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Abstract		
Learning	Analytics	(LA)	is	a	field	focusing	on	analyzing	educational	data,	utilizing	machine	learning.	One	
of	the	most	discussed	topics	is	at-risk	student	prediction.	However,	the	application	of	these	methods	for	
predicting	students'	academic	behaviors	has	faced	criticism	due	to	concerns	about	context	insensitivity,	
potentially	leading	to	prejudice	and	discrimination	against	students.	While	some	methods	in	explainable	
AI	 (xAI)	 have	 been	 proposed	 to	 address	 these	 issues,	 there	 remains	 uncertainty	 regarding	 the	
consistency	of	their	results.	In	response,	we	incorporate	two	popular	explainable	AI	(xAI)	methods	SHAP	
(Shapley	 Additive	 exPlanations)	 and	 LIME	 (Local	 Interpretable	 Model-agnostic	 Explanations),	 to	
interpret	 the	 predicting	models.	 These	methods	 attribute	 the	 output	 of	 these	models	 to	 individual	
features,	providing	a	clearer	understanding	of	how	each	features	contributes	to	the	overall	prediction.	
This	approach	is	exemplified	in	the	LBLS467	dataset,	which	includes	data	on	467	students’	academic	
performance	 and	 learning	 behaviors	 in	 computer	 programming	 courses,	 encompassing	 a	 range	 of	
metrics	 from	 programming	 behavior	 to	 self-regulated	 learning	 and	 language	 learning	 strategies.	
Concerning	the	consistency	of	interpretations	derived	from	SHAP	and	LIME,	analysis	via	Kendall’s	tau	
coefficients	reveals	a	moderate	alignment	in	their	feature	weight	rankings.	Additionally,	this	alignment	
is	substantiated	by	a	highly	significant	confidence	level,	affirming	that	the	observed	alignment	is	not	a	
mere	coincidence.	
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1. Introduction	
Learning	 Analytics	 (LA)	 is	 a	 research	 field	 centered	 on	 measuring,	 collecting,	 analyz-	
ing,	and	reporting	data	about	learners	and	their	contexts	[1].	Within	this	field,	predicting	student	
academic	achievement	is	a	foundational	and	significant	topic	[2].	Risk	student	prediction	involves	
identifying	students	at	risk	of	academic	failure	using	data-driven	insights	and	has	been	used	to	
enhance	web-based	learning	environments	[3].	This	process	is	not	about	labelling	or	categorizing	
students,	rather,	 it	aims	to	foresee	students’	performance	in	classes	 in	advance.	This	foresight	
enables	educators	to	offer	timely	assistance	and	intervention,	tailored	to	each	student’s	needs,	
thereby	enhancing	their	academic	outcomes	and	experiences.	
Machine	learning	is	often	criticized	for	being	overly	generalized,	and	overlooking	the	context	

of	 the	 individual.	 Reflecting	 on	 the	 limitations	 of	 generalizations	 in	 understanding	 human	
behavior,	 anthropologist	 Clifford	 Geertz	 suggests	 that	 theories	 and	 generalizations	 inevitably	
lack	deep	and	contextual	understanding	of	human	thought.	 ‘Theoretical	disquisitions	stand	far	
from	the	 immediacies	of	social	 life,’	he	notes.	 ‘Any	generalization	or	theory	constructed	in	the	
absence	of	deep	understanding,	not	grounded	in	the	concrete	and	particular,	is	vacuous.’	[4].	The	
approach	of	risk	student	prediction	has	also	faced	similar	criticism	of	over-generalizing.	The	fact	
that	machine	learning	models	do	not	provide	a	causal	effects	between	features	and	prediction	is	
overlooking	 the	 individuality	of	 students.	 In	machine	 learning	predictions,	we	are	 confronted	
solely	with	the	dichotomous	outcomes:	students	being	classified	as	either	’at	risk’	or	’not	at	risk.’	
While	the	purpose	of	such	predictions	is	not	to	categorize	students,	the	absence	of	interpretability	
in	 these	 outcomes	 can	 inadvertently	 result	 in	 failure	 to	 recognize	 individuality	 and	 risk	 of	
discrimination	 and	 stereotyping	 [5].	 Explainable	 Artificial	 Intelligence	 (xAI)	 appears	 to	 be	 a	
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solution	 to	 address	 these	 concerns,	 helping	 educators	 understand	 the	 differences	 among	
individual	students.	xAI	refers	to	methods	to	explain	and	interpret	predictions	made	by	machine	
learning	models	[6].	Recently,	artificial	intelligence	has	been	integrated	into	many	areas	of	society.	
At	the	same	time,	debates	surrounding	AI,	particularly	in	the	context	of	ethics	remain	active.	One	
of	the	most	popular	topics	is	transparency.	In	discussions	about	transparency,	besides	disclosing	
training	data	 and	 sources,	 another	prevalent	 approach	 is	 the	 application	of	 xAI	 to	 render	 the	
decision-making	 processes	 transparent.	 When	 a	 model's	 decision	 process	 is	 transparent,	 it	
becomes	 simpler	 to	 monitor	 and	 assess	 its	 accuracy,	 thereby	 enhancing	 the	 model's	
accountability.	Moreover,	the	comprehensible	predictions	offered	by	interpretable	models	play	a	
vital	role	in	fostering	people's	acceptance	and	trust	in	the	decisions	made	by	the	model	[7].In	this	
study,	we	will	answer	two	research	questions:	

