkit within the MATLAB mathematical package. This process utilizes data acquired during 
flight tests of the helicopters TE, as well as outcomes from comprehensive modeling exercises 
simulating failures of the helicopters TE and its subsystems, based on a detailed mathematical 
model of the entire helicopters TE. The development process of a neuro-fuzzy network ANFIS 
comprises several key stages [20, 23]: 

1. Formulating a collection of fuzzy inference rules, employing information regarding the 
deviation of measured data from calculated values or other anomalies. 
2. Constructing a neural network, serving as the foundation for the fuzzy inference system. 
3. Training the neuro-fuzzy network ANFIS utilizing a reference dataset containing input 
and output data, derived from experimental measurements of engine sensor channels. 
4. Fine-tuning the parameters of the input membership functions. 
Fig. 6, a illustrates an example of establishing fuzzy inference rules for a neuro-fuzzy network 

ANFIS during its debugging phase in the ANFIS editor. The structure of the neuro-fuzzy model in 
ANFIS is depicted as shown in Fig. 6, b. 

 

 
a 

 
b 

Figure 6: Neuro-fuzzy network in ANFIS: a – rules for fuzzy inference; b – general view 



To train a neuro-fuzzy network ANFIS, we employ a hybrid network training approach, which 
merges the Adam method with the modified inverse gradient descent method. The training process 
encompasses a specified number of cycles, known as epochs, set at 400 (Fig. 7, a) and 50 (Fig. 7, b). 
The evaluation of the model's accuracy in constructing a fuzzy inference system relied on the root 
mean square error (RMSE) metric [26], assessed across both training and testing datasets: 

( )
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n
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RMSE y y
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= −       (8) 

where train

iy  is the training data set; calc

iy  is the calculated data; n is the number of points in the 

training set. 
Table 3 
Neuro-fuzzy network ANFIS membership function type selection results 

Input membership function type Output membership function type RMSE 

Gaussian (gauss2mf) Linear 8.320 · 10–5 
Triangular (trimf) Linear 2.646 · 10–4 
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Figure 7: Neuro-fuzzy network ANFIS training results: a – with the traditional gradient method; 
b – with the modified inverse gradient descent method 



5. Results 

The work considers three types of sensor failures, which are modeled according to the following 
expressions [40]: 

1. Additive failure: 

( ) ( ) ( ) ,failure lossS t S t t = +   
*,t t        (9) 

2. Multiplicative failure: 

( ) ( ) ( )( )1 , =  + failure lossS t S t t  *,t t                    (10) 

3. “Freezing” sensor readings at the moment of failure: 

( ) ( ) ( )* ,= failure lossS t S t t  *,t t                    (11) 

where Sloss(t) is the readings of a working sensor; ρ is the parameter characterizing the magnitude 
of failure.  

Based on the nature of changes over time, sensor failures are divided into the following types: 
1. Intermittent failure: 

( ) 1, =t  *,t t                     (12) 

2. Increasing failure: 
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where 
1f

t  and 
2f

t  are sets the start and end times of the failure, respectively. 

The functioning of each sensor is determined by the mean square error between the value of 
the helicopters TE parameters predicted by the neural network model and the value calculated 
from its model. Since each neural network model describes the normal functioning of a sensor, 
the location of a faulty sensor is determined when its performance indicator reaches a specified 
threshold value. To make the system more resistant to false alarms, additional threshold values 
are introduced. “Upper” and “lower” sensitivity thresholds are used [41, 42]. 

Since failure models are specified a priori, performing an appropriate transformation of the 
values of the necessary parameters calculated using the helicopters TE model and predicted by 
neural network models allows us to determine the type and specific parameters of the failure. 
Recognition of signs of a failure situation is carried out by testing the corresponding hypothesis. 

