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Abstract	
In	recent	years,	there	has	been	a	surge	of	interest	in	combining	artificial	intelligence	(AI)	with	education	
to	enhance	learning	experiences.	However,	one	major	concern	is	the	lack	of	transparency	in	AI	models,	
which	hinders	our	ability	 to	understand	their	decision-making	processes	and	establish	trust	 in	their	
outcomes.	This	study	aims	to	address	these	challenges	by	focusing	on	the	implications	of	explainable	
and	 trustworthy	 AI	 in	 education.	 The	 primary	 objective	 of	 this	 research	 is	 to	 improve	 trust	 and	
acceptance	of	AI	systems	in	education	by	providing	comprehensive	explanations	for	model	predictions.	
By	doing	so,	it	seeks	to	equip	stakeholders	with	a	better	understanding	of	the	decision-making	process	
and	 increase	 their	 confidence	 in	 the	 outcomes.	 Additionally,	 the	 study	 highlights	 the	 importance	 of	
evaluation	metrics	in	assessing	the	quality	and	effectiveness	of	explanations	generated	by	explanation	
AI	models.	These	metrics	serve	as	vital	tools	for	ensuring	reliable	system	performance	and	upholding	
the	fundamental	principles	necessary	for	building	trustworthy	AI.	
To	 accomplish	 these	 goals,	 the	 study	 utilizes	 the	 LBLS-467	 dataset	 to	 predict	 high-risk	 students,	
employing	 both	 logistic	 regression	 and	 neural	 networks	 as	 AI	 models.	 Subsequently,	 explanation	
artificial	intelligence	techniques	such	as	LIME	(Local	Interpretable	Model-agnostic	Explanations)	and	
SHAP	(Shapley	Additive	Explanations)	are	utilized	to	evaluate	students'	learning	outcomes	and	provide	
explanations.	Finally,	six	evaluation	indicators	are	adopted	to	assess	the	accuracy	and	stability	of	these	
explanations.	 In	 conclusion,	 this	 study	 addresses	 the	 challenges	 associated	 with	 inconsistencies	 in	
explainable	AI	models	within	the	field	of	education.	It	emphasizes	the	need	for	explainability	and	trust	
when	 applying	 AI	 systems	 in	 educational	 contexts.	 By	 providing	 comprehensive	 explanations	 and	
evaluation	metrics,	this	research	empowers	education	teams	to	make	informed	decisions	and	fosters	a	
positive	environment	for	the	integration	of	AI.	Ultimately,	it	contributes	to	the	reliable	implementation	
of	AI	technologies,	enabling	their	full	potential	to	be	harnessed	in	educational	settings	for	the	benefit	of	
learners	and	educators	alike.	
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1. Introduction	
In	recent	years,	artificial	intelligence	(AI)	has	been	widely	used	in	various	fields.	AI	has	shown	
great	potential	in	these	areas	due	to	its	ability	to	address	specific	needs	within	specific	domains.	
However,	as	artificial	 intelligence	continues	to	integrate	into	our	lives,	people	are	increasingly	
applying	 it	 to	 the	 decision-making	 process.	 Whether	 using	 AI	 for	 human	 resource	 decision-
making[1]or	for	triaging	and	assisting	in	investigations	of	AI-related	crimes[2],	these	examples	
demonstrate	the	significant	impact	of	AI	on	humanity.	Against	this	backdrop,	the	credibility	of	
artificial	intelligence	has	become	one	of	the	most	critical	issues	of	our	time.	
Although	machine	learning	models	were	able	to	identify	high-risk	students	early	on,	the	black-

box	nature	of	these	models	created	challenges	in	explaining	their	decision-making	process	and	
predicting	outcomes.	As	a	result,	education	teams	have	found	it	difficult	 to	trust	the	decisions	
made	by	the	models,	leading	to	unexpected	limitations	in	the	use	of	AI	in	education	[3].	Therefore,	
in	recent	years,	researchers	have	increasingly	combined	explainable	AI	with	predicting	student	
learning	outcomes	to	enable	the	explainability	of	model	prediction	processes[4,	5].	
As	 we	 strive	 to	 build	 trustworthy	 artificial	 intelligence,	 it	 is	 critical	 to	 follow	 certain	