 
RQ1: What are the successful factors in the LBLS dataset explored by SHAP and LIME? 
RQ2: How consistent are SHAP and LIME in interpreting a student’s learning performance? 

2. Literature	Review	
The	global	community	has	developed	an	extensive	variety	of	xAI	approaches,	which	have	been	
applied	across	various	domains	to	interpret	a	wide	range	of	machine	learning	models,	including	
several	 complex	models	 that	were	 previously	 considered	 too	 intricate	 to	 interpret	 [8].	 These	
advancements	 in	 xAI	 have	 enabled	 a	 deeper	 understanding	 of	 machine	 learning	 outputs,	
enhancing	transparency	and	trust,	especially	in	critical	sectors.	In	line	with	these	developments,	
a	systematic	review	of	xAI	applications	reveals	a	concentrated	focus	in	specific	sectors,	notably	
healthcare,	industry,	and	transportation	[9].	As	for	the	field	of	education,	despite	the	relatively	
lower	number	of	scholarly	articles	compared	to	other	domains,	the	application	of	xAI	has	been	
noted	in	the	review.	It	is	noteworthy	that	27%	of	xAI	applications	in	these	articles	are	utilized	for	
decision	 support,	 which	 is	 the	 highest	 proportion	 of	 application	 in	 this	 context.	 Therefore,	
employing	xAI	as	a	tool	for	decision	support	in	predicting	whether	students	are	at	risk	is	justified.		
The	 application	 of	 xAI	 in	 education	 manifests	 primarily	 in	 two	 aspects:	 data	 usage	 and	

stakeholder	 engagement	 [10].	 Application	 in	 data	 usage	 enables	 the	 explanatory	 models	 to	
improve	 prediction	 models	 after	 identifying	 the	 characteristics	 of	 student	 success	 in	 the	
classroom.	 In	 terms	 of	 stakeholder	 engagement,	 it	 allows	 teachers	 to	 adjust	 their	 teaching	
methods	based	on	the	results	provided	by	the	explanations.		
Reflecting	on	previous	 studies,	 there	was	 research	 focused	on	 the	automatic	generation	of	

explanations	in	virtual	learning	environments.	In	[11],		a	tool	was	developed	to	generate	multi-
modal	 explanations	 regarding	 predictions	 of	 whether	 a	 student	 will	 pass	 or	 fail.	 The	 study	
compared	the	accuracy	of	various	classifiers.	Under	the	conditions	of	most	models	demonstrated	
high	accuracy,	it	opts	for	simpler	models	including	J48,	Rep-Tree,	and	RandomTree	over	complex	
ones	like	SVM	to	achieve	a	balance	between	accuracy	and	interpretability.	[12]	also	indicates	that	
when	 models	 achieve	 high	 predictive	 accuracy,	 simpler	 models	 may	 yield	 higher	 quality	
explanations.	Therefore,	this	study	follows	this	direction	by	comparing	the	predictive	accuracy	of	
multiple	 models	 and	 selecting	 a	 simpler	 model	 for	 explanation	 under	 the	 premise	 of	 high	
accuracy.	
According	to	[6],	the	most	prominent	repositories	on	GitHub	in	2022	for	xAI,	as	measured	by	

the	number	of	stars,	were	slundberg/shap	(Shapley	Additive	exPlanations)	and	marcotcr/lime	
(Local	 Interpretable	Model-agnostic	Explanations).	 SHAP	operates	on	 game	 theory	principles,	
attributing	a	machine	 learning	model’s	output	to	the	contributions	of	 individual	 features	[13].	
Conversely,	 LIME	 elucidates	 the	 predictions	 of	 classifiers	 or	 regressors	 faithfully	 by	 locally	
approximating	 them	 with	 an	 interpretable	 model	 [8].	 Both	 methods	 are	 adept	 at	 explaining	
machine	 learning	 models,	 regardless	 of	 their	 complexity.	 Given	 the	 active	 community	
engagement	on	GitHub,	the	high	level	of	attention	these	methods	have	garnered,	and	their	open-
source	status,	this	study	will	incorporate	both	SHAP	and	LIME.	Utilizing	these	approaches,	we	aim	



to	pinpoint	key	features	that	determine	the	classification	of	individual	students	as	at-risk.	We	will	
compare	the	outcomes	from	each	method	and	assess	the	consistency	between	the	two.	