The work discusses an approach in which recognition of signs of a failure situation is made 
based on observations of the cross-correlation functions of helicopters TE parameters. The 
relation between pairs of parameters can be quantified and represented as a function. If a control 
drive fails, this relation is broken. For example, changes in the operation of one of the elevator 
sections causes an additional roll moment. The location of an emergency situation can be 
determined by changes in the corresponding cross- and autocorrelation functions of helicopters 
TE parameters. To classify drive failures, it is proposed to use neural network models of the cross- 
and autocorrelation functions of helicopters TE parameters, specified by the expression [40]: 
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The output of the neuro-fuzzy network ANFIS is the norm values of the cross-correlation 
function between pairs of helicopters TE parameters: 

( ) ,xyR R m= −                    (15) 

where (•)* specifies the convolution operation; N = 7 is the width of the sliding window over the 
values of helicopters TE parameters. 



Classification of failures involves determining the location and parameters of an emergency 
situation. The location of the sensor failure cannot be unambiguously determined when the 
performance indicator of only one neural network model reaches a certain threshold value. 
Combinations and deviation values of cross- or autocorrelation functions are combined into a 
rule base through which the outputs of all neural network models pass. To implement the sensor 
classification method, neural network models are required, for example, of the following 

functions: ( )*,
TC G

n T
R S S , ( ),

TC FTn nR S S , ( )* ,
FTG

nT
R S S . 

To train the neuro-fuzzy network ANFIS, training samples were compiled – input measured 
and calculated data of the nTC, nFT, TG channels, including deviations obtained by simulating engine 
and sensor failures, as well as output reference data representing a signal about the 
corresponding failure. Fig. 8 shows a diagram of a sample of training data in which the gradual 

failure of the gas temperature sensor in front of the compressor turbine is modeled (1 is the 
*

GT  

nominal values, 2 is the 
*

GT  values in case of sensor failure). The failure occurs at time t = 53 s, the 

failure is detected immediately at the moment of occurrence. When conducting a computational 
experiment, Gaussian noise with a standard deviation 2.5 % [43] is superimposed on the values 
of all observed signals. 

 

 
Figure 8: Diagram of the modeling result the sensor failure of helicopters TE gas temperature in 
front of the compressor turbine sensor failure 
 

Fig. 9 and 10 are shows the stages of identifying and determining the location of a sensor failure 
of gas temperature in front of the compressor turbine (1 – performance indicator, 2 – threshold 
value). Since the failure is abrupt and additive, at the moment of its occurrence there is a sharp 
deviation from the standard behavior for the gas temperature in front of the compressor turbine. 
The performance indicator of helicopters TE reacts sharply to this change. There is a significant 
excess of the threshold value. There is also a significant excess of the “upper” sensitivity threshold 
for the performance indicator for the gas temperature in front of the compressor turbine. 

 

 
Figure 9: Diagram of the value of the performance quality indicator of helicopters TE as a 
diagnostic object 



 
Figure 10: Diagram of the value of the performance indicator of the helicopters TE sensor gas 
temperature in front of the compressor turbine 
 

Fig. 9 and 10 are shows modeling errors and the influence of noise on performance indicators. 
Neural network models are trained on noisy trajectories, so the influence of noise is partially 
suppressed by the network. To make the algorithm resistant to false positives caused by modeling 
errors and noise, thresholds are introduced for each neural network model according to the 
expression that takes into account the average value of the performance indicator and the 
standard deviation: 

2 ,T X k s= +                     (16) 

where 
1

1 N

i

i

X r
N =

=   is the sample mean; ( )
2

2

1

1

1

N

i

i

s r X
N =

= −
−
  is the unbiased sample variance; 

coefficient k = 0, 1, 2, ... sets the “upper” and “lower” sensitivity thresholds [44, 45]. 
Since the values of the helicopters TE parameters after the occurrence of a failure and the 

values obtained from the neural network model of the sensor, for example, gas temperature in 
front of the compressor turbine, are known, the type and magnitude of the failure is determined 
by testing the corresponding hypothesis [46, 47]. 

Let's consider the detection of a “freezing” failure and a 50 % loss of efficiency by determining 
the current state of the engine based on the gas temperature in front of the compressor turbine. 

Failure occurs at t = 53 s, failure detection occurs at t = 53.2 s. Fig. 11 (1 is the 
*

GT  nominal values, 

2 is the 
*

GT  values in case of sensor failure) shows the effect of failure on the norm of the cross-

correlation function ( )*,
TC G

n T
R S S . At the detection stage, the threshold value of the helicopters TE 

performance indicator is exceeded. 
 