fundamental	principles	to	ensure	that	it	functions	positively	and	reliably	in	a	variety	of	contexts.	
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Evaluation	is	an	important	aspect	to	ensure	reliability,	and	evaluation	models	and	indicators	need	
to	be	established	to	evaluate	system	performance	[6,	7].	
Advancements	 in	 LMS	 and	 learning	 analytics	 research	 lead	 to	 modular	 systems	 storing	

personal	 data	 in	multiple	 locations.	 Anonymity	 is	 crucial	 for	 safeguarding	 data	 in	 integrated	
systems.[8]		
By	combining	these	aspects,	we	attempt	to	address	the	problem	of	inconsistent	explanations	

produced	by	different	explainable	AI	models	when	presented	with	the	same	dataset.	This	study	
will	 explore	 the	 selection	 of	 evaluation	metrics	 to	 provide	 a	 comprehensive	 approach	 to	 this	
problem.	Ultimately,	this	work	will	help	strengthen	the	education	team's	understanding	and	trust	
in	 the	model	and	promote	 the	sustainable	development	of	artificial	 intelligence	 in	 the	 field	of	
education.	The	research	questions	are	as	follows:	
RQ1:	What	specific	evaluation	metrics	can	be	employed	to	assess	the	quality	and	effectiveness	

of	explanations	generated	by	explainable	AI	models?	
RQ2:	How	to	solve	the	problem	of	inconsistent	explanations	produced	by	different	explainable	

AI	models	when	presented	with	the	same	dataset?	

2. Experiment	Design	
Figure	 1 shows	 the	 experimental	 design	 flowchart	 outlining	 the	 sequential	 steps	 involved	 in	
conducting	the	study.	The	LBLS-467	dataset	was	obtained,	the	data	will	undergo	preprocessing	
to	handle	missing	values	 and	 identify	high-risk	 and	 low-risk	 students.	 Following	 that,	 feature	
selection	will	be	conducted	 to	categorize	questionnaire	questions	and	 learning	behaviors	 into	
relevant	features,	and	the	data	will	be	normalized.	These	features	will	be	used	for	model	training.	
After	training,	the	model's	effectiveness	will	be	evaluated,	and	SHAP	and	LIME	will	be	utilized	for	
model	explanation.	Finally,	six	evaluation	indicators	will	assess	the	quality	of	explanation.	

Figure	1:	Experimental	Design	Flowchart	

2.1. Dataset	

The	LBLS-467	(Learning	Behavior	Learning	Strategy-467)	dataset	will	be	utilized	as	the	data	
source	 for	 this	experiment.	LBLS-467	 is	an	upgraded	version	of	 the	LBLS-160	dataset[9].	The	
dataset	 consists	 of	 two	 components:	 Learning	 Behavior	 and	 Learning	 Strategy.	 Under	 the	
Learning	 Behavior	 section,	 the	 dataset	 captures	 students'	 learning	 behaviors	 in	 two	 online	
learning	 environments,	 namely	BookRoll	 and	VisCode.	BookRoll	 is	 a	 digital	material	 platform	
designed	 to	 facilitate	 online	 learning.	 Students	 can	 access	 materials,	 add	 bookmarks,	 and	
highlight	important	points.	The	system	automatically	records	these	learning	behaviors	for	further	
analysis[10].	 VisCode	 is	 an	 online	 Python	development	 environment.	When	 students	 practice	
using	VisCode,	 the	system	automatically	 records	 their	activities,	 including	 the	 time	spent,	any	
errors	encountered,	and	the	overall	duration,	for	learning	analysis	purposes[11].	
Regarding	 Learning	 Strategy,	 it	 collects	 data	 on	 students'	 self-regulated	 learning	 (SRL)	

through	the	use	of	the	Motivated	Strategies	for	Learning	Questionnaire	(MSLQ)	and	the	Strategy	
Inventory	 of	 Language	 Learning	 (SILL)	 questionnaire.	 The	MSLQ	measures	 six	 dimensions	 of	
learning	 motivation,	 while	 the	 SILL	 assesses	 language	 learning	 strategies	 based	 on	 Oxford's	
categorization	of	language	learning	strategies	proposed	in	1990.	It	comprises	six	dimensions	with	
a	total	of	50	items[12],	although	the	dataset	only	includes	48	items	as	two	questions	were	deemed	
irrelevant	for	programming	language	learning	and	were	excluded.	The	modified	questionnaire	
items	were	tailored	to	suit	language	learning	in	the	context	of	programming	languages[13].	



