
Using a Hierarchical Clustering Algorithm to Explore the 
Relationship Between Students' Program Debugging and Learning 
Performance 
Chao Hung Liu  and Ting-Chia Hsu   
 
Department of Technology Application and Human Resource, National Taiwan Normal University, Taiwan  
 
 

ABSTRACT 
The programming course poses a significant challenge for students who are just starting to learn a 
programming language. Many beginners, upon encountering an "ERROR" message from the system, 
tend to give up on learning. However, there are also students who persist in overcoming difficulties, 
exerting continued effort to complete their code, and achieving better learning outcomes. Therefore, 
this study aimed to cluster students based on their behavior during debugging in a programming 
course. It sought to explore the impact and differences among students in terms of program success 
and course grades within different debugging frequency clusters. 
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1. Introduction 

Computer programming courses have long been a significant challenge for students entering the 
field of information technology. This is because students must express their needs using computer-
understandable terms, logic, and thinking, often encountering obstacles in the process (Feurzeig et al., 
2011). This challenge is considered a global issue, as both introductory and advanced programming 
language courses face high dropout rates, creating substantial pressure on students and teachers who 
may have high expectations for themselves (Luxton,2016). Many students give up when confronted 
with multiple syntax and logic errors, indicating a potential lack of problem-solving skills and 
perseverance (Cheah,2020). 

 
In light of these challenges, this study primarily explored students' behavior records during the 

debugging process of coding, as errors represent obstacles and setbacks. Whether students can progress 
through these setbacks will be a key factor in their improvement and success. The study was designed 
to analyze and cluster students' debugging behavior data in programming courses using the Learning 
Management System. The research was expected to address three main research questions:  

• RQ1. Can errors made by students in coding be differentiated into distinct clusters? 
• RQ2. Is there a difference in the number of successful program runs (Success_run) among 

students in different programming error clusters? 
• RQ3. Is there a difference in course learning scores (Score) among students in different 

programming error clusters? 

2. Related work 

2.1.  Learning analytics for online learning 

Educational Data Mining (EDM) and Educational Process Mining (EPM) are data science 
approaches to analyze various Learning Management Systems (LMS)(Bogarín,Cerezo& Romero,2018). 
This data mining approach is an important part of learning analytics.  
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Particularly with the rapid expansion of Massive Open Online Courses (MOOCs), the interaction 
between online educational resources and learners is stored in extensive databases, creating educational 
big data for interpretation by educators (Ruipérez et al., 2022).  

In numerous studies on learning analytics, there is often an exploration of dropout rates (failure 
rates) on online education platforms (Qian,2022). Additionally, researchers have analyzed differences 
in learning behaviors on a platform (Tong & Zhan, 2023), ultimately aiming to predict students' learning 
achievements (grades)(Li,Du & Yu,2023). These studies frequently involve classifying learners based 
on their learning preferences, allowing them to adapt their learning experiences according to the 
platform's diverse learning paths, recommendation systems, personalized learning strategies, and more. 

2.2. Trial and Error in Programming Learning  

The learning of programming languages involves various aspects of learning, such as problem-
solving skills, computational thinking, and syntax comprehension (Nouri, Zhang, Mannila & Norén, 
2020). Importantly, students need to sustain high motivation and genuine engagement in coding to make 
progress in learning how to program (Silva & Silveira, 2020). From the perspective of beginners, the 
difficulty lies in the inability to break down large problems into smaller ones. When hearing some 
specific terms (such as recursion, arrays, etc.), students may understand how they work, but struggle to 
translate that understanding into actual code (Lister et al., 2004). In this context, it is crucial to 
encourage students to engage in trial and error, as the experiences gained from mistakes help students 
engage in self-reflection and can even stimulate strong motivation to find satisfactory answers and 
iterate through the trial-and-error process (Sicora , 2019). 

 
Since the sixteenth century, people have sought solutions to problems by encountering stimuli that 

lead to subsequent actions, which may involve continuous trial and error until success or, in some cases, 
giving up, which results in task failure (Boswell , 1947). Learning is inherently challenging, with 
difficulties progressing from shallow to deep. For example, students may encounter "Errors" while 
programming, which could contribute to exacerbating the failure rate in programming courses (Porter, 
Guzdial, McDowell & Simon, 2013) but can also serve as the driving force for problem solving (Noh 
& Lee, 2020). 