 
Figure 11: Diagram of the modeling result the sensor failure of helicopters TE gas temperature 

in front of the compressor turbine sensor failure of the cross-correlation function ( )*,
TC G

n T
R S S  



To determine the failure location, it is necessary to consider changes in the quality indicators 
of the functioning of neural network correlation models. Fig. 12 (1 is the indicator of quality of 
functioning, 2 is the threshold value) shows that the indicator of quality of functioning for the 
norm of cross-correlation functions exceeds the threshold value. This indicates the impact of 

failure on the cross-correlation functions ( )*,
TC G

n T
R S S  and ( )* ,

FTG
nT

R S S .  

 

 
Figure 12: Diagram of the performance indicator values of the cross-correlation function 

( )*,
TC G

n T
R S S  

 
However, Fig. 13 (1 is the performance indicator, 2 is the threshold value) shows that the 

autocorrelation function ( ),
TC FTn nR S S  is not affected by this failure. This allows us to determine 

that the failure only affects the gas temperature in front of the compressor turbine sensor. 

 
Figure 13: Diagram of the performance indicator values of the cross-correlation function 

( )* ,
FTG

nT
R S S  

 
Since the values during normal operation are specified in a Table 2, the parameters of an 

emergency situation are determined by testing the hypothesis about the values calculated using 
interpolation and obtained during a computational experiment. 
 

6. Discussions 

Tables 4–6 present a comparative evaluation of the precision of conventional and neuro-fuzzy 
approaches in failure classification. They illustrate the likelihoods of type 1 and type 2 errors in 
classifying faults, including measuring channel failure in gas temperature preceding the 



compressor turbine, gas generator malfunctions, and combustion chamber defects. The data 
provided in Tables 4–7 affirm that intelligent techniques exhibit superior effectiveness and 
efficiency in detecting faults within engine components and subsystems. 
 
Table 4 
The results of determining the 1st and 2nd kind errors 

Controller type 
The probability of error in determining the failure of the 

measuring channel nFT 
Type 1st error Type 2nd error 

Tolerance control 1.25 0.82 
Neuro-fuzzy network ANFIS 0.43 0.26 

 
Table 5 
The results of determining the 1st and 2nd kind errors 

Controller type 
The probability of error in determining a gas generator defect 

Type 1st error Type 2nd error 

Tolerance control 1.77 1.23 
Neuro-fuzzy network ANFIS 0.54 0.48 

 
Table 6 
The results of determining the 1st and 2nd kind errors 

Controller type 
The probability of error in determining a combustion 

chamber defect 
Type 1st error Type 2nd error 

Tolerance control 2.48 1.91 
Neuro-fuzzy network ANFIS 0.78 0.52 

 
Table 7 
The results of determining the 1st and 2nd kind errors 

Controller type 
The probability of error in determining a gas temperature in 

front of the compressor turbine sensor failure 
Type 1st error Type 2nd error 

Tolerance control 1.36 0.89 
Neuro-fuzzy network ANFIS 0.49 0.31 

 
To determine the reliability of the neuro-fuzzy network ANFIS method, you can use the 

following expressions [26]: 

0

100%,error
error

T
K

T
=                    (17) 

0

1 100%,error
quality

T
K

T

 
= −  
 

                  (18) 

where Kerror, Kquality are the coefficients of erroneous and qualitative failure identification, 
respectively; Terror is the total time of the sections corresponding to the erroneous classification; 
T0 is the duration of the test sample (in this work, T0 = 5 s). 

Table 8 shows the results of calculating the coefficients of erroneous and qualitative 
identification of failures and defects: gas temperature in front of the compressor turbine sensor 
failure, failure of the measuring channel nFT, gas generator defect, combustion chamber defect. 