2.2. Data	Preprocessing	and	Feature	Extraction	

The	LBLS-467	dataset	was	obtained,	followed	by	preprocessing	of	the	data,	where	missing	
values	were	filled	with	0	and	questionnaire	data	with	a	standard	deviation	of	0	was	removed.	
Next,	the	data	was	divided	into	two	categories:	pass	and	fail.	The	fail	category	represents	the	25%	
of	students	with	lower	learning	status,	indicating	relatively	backward	academic	performance,	i.e.,	
high-risk	students[14].		
Table	1	representing	learning	behaviors,	focused	on	the	analysis	of	student	interactions	with	

the	BookRoll	platform.	We	assessed	the	frequency	of	e-book	openings,	page	turns,	and	page	skips	
as	indicators	of	active	learning.	Additionally,	in	the	VisCode	platform,	we	collected	data	to	assess	
students'	 programming	 behaviors.	 This	 included	 recording	 the	 total	 usage	 time,	 frequency	 of	
opening	VisCode,	 instances	of	code	copying	and	pasting,	 lines	of	code	written,	and	the	overall	
count	 of	 error	 codes	 executed.	 These	 indicators	 provided	 valuable	 insights	 into	 students'	
programming	engagement	and	proficiency.	
	

Table 1 
Features of Learning Behavior Extracted from the Learning Environment 

System Feature Description 

BookRoll Marker_Operation Number of markers added and deleted 

Memo_Operation Number of times to add, delete, and modify note 

Bookmark_Operation Number of times to add, delete, and skip to a bookmark 

Prev_Next_Operation Number of times to turn page 

Jump_Operation Number of times to jump to a bookmark, notes or key point 

Open_Num Number of open the e-book 

Marker_Num Number of markers (highlight key point) 

Memo_Num Number of memos 

Bookmark_Num Number of bookmarks 

VisCode Error_Num Number of errors that occurred when VisCode ran the code 

Used_time Total usage time 

Code_Length Total number of lines of all programs 

Execute_Times Total number of code executions 

Notebook_Open Total number of times to open VisCode 

Code_Copy Total number of code copies 

Code_Paste Total number of times code was pasted 

 
Table	 2	 presented	 a	 comprehensive	 questionnaire	 that	 evaluated	 various	 dimensions	 of	

learning	 strategies.	 By	 categorizing	 the	 questionnaire	 items	 according	 to	 the	 authors'	
descriptions,	 we	 gained	 a	 deep	 understanding	 of	 how	 students	 approach	 their	 learning.	 One	
example	 is	 the	 SRL	 (Self-Regulated	 Learning)	 questionnaire,	 which	 focused	 on	 rehearsal	
strategies	involving	repetitive	review	for	better	retention	and	comprehension.		
The	table	encompassed	different	features	and	descriptions,	including	SRL	Learning	Motivation	

(intrinsic	and	extrinsic	motivation,	task	value,	control	beliefs,	self-efficacy,	and	test	anxiety),	SRL	
Learning	 Strategy	 (rehearsal,	 elaboration,	 organization,	 critical	 thinking,	 metacognitive	 self-
regulation,	time	and	study	environment	management,	effort	regulation,	peer	learning,	and	help-
seeking),	 and	SILL	 (Strategy	 Inventory	 for	Language	Learning)	 strategies	 (memory,	 cognitive,	
compensation,	metacognitive,	affective,	and	social	strategies).		
Data	normalization	is	an	effective	data	preprocessing	strategy	for	data	mining	and	machine	

learning[15-17].	In	this	study,	Min-Max	Normalization	is	employed	to	scale	the	feature	data	to	a	
range	of	0	to	1	while	preserving	the	original	data	distribution.	