 
Programming education is often considered to have a high entry threshold, possibly due to 

insufficient problem-solving skills among students or ineffective use of learning materials  (Cheah, 
2020). Therefore, in programming courses, continuous trial and error by students is viewed as a positive 
behavioral performance. This practice signifies students' continuous attempts, whether in syntax or 
logical reasoning, until they produce results matching their expectations (Ye et al., 2022). Efforts in 
trial and error also help students enhance their self-efficacy, as they gain confidence in how to deal with 
errors and develop problem-solving skills (Ahn , Mao , Sung & Black, 2017). 

2.3. Agglomerative Hierarchical Clustering in Online Courses 

Hierarchical clustering is an unsupervised algorithm that organizes data points into a tree-like 
structure on a two-dimensional plane. It groups data points and produces a hierarchical structure based 
on the differences between data points (Alpaydin , 2020). Agglomerative hierarchical clustering is a 
bottom-up hierarchical clustering method that visualizes the hierarchical structure and underlying data 
clustering structure (Liu, Xu, Zeng & Ren, 2021). It is also a user-friendly and popular clustering 
algorithm. 

 
The agglomerative hierarchical clustering process first assigns each object to its own cluster. It 

then uses distance or similarity measures (e.g. Euclidean distance for quantitative data, Manhattan 
distance for ordered but not necessarily quantitative data) or more complex methods (e.g. unweighted 
with arithmetic mean Pair group method (UPGMA) (Oyelade , 2019). 

 
The algorithm proceeds as follows: 



Based on N samples, there are initially N clusters, each cluster containing one sample. 
Iteratively merges the two closest clusters based on the chosen distance or similarity measure until 

the number of clusters is reduced to 1 or reaches a user-specified number (Cichosz , 2014). 
In each successive iteration, the algorithm merges the closest pair of clusters based on the similarity 

criterion of features between data points until all data are in one cluster (Sasirekha & Baby, 2013). 
Hierarchical clustering helps analyze educational big data, helping researchers identify different 

student learning styles, achievements, and behaviors, as well as assess individual engagement levels 
(Hung, Liu, Liang & Su, 2020 ; Trivedi & Patel ,2020 ; Yang, Chen, Flanagan & Ogata, 2022). 

3. Method 

3.1. Data mining methods 

This research incorporates the "Learning Behavior and Learning Strategies" dataset collected by 
Lu et al.(2022). This dataset predominantly consists of various actions recorded on a Learning 
Management System (LMS) as students engaged in learning programming. It encompasses a range of 
data points such as the number of errors generated, instances of code copying, frequency of code 
execution, and academic grades. The primary focus of the dataset is to capture the learning behaviors 
and strategies of students while they undertake programming tasks within the LMS environment(Lua 
et al., 2022). 

 
For the clustering analysis, this study focused on the "viscode.csv" dataset, specifically using the 

"IndentationError," "NameError," "SyntaxError," and "TypeError" fields. These four types of errors 
were defined as indicators of programming trial-and-error, representing the problems and difficulties 
students encountered while running their code. The "Viscode-success_run" and "Score" fields were 
used as indicators to validate the effectiveness of clustering (Table 1), serving as the basis for addressing 
Research Questions 2 and 3 in the study. 

 
Table 1 
Program trial and error and verification field description table 

Program Error Field 
Name 

Program Error Field 
Introduction 

Validation Field Name Validation Field 
Introduction 

PseudoID The ID names of each 
student have been de-

identified. 

Cluster This field describes 
the clusters obtained 

after grouping the 
program trial-and-

error field. 
IndentationError This field describes 

when syntax errors 
occur related to 

incorrect indentation 

Viscode-success_run This field describes 
the number of 

successful program 
runs in the 
integrated 

development 
environment. 

NameError This field describes 
when local or global 

names are not found. 

Score This field describes 
the final learning 

score for the course. 
SyntaxError This field describes 

when the syntax 
parser encounters a 

syntax error. 