 
 



Table 8 
The results of calculating the coefficients of erroneous and qualitative 

Controller type 
Coefficient of erroneous, 

Kerror 
Coefficient of qualitative, 

Kquality 

Gas temperature in front of the 
compressor turbine sensor failure 

0.664 99.336 

Failure of the measuring channel 
nTC 

0.676 99.324 

Gas generator defect 0.673 99.327 
Combustion chamber defect 0.679 99.321 

 
As can be seen from Table 8, the coefficients of erroneous failures identification rate do not 

exceed 0.679 %, and the minimum coefficients of qualitative identification rate is 99.321 %. 
A proposal is made to employ a neuro-fuzzy network ANFIS for helicopters TE failures utilizing 

a 64-bit Intel Neural Compute Stick 2 neuroprocessor. These neuroprocessors are extensively 
utilized in contemporary digital control systems, including aviation applications [48]. The 
inclusion of a multiplier-accumulator (MAC) module within the core of this microprocessor 
enhances algorithm calculation speed by amalgamating multiplication and addition operations 
with weighted summation in the neuron adder. Through experimental validation, it was 
substantiated that the Intel Neural Compute Stick 2 neuroprocessor is advantageous for tasks 
related to comprehensive monitoring and operational control of helicopters TE during flight 
operations. In contrast, when implementing the developed method on a 16-bit ST10F269 
microcontroller from STMicroelectronics, which is commonly used in modern digital control 
systems, including aviation, the total code execution time for one neuron amounted to 19 
microseconds, approximately 10 times greater than the calculated figure for the Intel Neural 
Compute Stick 2 neuroprocessor, which stood at 2.066 microseconds [20, 23]. 

 

7. Conclusions 

The hybrid method of training the neuro-fuzzy network ANFIS was further developed, which, 
through the use of the Adam method as a gradient-based optimization algorithm, as well as the 
adaptive k-means clustering method for optimizing the shape of fuzzy membership functions, 
allowed reducing the number of training epochs from 400 to 50 to obtain the minimum standard 
deviation of the training error – 2.646 · 10–4 using the Gaussian membership function. 

An evolution system of fuzzy rules of the neuro-fuzzy network ANFIS has been developed, the 
use of which makes it possible to determine the sensor failure, for example, the helicopters 
turboshaft engine gas temperature in front of the compressor turbine, with a misidentification 
rate that does not exceed 0.679 %. By expanding the expert knowledge base and, accordingly, 
adding the number of outputs of the neuro-fuzzy network ANFIS, it is possible to identify other 
defects and failures of helicopters turboshaft engines. 

A neural network method for helicopters turboshaft engines sensors failures identification has 
been developed, which is based on the use of a neuro-fuzzy network ANFIS, trained by back 
modified inverse gradient descent method, the use of which allows, with an accuracy higher than 
99.321 %, to helicopters turboshaft engines sensors failures identification. 

The technique for discerning the helicopters turboshaft engines operational status through 
neural network and neuro-fuzzy algorithms has undergone further refinement. This 
advancement enhances the diagnostic efficacy for intermittent faults, simplifies the training 
process, facilitates additional model refinement, and improves calculation accuracy under 
diverse conditions. Consequently, it enables the detection of helicopters turboshaft engines 
failures with a permissible error rate not surpassing 0.78 %. 

The future research of investigation involves integrating the developed techniques, 
algorithms, and neuro-fuzzy network ANFIS method for helicopters turboshaft engines sensors 



failures identification into modified closed onboard helicopters turboshaft engines automatic 
control system [35, 36]. 

 

References 

[1] O. Balli, Exergetic, sustainability and environmental assessments of a turboshaft engine used 
on helicopter, Energy 276 (2023) 127593. doi: 10.1016/j.energy.2023.127593 

[2] H. Sheng, Q. Chen, J. Li, W. Jiang, Z. Wang, Z. Liu, T. Zhang, Yuan Liu, Research on dynamic 
modeling and performance analysis of helicopter turboshaft engine's start-up process, 
Aerospace Science and Technology 106 (2020) 106097. doi: 10.1016/j.ast.2020.106097 

[3] H. Augun, Thermodynamic, environmental and sustainability calculations of a conceptual 
turboshaft engine under several power settings, Energy 245 (2022) 123251. 
doi: 10.1016/j.energy.2022.123251 