Table 2 
Learning Strategies Features Extracted from Learning Questionnaires 

Questionnaire Feature Description 

SRL Learning 
Motivation 

intrinsic The internal drive and enjoyment individuals 
experience when engaging in learning activities. 

extrinsic External factors, such as rewards or recognition, 
that influence individuals' engagement in learning 
activities. 

task_value Assess students' perceptions of the interest, 
importance and usefulness of course content 

control_beliefs Assesses whether students believe their hard work 
will lead to positive outcomes 

self_efficacy Assesses the judgment and confidence that the 
student can complete the task independently 

test_anxiety Student anxiety levels about tests in the course 

SRL Learning 
Strategy 

rehearsal Repetitive or repeated review of study material to 
enhance retention and understanding. 

elaboration Enhancing understanding by making connections 
and creating meaningful associations with prior 
knowledge. 

organization The act of structuring and arranging information in 
a systematic and logical manner to facilitate 
comprehension and retrieval. 

critical_thinking The process of objectively analyzing and evaluating 
information to make informed judgments and 
decisions. 

metacognitive_self_regulation The skill of monitoring and controlling one's own 
learning process for better outcomes. 

time_and_study_environment Encompass managing study time effectively and 
creating an optimal setting for focused learning. 

effort_regulation The skill of consciously managing and adjusting 
one's level of effort to maximize learning 
outcomes. 

peer_learning The process of students learning from and with 
their peers, through collaborative activities and 
discussions. 

help_seeking Students seek support from others when they 
encounter difficulties in their studies. 

SILL memory The ability and strategies used to effectively 
remember and recall the materials learned. 

cognitive The mental processes and abilities involved in 
learning, such as attention, memory, thinking, and 
problem-solving. 

compensation The use of alternative strategies or resources to 
overcome difficulties or limitations in language 
skills or knowledge. 

metacognitive Students will plan, organize, evaluate and monitor 
their own language learning 

affective Students regulate their emotions, motivations and 
attitudes when learning a language 

social Student interacts with others while learning 



2.3. Model	Training,	Evaluation	and	Explanation	

Commonly	used	machine	learning	models	in	educational	scenarios	include	random	forest	(RF),	
support	vector	machine	(SVM),	decision	tree	(DT),	logistic	regression	(LR),	K-nearest	neighbor	
algorithm	(KNN),	and	artificial	neural	network	(ANN).	Logistic	regression	and	neural	networks,	
however,	have	been	found	to	provide	more	accurate	predictions	compared	to	other	methods[18,	
19].	Hence,	this	experiment	utilizes	logistic	regression	and	neural	networks	for	prediction.	
To	 assess	 the	 predictive	 performance	 of	 various	 machine	 learning	 algorithms,	 this	 study	

employs	five	indicators:	Accuracy,	Precision,	Recall,	F1-Measure,	and	Area	Under	Curve	(AUC).	
These	indicators	are	widely	used	to	evaluate	the	classification	performance	of	models[20,	21]		
This	study	utilizes	LIME[22]	and	SHAP[23]	as	explanation	generators	for	model	predictions.	

Six	 evaluation	 indicators	 are	 employed	 to	 assess	 the	 quality	 of	 explanations,	 measuring	
authenticity	and	stability[24]:	Feature	Agreement	(FA),	Rank	Agreement	(RA),	Prediction	Gap	on	
Important	 Features	 (PGI),	 	 Prediction	 Gap	 on	 Unimportant	 Features	 (PGU),	 Relative	 Input	
Stability	(RIS)	and	Relative	Output	Stability	(ROS).	
The	first	four	evaluation	indicators	(FA,	RA,	PGI,	PGU)	assess	the	accuracy	of	the	explanations,	

while	RIS	and	ROS	evaluate	their	stability.	FA	and	RA	are	specific	to	linear	models	(e.g.,	 linear	
regression,	logistic	regression)[24],	whereas	PGI,	PGU,	RIS,	and	ROS	are	applicable	to	all	models.	
Feature	Agreement	(FA)	quantifies	the	proportion	of	the	top	K	features	that	exhibit	consistent	