  



TypeError This field describes 
when an operation or 
function is applied to 

inappropriate types of 
objects. 

  

 

3.2. Dataset 

This study compared actions taken by 452 students in a programming course using an integrated 
development environment, as recorded by the learning management system in the viscode.csv dataset. 
The data, preprocessed and de-identified, includes distinct class fields (a-i), fields for interactions with 
the integrated development environment, debugging attempts, execution counts, success running counts, 
and grades. After clustering, a new PseudoID field was introduced to represent a unique identifier for 
each student, also serving as an index after clustering(Ogata et al., 2017). Additionally, a Cluster field 
was added for conducting inter-group analysis of variances and comparing the correlation between 
program execution success and learning grades across clusters. 

3.3. Designing Clustering Model 

This research employs the agglomerative hierarchical clustering method from the Python 
sklearn.cluster module for systematic trial-and-error clustering. To avoid the skewing of results by any 
single feature, normalization is performed before clustering. This is critical as it prevents any one data 
column from exerting undue influence on the clustering outcome and maintains the robustness of the 
algorithm against outliers, which could be seen as noise. 

Following this preparatory step, the clustering process commences. The distance metric adopted 
is the "Ward" method, designed to minimize the total within-cluster variance. Essentially, at each step, 
Ward's method selects two clusters to merge in a way that results in the least possible increase in total 
variance, thus preserving high similarity within the clusters. 

 
Moreover, to ensure a balanced distribution of clusters, silhouette scores are utilized to assess the 

quality of clustering across different numbers of clusters, ranging from 2 to 9. Referencing Table 2, the 
study identifies 2 as the optimal number of clusters and proceeds with further data analysis using this 
configuration. 

 
Table 2 
Silhouette coefficient grouping score table 

Number of clusters cluster rating 
2 0.58618 
3 0.38826 
4 0.35471 
5 0.36514 
6 0.25836 
7 0.26924 
8 0.22217 
9 0.22226 

 

4. Experiment results & discussion 



4.1. Can errors made by students in coding be differentiated into distinct 
clusters? 

This study utilized the scipy.cluster.hierarchy library in Python to perform clustering analysis. 
Through this library, hierarchical clustering results were computed and visualized, as shown in Fig. 1. 
The chart reveals two distinct clusters with noticeable distances between them. Cluster 0 comprises 414 
student records, Cluster 1 includes 38 student records. This study further applied Principal Component 
Analysis (PCA) to reduce the dimensions of data consisting of student IDs and their trial-and-error 
behaviors. By transforming the data into a two-dimensional chart, we made it straightforward to 
compare these behaviors against student performance. 

In this study, the Python library seaborn was utilized to create a heatmap (Fig. 2), which presents 
the average number of trial-and-error attempts by students across different clusters. The heatmap clearly 
shows that students in Cluster 1 had a higher frequency of programming errors, such as IndentationError, 
NameError, SyntaxError, and TypeError, compared to those in Cluster 0. Notably, there are significant 
differences in the occurrences of NameError, SyntaxError, and TypeError between Clusters 1 and 0. 
Cluster 1 is characterized as the "Frequent Trial-and-Error Group," while Cluster 0 is referred to as the 
"Regular Trial-and-Error Group" in this study. 

 
Figure 1: Hierarchical Clustering Dendrogram 

 
Figure 2: Heat map of program trial and error performance of different clusters 

 



4.2. Is there a difference in the number of successful program runs 
(Success_run) among students in different programming error clusters? 

To address research question 2, the study analyzed the "Success_run" field, revealing through Figure 
3 that students in the frequent trial-and-error cluster had higher average successful program runs 
compared to those in the infrequent trial-and-error cluster. This pattern suggests that students who 
frequently encountered system errors in the integrated development environment were more persistent, 
leading to more successful code executions. 

 
The study further employed an independent sample T-test, using IBM SPSS, to investigate statistical 

differences between the clusters in terms of successful program runs. The findings showed a statistically 
significant difference (t = -5.49, p < .05), where the frequent trial-and-error cluster outperformed the 
regular trial-and-error cluster in successful program executions. This discrepancy likely arises from the 
frequent trial-and-error students' resilience and continuous engagement with problem-solving and 
coding adjustments, in contrast to students in the regular trial-and-error cluster who may have 
experienced reduced motivation and task completion rates after facing setbacks. Consequently, the 
frequent trial-and-error cluster exhibited a significantly higher number of successful program operations 
compared to the regular trial-and-error cluster, highlighting their effective learning and problem-solving 
approach. 