[4] Y. Freed, N. Zobeiry, M. Salviato, Development of aviation industry-oriented methodology for 
failure predictions of brittle bonded joints using probabilistic machine learning, Composite 
Structures 297 (2022) 115979. doi: 10.1016/j.compstruct.2022.115979 

[5] E. Zio, M. Fan, Z. Zeng, R. Kang, Application of reliability technologies in civil aviation: Lessons 
learnt and perspectives, Chinese Journal of Aeronautics 32: 1 (2019) 143–158. doi: 
10.1016/j.cja.2018.05.014 

[6] Z. Long, M. Bai, M. Ren, J. Liu, D. Yu, Fault detection and isolation of aeroengine combustion 
chamber based on unscented Kalman filter method fusing artificial neural network, Energy 
272 (2023) 127068. doi: 10.1016/j.energy.2023.127068 

[7] Z. Yang, P. Baraldi, E. Zio, A method for fault detection in multi-component systems based on 
sparse autoencoder-based deep neural networks, Reliability Engineering & System Safety 
220 (2022) 108278. doi: 10.1016/j.ress.2021.108278 

[8] S. R. Kumar, J. Devakumar, Recurrent neural network based sensor fault detection and 
isolation for nonlinear systems: Application in PWR, Progress in Nuclear Energy 163 (2023) 
104836. doi: 10.1016/j.pnucene.2023.104836 

[9] L. Ye, H. Wu, Y. Chen, Z. Fei, Interpret what a Convolutional Neural Network learns for fault 
detection and diagnosis in process systems, Journal of Process Control 131 (2023) 103086. 
doi: 10.1016/j.jprocont.2023.103086 

[10] B. Li, Y.-P. Zhao, Y.-B. Chen, Unilateral alignment transfer neural network for fault diagnosis 
of aircraft engine, Aerospace Science and Technology 118 (2021) 107031. 
doi: 10.1016/j.ast.2021.107031 

[11] H. Hanachi, J. Liu, C. Mechefske, Multi-mode diagnosis of a gas turbine engine using an 
adaptive neuro-fuzzy system, Chinese Journal of Aeronautics 31:1 (2018) 1–9. 
doi: 10.1016/j.cja.2017.11.017 

[12] S. Pang, Q. Li, B. Ni, Improved nonlinear MPC for aircraft gas turbine engine based on semi-
alternative optimization strategy, Aerospace Science and Technology, vol. 118 (2021) 
106983. doi: 10.1016/j.ast.2021.106983 

[13] E. L. Ntantis, P. Botsaris, Diagnostic methods for an aircraft engine performance, Journal of 
Engineering Science and Technology 8:4, (2015) 64–72. doi: 10.25103/jestr.084.10 

[14] A. Sachenko, V. Kochan, V. Turchenko, V. Tymchyshyn, N. Vasylkiv, Intelligent nodes for 
distributed sensor network, in: Proceedings of the 16th IEEE Instrumentation and 
Measurement Technology Conference (IMTC/99), Venice, Italy, 1999, pp. 1479–1484. 
doi: 10.1109/IMTC.1999.776072 

[15] A. Sachenko, V. Kochan, V. Turchenko, Intelligent distributed sensor network, in: IMTC/98 
Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. 
Where Instrumentation is Going, St. Paul, MN, USA, 1998, pp. 60–66. 
doi: 10.1109/IMTC.1998.679663 

[16] S. Kim, K. Kim, C. Son, A new transient performance adaptation method for an aero gas 
turbine engine, Energy 193 (2020) 116752. doi: 10.1016/j.energy.2019.116752 



[17] G. R. Singh, A. Maity, P. S. V. Nataraj, Dynamic modeling and robust nonlinear control of a 
laboratory gas turbine engine, Aerospace Science and Technology 126 (2022) 107586. 
doi: 10.1016/j.ast.2022.107586 

[18] S. Kiakojoori, K. Khorasani, Dynamic neural networks for gas turbine engine degradation 
prediction, health monitoring and prognosis, Neural Computing & Applications 27:8 (2016) 
2151–2192. doi: 10.1007/s00521-015-1990-0 

[19] Y. Shen, K. Khorasani, Hybrid multi-mode machine learning-based fault diagnosis strategies 
with application to aircraft gas turbine engines, Neural Networks 130 (2020) 126–142. 
doi: 10.1016/j.neunet.2020.07.001 

[20] S. Zhernakov, A. Gilmanshin, New onboard gas turbine engine diagnostic algorithms based on 
neural‐fuzzy networks, Aviation and rocket and space technology 19:2 (68) (2015) 63–68. 