rankings	between	explanations	generated	by	AI	and	predictions	made	by	the	model.	Prediction	
Gap	 on	 Important	 Features	 (PGI)	 measures	 the	 difference	 in	 prediction	 probabilities	 when	
influential	features,	as	identified	by	explainable	AI-generated	explanations,	are	perturbed.	Higher	
PGI	 values	 indicate	 a	 stronger	 correspondence	 between	 the	 explanation	 and	 the	 prediction.	
Conversely,	Prediction	Gap	on	Unimportant	Features	(PGU)	measures	the	change	in	prediction	
probabilities	 when	 non-influential	 features,	 as	 identified	 by	 explainable	 AI	 explanations,	 are	
perturbed.	PGU	serves	as	an	indicator	of	the	explanation's	accuracy	in	capturing	non-influential	
factors.	
Relative	 Input	 Stability	 (RIS)	 and	 Relative	 Output	 Stability	 (ROS)	 quantify	 the	 maximum	

change	 in	 the	 explanation	 generated	 by	 explainable	AI	 in	 relation	 to	 the	 predicted	 input	 and	
output	probabilities,	respectively.	These	metrics	evaluate	the	stability	of	the	explanation.	

3. Result	

3.1. Evaluation	of	Model	Efficacy	

Table	3	displays	the	training	performance	results	using	LR	and	ANN,	indicating	that	logistic	
regression	outperforms	artificial	neural	networks	in	predicting	whether	a	student	is	high-risk	or	
low-risk.	
	

Table 3 
Predictive Performance Results of Different Models 

Method Accuracy Precision Recall F1-Score AUC 

LR 85.8% 78.9% 85.8% 81.0% 60.8% 

ANN 63.9% 65.3% 63.9% 61.3% 58.8% 

	

3.2. Explanation	of	Discrepancy	Results	

Both	SHAP	and	LIME	can	provide	explanations	for	model	predictions	on	individual	student	
data.	 SHAP	 offers	 explanations	 through	waterfall	 plots,	while	 LIME	 utilizes	 its	 own	 graphical	
representation.		
The	waterfall	plot	in	SHAP	is	designed	for	analyzing	the	most	important	features	contributing	

to	a	high-risk	prediction	for	a	single	data	point.	The	X-axis	represents	the	SHAP	value,	indicating	
the	 impact	 (positive	 or	 negative)	 of	 the	 corresponding	 feature	 on	 the	 prediction.	 The	 Y-axis	



represents	the	data	features	and	their	values	for	that	particular	data	point	(e.g.,	337	=	Error_Num,	
which	represents	the	total	number	of	errors	the	student	encountered	while	compiling	code).	The	
function	f(x)	represents	the	prediction	result	given	by	SHAP,	considering	all	features.	If	f(x)	equals	
1,	 it	 indicates	 a	 high-risk	 student,	 while	 f(x)	 equals	 0	 represents	 a	 low-risk	 student.	 E[f(x)]	
represents	the	average	prediction	value	of	the	model	across	the	dataset.	
Figure	2	illustrates	how	SHAP	explains	the	predictions	of	a	logistic	regression	model	through	

a	waterfall	plot	for	a	high-risk	student.	The	following	information	can	be	observed:	The	majority	
of	students	are	predicted	as	low-risk,	as	the	value	of	E[f(x)]	is	0.111,	approaching	0.		In	the	plot,	
this	student	is	predicted	as	high-risk,	with	a	value	of	1	for	f(x).	
The	main	reason	for	labeling	this	student	as	high-risk	is	the	high	value	of	Error_Num	(with	a	

SHAP	value	of	0.69),	which	far	exceeds	the	SHAP	values	of	Marker_Num	and	Marker_Operation	
(0.07	 and	 0.06,	 respectively).	 This	 indicates	 that	 the	 student's	 excessive	 errors	 during	 code	
compilation	are	the	primary	factor	contributing	to	their	high-risk	prediction.	
Throughout	the	semester,	this	student	made	a	total	of	337	errors	while	compiling	code,	with	

the	 third	 quartile	 of	 Error_Num	 being	 152.	 This	 confirms	 the	 student's	 tendency	 to	 make	 a	
relatively	high	number	of	errors	during	code	compilation.	