 
Figure 3: Box plot of program trial and error with different groups of successfully running code] 

 
Table 3 
Successfully running code and trial and error clusters were subjected to Independent Samples Test. 

Independent Samples Test 

Viscodesuccess_run 

 
N Mean SD Sig. t d 

frequent 
cluster 

414 1358.88 1016.89 .023 -5.49* 0.39 

regular 
cluster 

38 2323.34 1243.08  -4.64*  

*. The mean difference is significant at the 0.05 level. 
 



4.3. Is there a difference in course learning scores (Score) among students in 
different programming error clusters? 

To explore Research Question 3, the study performed a descriptive analysis of the “score” field 
across clusters differentiated by trial-and-error frequency. Figures 2 and 4 illustrate that clusters 
characterized by frequent trial-and-error tend to have higher scores than those with regular trial-and-
error patterns. The box plot indicates that scores for the frequent trial-and-error group are 
predominantly ranged between 80 and 90 points. In contrast, the regular trial-and-error group not 
only exhibited wider score fluctuations (70-85 points) but also presented numerous outliers 
significantly below the average, with some scores approaching zero. This suggests potential dropout 
behaviors among certain students in the regular trial-and-error group. 

 
The independent samples T-test statistics revealed a significant disparity in course performance 

between the two trial-and-error groups (t = -2.69, p < .05) as shown in Table 4. This finding resonates 
with the insights from RQ1 and Figure 1.  

The study segmented program-based learning students by their trial-and-error occurrences, noting 
that a smaller contingent of students (38 in total) fell into the frequent trial-and-error group. Not with 
standing their group size, these students not only surpassed the regular trial-and-error group in the 
number of successful program runs but also outscored them. This underscores the significance of 
persistent trial-and-error efforts in learning; it is imperative for learners to persistently experiment 
and overcome challenges without capitulation to achieve success(Dong et al., 2019). 

 
Figure 4: Box plot of program trial and error with different groups of course score 
 
Table 4 
Course score and trial and error clusters were subjected to Independent Samples Test. 

Independent Samples Test 

Score 

 
N Mean SD Sig. t d 

frequent 
cluster 

414 78.80 17.87 .020 -2.69* 0.26 

regular 
cluster 

38 86.71 10.31  -4.19*  

*. The mean difference is significant at the 0.05 level. 



5. Conclusion 

This study investigated the error patterns students demonstrated while debugging programs, 
categorizing them into two distinct groups: Cluster 0, the regular trial-and-error cluster, and Cluster 1, 
the frequent trial-and-error cluster. The analysis revealed that students in the frequent trial-and-error 
cluster not only had higher average course success rates and final scores compared to their counterparts 
in the regular trial-and-error cluster but also performed significantly better. These findings suggest that 
the debugging behaviors of different student groups can affect their learning outcomes. Educators 
should be cognizant of these differences and strategize appropriate responses to students' programming 
challenges. Moreover, when the frequency of trial-and-error attempts begins to wane, interventions such 
as encouragement or providing cues might be necessary to bolster students' motivation and align them 
with their peers(Xu, Yang, Liu & Jin, 2023). 

 
Nonetheless, it is crucial to acknowledge the limitations of the dataset and context of this study. 

Given that all participants were novices in programming and enrolled in the same course, the breadth 
of their acquired knowledge may be limited. This research advocates for the use of more varied datasets 
and extended observational periods. There is also considerable variation in the amount of time different 
students dedicate to studying programming. While some engaged with the course material for over 
seven hours, others may invested mere minutes. As this study lacks precise data on students' study 
timings, future research could employ time series analysis to discern behavioral shifts among clusters 
and predict how debugging frequency might influence future learning. Such an approach could yield 
more precise learning recommendations and enable educators to tailor their focus on the effects of trial-
and-error activities on academic achievement. 
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