[21] X. Fu, H. Luo, S. Zhong, L. Lin, Aircraft engine fault detection based on grouped convolutional 
denoising autoencoders, Chinese Journal of Aeronautics 32:2 (2019) 296–307. 
doi: 10.1016/j.cja.2018.12.011 

[22] H. Kang, H. Ma, Fault detection and isolation of actuator failures in jet engines using adaptive 
dynamic programming, Applied Mathematics and Computation 414 (2022) 126664. 
doi: 10.1016/j.amc.2021.126664 

[23] S. Zhernakov, A. Gilmanshin, Realization OF hybrid gas turbine engine control and 
diagnosctics algorithms using modern on-board computing devices, in: Proceedings of the 
VII International conference “Actual problems of mechanical engineering”, March 25–27, 
2015, pp. 765–769. 

[24] M. Lungu, R. Lungu, Automatic control of aircraft lateral-directional motion during landing 
using neural networks and radio-technical subsystems, Neurocomputing 171 (2016) 471–
481. doi: 10.1016/j.neucom.2015.06.084 

[25] V. Efimov, R. Nezametdinov, Mathematical model specific fuel consumption of the TV3-117, 
Civil Aviation High Technologies 200 (2015) 11–15. 

[26] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, S. Drozdova, Neural Network Method for 
Helicopters Turboshaft Engines Working Process Parameters Identification at Flight Modes, 
in: Proceedings of the 2022 IEEE 4th International Conference on Modern Electrical and 
Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 604–609. 
doi: 10.1109/MEES58014.2022.10005670 

[27] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, S. Drozdova, Helicopters Turboshaft 
Engines Parameters Identification at Flight Modes Using Neural Networks, in: Proceedings 
of the IEEE 17th International Conference on Computer Science and Information 
Technologies (CSIT), Lviv, Ukraine, 2022, pp. 5–8. doi: 10.1109/CSIT56902.2022.10000444 

[28] S. Kim, J. H. Im, M. Kim, J. Kim, Y. I. Kim, Diagnostics using a physics-based engine model in 
aero gas turbine engine verification tests, Aerospace Science and Technology 133 (2023) 
108102. doi: 10.1016/j.ast.2022.108102. 

[29] E. Fedorov, М. Chychuzhko, V. Chychuzhko, Approaches to the creation of a software agent 
based on meta-heuristic and artificial neural networks, Radioelectronic and computer 
systems 1 (89) (2019) 58–65. doi: 10.32620/reks.2019.1.06 

[30] M. Duhan, P. K. Bhatia, Hybrid Maintainability Prediction using Soft Computing Techniques, 
International Journal of Computing 20(3) (2021) 350–356. doi: 10.47839/ijc.20.3.2280 

[31] M. Duhan, P. K. Bhatia, Software Reusability Estimation based on Dynamic Metrics using Soft 
Computing Techniques, International Journal of Computing 21(2) (2022) 188–194. 
doi: 10.47839/ijc.21.2.2587 

[32] Q. Chen, H. Sheng, T. Liu, Fuzzy logic-based adaptive tracking weight-tuned direct 
performance predictive control method of aero-engine, Aerospace Science and Technology 
140 (2023) 108494. doi: 10.1016/j.ast.2023.108494 

[33] D. J. Singh, N. K. Verma, Interval Type-3 T-S fuzzy system for nonlinear aerodynamic 
modeling, Applied Soft Computing 150 (2024) 111097. doi: 10.1016/j.asoc.2023.111097 

[34] A. Labinsky, S. Nefediev, Ye. Bardulin, The problem of use the fuzzy logic and neural networks 
for the automatic control system, Bulletin of St. Petersburg University of the State Fire 
Service of the Ministry of Emergency Situations of Russia 1-2019 (2019) 44–50. 