Figure	2	Waterfall	plot:	Using	SHAP	to	Explain	High-Risk	Students	
	
Figure	3	demonstrates	how	LIME	explains	the	predictions	of	a	logistic	regression	model	for	

the	same	student	as	a	high-risk	student.	From	the	Prediction	Probabilities	on	the	left,	it	can	be	
seen	that	LIME	predicts	the	probability	of	this	student	being	a	low-risk	student	as	0.25,	while	the	
probability	 of	 being	 a	 high-risk	 student	 is	 0.75.	 This	 indicates	 that	 LIME	 leans	 towards	
considering	this	student	as	a	high-risk	student.	
The	middle	 chart	 indicates	 the	 five	most	 important	 features	and	 their	 contributions	 to	 the	

prediction,	as	well	as	the	prediction	rules.	For	example,	the	top	five	features	are	Error_Num	(total	
number	of	errors	during	code	compilation),	Execute_Times	(total	number	of	program	executions),	
Marker_Operation	(frequency	of	using	key	functions),	Prev_Next_Operation	(total	number	of	page	
flips),	and	Used_Time	(total	duration	of	using	VisCode).	It	is	also	stated	that	if	Error_Num	exceeds	
171,	LIME	considers	this	student	as	a	high-risk	student,	with	Error_Num	contributing	0.36	to	this	
prediction.	
The	right	chart	indicates	the	actual	values	of	these	features.	For	example,	this	student	made	

337	errors	while	compiling	code	and	executed	a	total	of	2507	programs.	



	

Figure	3	Using	LIME	to	Explain	High-Risk	Students		
	
This	 study	 found	 inconsistencies	 in	 the	 features	 used	 by	 LIME	 and	 SHAP,	 indicating	 a	

discrepancy	 in	 the	 explanations	 generated	by	 these	 two	 explainers.	 The	detailed	 features	 are	
shown	in	Table	4.	
 
Table 4 
The	Five	Most	Important	Features	Explained	for	the	Same	High-Risk	Student	

LIME SHAP 

Error_Num Error_Num 

Execute_Times Marker_Num 

Marker_Operation Marker_Operation 

Prev_Next_Operation Code_Paste 

Used_Time Prev_Next_Operation 

 

3.3. The	quality	of	Explanation	

Table	5	presents	the	explanation	performance	results	obtained	by	using	 logistic	regression	
and	artificial	neural	networks	with	two	different	explainers,	LIME	and	SHAP.	It	is	observed	that	
when	 using	 logistic	 regression,	 the	 explanation	 quality	 generated	 by	 the	 LIME	 explainer	 is	
superior	 to	 that	 of	 SHAP.	 On	 the	 other	 hand,	 when	 using	 artificial	 neural	 networks,	 the	
explanation	quality	generated	by	the	SHAP	explainer	is	better	than	that	of	LIME.	
 
Table 5 
Explanation Quality of Various Explainable AI Algorithms with Different models 

Method FA RA PGI PGU RIS ROS 

LR+SHAP 0.70 0.62 0.0072 0.0036 3.23 4.69 

LR+LIME 0.97 0.72 0.0081 0.0043 0.22 3.68 

ANN+SHAP N/A N/A 0.0133 0.0023 0.21 2.43 

ANN+LIME N/A N/A 0.0135 0.0026 0.30 3.69 

	

4. Discussion	
We	noticed	in	Table	4	that	the	five	most	important	features	are	highlighted	by	LIME	and	SHAP.	
There	are	three	common	features,	meanwhile,	two	different	features	came	from	each	explanation	
model.	 	This	 raises	an	 intriguing	perspective	 that	 the	shared	emphasis	on	 these	 features	may	
indicate	higher	importance	and	reliability.	
This	 viewpoint	 sparks	 our	 interest	 in	 delving	 deeper	 into	 the	 correlation	 between	model	

predictive	 performance	 and	 explanatory	 performance.	We	 plan	 to	 further	 explore	 this	 in	 the	



upcoming	discussion.	This	not	only	enriches	our	discourse	but	also	contributes	to	providing	a	
more	comprehensive	perspective	to	address	various	viewpoints	and	concerns.	

4.1. Methods	for	Assessing	Explanations	

To	 address	 the	 first	 research	 question	 regarding	 the	 evaluation	 of	 explanations	 from	
explainable	AI	models,	we	utilized	six	metrics,	as	detailed	in	Section	2.3.	The	first	two	metrics,	
Feature	 Agreement	 (FA)	 and	 Rank	 Agreement	 (RA),	 assess	 fidelity	 and	 consistency	 in	
explanations	generated	by	post-hoc	models	 like	SHAP	or	LIME.	FA	measures	the	shared	top-K	
features	between	the	post-hoc	explanation	and	the	model's	feature-based	importance	ranking,	
while	RA	evaluates	feature	ordering	consistency.	These	metrics	contribute	to	understanding	the	
explainability	and	trustworthiness	of	AI	systems.	
The	third	and	fourth	metrics,	Prediction	Gap	on	Important	Features	(PGI)	and	Prediction	Gap	

on	Unimportant	Features	(PGU),	quantify	the	impact	of	perturbations	on	identified	influential	and	
unimportant	 features.	PGI	reflects	 the	alignment	between	 influential	 features	and	 the	model's	
prediction,	while	PGU	assesses	 the	model's	disregard	 for	unimportant	 features.	These	metrics	
enhance	our	understanding	of	explainability	and	trustworthiness.	
Two	additional	metrics,	Relative	Input	Stability	(RIS)	and	Relative	Output	Stability	(ROS),	were	

incorporated.	 RIS	 measures	 changes	 in	 the	 explanation	 due	 to	 slight	 input	 modifications,	
indicating	 explanation	 stability.	 A	 smaller	 RIS	 value	 signifies	 higher	 stability.	 Similarly,	 ROS	
quantifies	 changes	 in	 the	 explanation	 relative	 to	 variations	 in	 output	 probabilities,	 assessing	
explanation	 robustness.	 A	 lower	 ROS	 value	 indicates	 higher	 stability.	 These	 metrics	 aim	 to	
comprehensively	evaluate	the	fidelity,	alignment,	and	stability	of	post-hoc	explanations	in	diverse	
AI	domains.	

4.2. Exploring	the	Quality	of	Explanations		

Although	the	accuracy	of	ANN	is	lower,	we	are	still	interested	in	seeing	how	LIME	and	SHAP	
perform	on	LR	and	ANN.	It	is	worth	noting	that	six	evaluation	metrics,	including	FA,	RA,	PGI,	PGU,	
RIS,	and	ROS,	are	specifically	designed	to	evaluate	explanatory	artificial	intelligence	(XAI)	and	are	
not	affected	by	model	accuracy.	Therefore,	although	the	accuracy	of	ANN	is	 lower,	 it	does	not	
affect	our	evaluation	of	LIME	and	SHAP	in	terms	of	interpretation.	

From	 Table	 5,	 it	 is	 evident	 that	 LIME	 produces	 explanations	 with	 higher	 accuracy	 and	
consistency	compared	to	SHAP	for	the	LR	model.	While	LIME	exhibits	a	higher	PGU	compared	to	
SHAP,	indicating	a	greater	variance	in	predictions	concerning	unimportant	features,	it	is	essential	
to	consider	other	factors	in	evaluating	the	overall	performance.	It	is	crucial	to	recognize	that	PGU	
primarily	emphasizes	the	explanation	of	unimportant	features.	In	this	particular	experiment,	we	
emphasize	 the	 significance	 of	 paying	 more	 attention	 to	 explanations	 related	 to	 important	
features.	Additionally,	the	model's	explanatory	performance	is	not	solely	determined	by	a	single	
indicator;	instead,	a	comprehensive	assessment	considering	multiple	indicators	is	necessary.	
LIME	 performance	 better	 than	 SHAP	 for	 the	 LR	model	 can	 be	 attributed	 to	 the	 similarity	 in	
functionality	 between	 LIME	 and	 logistic	 regression.	 LIME	 operates	 by	 providing	 a	 locally	
interpretable	model	(using	linear	regression)	for	complex	and	opaque	models,	aiming	to	find	a	
simple	 and	understandable	model	 for	 a	 specific	 instance	 to	 address	 the	question	of	 "why	 the	
model	classifies	an	instance	into	a	specific	category"[22].	