[35] W. Yixuan, S. Yan, C. Maolin, X. Weiqing, Y. Qihui, Optimization of air–fuel ratio control of fuel-
powered UAV engine using adaptive fuzzy-PID, Journal of the Franklin Institute 355:17 
(2018) 8554–8575. doi: 10.1016/j.jfranklin.2018.09.003 

[36] D. P. Kingma, J. L. Ba, Adam: A Method for Stochastic Optimization, in: Proceedings of the 3rd 
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 
07–09, 2015. 15 p. URL: https://arxiv.org/pdf/1412.6980.pdf 

[37] S. Vladov, Y. Shmelov, R. Yakovliev, Helicopters Aircraft Engines Self-Organizing Neural 
Network Automatic Control System, CEUR Workshop Proceedings 3137 (2022). 28–47. 

[38] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, Modified Neural Network Fault-Tolerant 
Closed Onboard Helicopters Turboshaft Engines Automatic Control System, CEUR Workshop 
Proceedings 3387 (2023) 160–179. 

[39] M. Xu, J. Wang, J. Liu, M. Li, J. Geng, Y. Wu, Z. Song, An improved hybrid modeling method 
based on extreme learning machine for gas turbine engine, Aerospace Science and 
Technology 107 (2020) 106333. doi: 10.1016/j.ast.2020.106333 

[40] D. Kozlov, Yu. Tyumentsev, Neural network methods for detecting failures of aircraft sensors 
and drives, Electronic journal «Proceedings of MAI» 52 (2019). 
URL: https://mai.ru/science/trudy/  

[41] J. Hu, Y. Sha, J. Yao, Dual neural networks based active fault-tolerant control for 
electromechanical systems with actuator and sensor failure, Mechanical Systems and Signal 
Processing 182 (2023) 109558. doi: 10.1016/j.ymssp.2022.109558 

[42] E. Naderi, K. Khorasani, Data-driven fault detection, isolation and estimation of aircraft gas 
turbine engine actuator and sensors, Mechanical Systems and Signal Processing 100 (2018) 
415–438. doi: 10.1016/j.ymssp.2017.07.021 

[43] S. Vladov, Y. Shmelov, R. Yakovliev, Modified Searchless Method for Identification of 
Helicopters Turboshaft Engines at Flight Modes Using Neural Networks, in: Proceedings of 
the 2022 IEEE 3rd KhPI Week on Advanced Technology, Kharkiv, Ukraine, October 03–07, 
2022, pp. 257–262. doi: 10.1109/KhPIWeek57572.2022.9916422 

[44] M. M. Didyk, M. E. Hassanabadi, S. E. Azam, An output-only unbiased minimum variance state 
estimator for linear systems, Mechanical Systems and Signal Processing 211 (2024) 111204. 
doi: 10.1016/j.ymssp.2024.111204 

[45] Y. Zhang, C. Peng, J. Wang, Y. Ping, J. Zhou, A nonlinear unbiased minimum-variance filter for 
structural identification with unknown external excitations, Structures 57 (2023) 105105. 
doi: 10.1016/j.istruc.2023.105105 

[46] K. Ugryumova, I. Meniailov, I. Trofymova, M. Ugryumov, A. Myenyaylov, Synthesis of robust 
optimal control program for axial flow compressor turning guide vanes, International 
Journal of Computing 19(3) (2020) 347–354. doi: 10.47839/ijc.19.3.1882 

[47] M. Kolisnyk, D. Kochkar, V. Kharchenko, Markov model of wireless sensor network 
availability, International Journal of Computing 19(3) (2020) 491–498. doi: 
10.47839/ijc.19.3.1899 

[48] Intel Neural Compute Stick 2 – Review [Electronic resource], 2021. URL:  
https://community.element14.com/products/roadtest/rv/roadtest_reviews/954/intel_ne
ural_compute_3 

 

https://arxiv.org/pdf/1412.6980.pdf
https://mai.ru/science/trudy/
https://community.element14.com/products/roadtest/rv/roadtest_reviews/954/intel_neural_compute_3
https://community.element14.com/products/roadtest/rv/roadtest_reviews/954/intel_neural_compute_3