Both	logistic	regression	and	linear	regression	employ	similar	formulas,	with	the	distinction	
that	 logistic	 regression	 applies	 a	 sigmoid	 function	 to	 transform	 the	 regression	 results	 into	
predicted	 probabilities,	while	 linear	 regression	 does	 not	 involve	 this	 sigmoid	 transformation.	
This	resemblance	in	approach	between	logistic	regression	and	LIME	explains	why	LIME	performs	
better	when	explaining	logistic	regression	models[18,	22].	
On	the	other	hand,	SHAP	generates	explanations	with	higher	fidelity	and	stability	in	the	ANN	

model	 compared	 to	LIME.	This	may	be	 attributed	 to	 the	 fact	 that	 SHAP's	 functioning	 is	more	
similar	to	artificial	neural	networks.	SHAP	operates	by	analyzing	the	explainability	of	a	model's	
predictions	in	terms	of	the	contribution	of	each	feature,	calculating	the	Shapley	values	for	each	
feature	to	measure	its	impact	on	the	predictions.	Higher	contribution	indicates	higher	importance	
of	 that	 feature.	 However,	 the	 training	 methodology	 of	 artificial	 neural	 networks	 involves	



transformations	 through	 the	 states	 of	 neurons	 in	 hidden	 layers,	 representing	 nonlinear	
classification[25].	 Therefore,	 linear	 regression,	 which	 is	 used	 by	 LIME,	 may	 not	 provide	
explanations	of	higher	quality,	leading	to	SHAP's	feature	contributions	aligning	better	with	the	
training	methodology	of	artificial	neural	networks.	

4.3. Resolving	Differences	in	Explanations	

Firstly,	user	feedback	can	be	gathered	through	methods	such	as	questionnaires	or	interviews	
to	assess	the	quality	of	explanations.	Secondly,	in	the	absence	of	user	or	expert	input,	explanations	
can	be	selected	based	on	their	accuracy	and	stability.	If	the	explanations	generated	by	a	specific	
explainer	 demonstrate	 better	 stability	 compared	 to	 those	 produced	 by	 other	 explainers,	 that	
specific	explainer	can	be	chosen.	For	example,	when	dealing	with	predictions	made	by	artificial	
neural	network	models,	SHAP's	explanations	outperform	LIME	 in	 three	out	of	 four	evaluation	
criteria	 (PGI,	 PGU,	 RIS,	 and	 ROS).	 Therefore,	 SHAP	 explanations	 can	 be	 employed	 in	 such	
scenarios.	Conversely,	LIME's	explanations	surpass	SHAP	in	five	out	of	six	evaluation	criteria	(FA,	
RA,	PGI,	RIS,	and	ROS)	for	logistic	regression	models.	Hence,	LIME	explanations	can	be	utilized	
when	working	with	logistic	regression	predictions.	

5. Conclusion	
In	conclusion,	this	study	emphasizes	the	significance	of	explainable	and	trustworthy	AI	in	the	field	
of	 education.	 By	 employing	 two	 machine	 learning	 methods	 (logistic	 regression	 and	 neural	
networks)	and	two	explainable	AI	packages	(LIME,	SHAP),	the	research	evaluates	and	generates	
explanations	for	students'	learning	outcomes.	The	use	of	six	evaluation	metrics	for	explainability	
ensures	the	accuracy	and	stability	of	these	explanations.	
The	 findings	of	 this	study	contribute	 to	 the	development	of	explainable	AI	models	 that	are	

transparent	and	can	be	trusted	by	education	teams.	By	providing	comprehensive	explanations	
for	model	predictions,	the	study	enhances	the	understanding	and	confidence	of	stakeholders	in	
the	 decision-making	 process	 of	 AI	 systems.	 This	 promotes	 the	 responsible	 and	 sustainable	
integration	of	artificial	intelligence	in	educational	settings.	Moreover,	the	research	highlights	the	
importance	 of	 evaluation	 metrics	 in	 assessing	 the	 quality	 and	 effectiveness	 of	 explanations	
generated	by	explainable	AI	models.	Establishing	such	metrics	not	only	ensures	reliable	system	
performance	 but	 also	 supports	 the	 establishment	 of	 fundamental	 principles	 for	 building	
trustworthy	AI	in	various	contexts.	
In	our	 future	work,	we	plan	 to	extend	our	analysis	 to	 include	diverse	model	architectures,	

which	will	 allow	 us	 to	 highlight	 differences	 in	 particular	 features	 and	 explore	 the	 aspects	 of	
importance	that	transcend	specific	model	structures.	This	expansion	could	contribute	to	a	more	
robust	 evaluation	 of	 model	 interpretability	 and	 feature	 importance	 across	 various	 modeling	
paradigms.		
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