3. Methods	

3.1.	LBLS	Dataset	

LBLS467	 is	 a	 dataset	 that	 collects	 data	 on	 467	 students’	 academic	 performance	 and	 learning	
behaviors	 in	 computer	 programming	 courses.	 It	 encompasses	 students’	 programming	 editing	
behaviors,	 questionnaire	 survey	 results	 on	 Self-regulated	 Learning	 (SRL)	 and	 the	 Strategy	
Inventory	for	Language	Learning	(SILL).	This	dataset	includes	a	total	of	208	features,	covering	a	
wide	range	of	learning	behaviors	and	performance	indicators.	The	dataset	is	utilized	to	propose	
a	 series	 of	 challenging	 suggestions	 for	 the	 LBLS	 dataset	 and	 was	 used	 in	 a	 data	 challenge	
workshop	organized	by	the	Society	for	Learning	Analytics	Research	(SoLAR)	[14]	[15].	'At-risk'	
has	diverse	definition,	in	this	study,	we	defined	'At-risk'	students	are	those	who	fail	or	are	on	the	
verge	of	failing	the	course	in	this	study.	Specifically,	risk	students	are	those	whose	performance	
is	comparatively	worse	than	at	least	75%	of	the	students	in	their	class."	

3.2.	Feature	Extraction	and	Classification	

In this study, we employ Principal Component Analysis (PCA) as our primary tool for feature extraction. 
PCA, a common preprocessing step for machine learning algorithms [16], is followed by the application 
of three different models, ranging from the most explainable to the least: Decision Tree, Logistic 
Regression, and Support Vector Machine (SVM). We create a graph to demonstrate how model 
accuracy relates to the number of PCA components, aiming to find the most accurate model for a 
given component count. The most accurate model is then further analyzed using SHAP and LIME. 

 
Accuracy = 	 ("#	%	"&)
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                                                     (1) 

 
• TP (True Positives): The number of correct predictions that an instance is positive. 
• TN (True Negatives): The number of correct predictions that an instance is negative. 
• FP (False Positives): The number of incorrect predictions that an instance is positive (actually 

negative). 
• FN (False Negatives): The number of incorrect predictions that an instance is negative 

(actually positive). 

3.3.	SHAP	and	LIME	

SHAP is an xAI method grounded in game theory, designed to interpret the predictions of complex 
machine learning models. It employs the Shapley value to calculate the contribution of each feature 
to the model’s output. This approach facilitates a comprehensive understanding of how different 
features influence the model’s predictions. The weights of the features are derived from the following 
[13]: 
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                                          (2) 

• F : All features. 
• |F| : The total number of features. 
• φ) : The SHAP value of feature i . 
• S : A subset of all features set F excluding the feature	i. 
• |S| : The size of subset S. 



• f*∪)(x*∪)) : The prediction of model f when the feature set S includes the feature i. 
• f*(x*) : The prediction of the model f with only the feature set S. 

 
SHAP	provides	a	method	to	quantify	the	contribution	to	the	change	in	prediction	when	feature	

i	is	added	to	the	model	for	every	possible	feature	set	S.	The	idea	of	LIME,	on	the	other	hand,	is	to	
approximate	the	behavior	of	a	complex	model	near	the	prediction	of	a	specific	instance	using	a	
simpler	model.	The	formula	of	LIME	is	as	follows	[8]:	
 

ξ(x) = argmin
,∈.

L(f, g, π/) + Ω(g)                                              (3) 

• g : A simple model used to approximate the behavior of the complex model f near the 
instance x. 

• G : The set of all possible simple models. 
• π/ : A weighting function that assigns higher weights to points closer to the instance x. 
• Ω(g): A complexity measure that penalizes the model g. 

 
LIME begins by selecting a specific instance x (in this case, an individual student), already predicted 

by a complex model. It generates a series of perturbed samples around this instance to explore the 
model’s behavior locally. To approximate the behavior of the complex model in this localized region, 
a simpler model, such as linear regression, is employed. The key objective is to assess the alignment 
between the outputs of this simpler model, denoted as g, and the original complex model, denoted 
as f , within the local context. This process is represented in the formulation by minimizing the loss 
function between g and f, complemented by the minimization of g’s complexity measure. 

In this study, the Logistic Regression model was trained using data transformed through 
PCA. Consequently, to maintain consistency with the training data, the data samples generated by 
LIME need to be transformed into the same dimensional space. A wrapper function is implemented 
to facilitate this process, transforming the LIME-generated data via PCA to ensure that the data is in 
the appropriate form for the trained model to process effectively. And the same wrapper function has 
been applied on SHAP. 

3.4	Consistency	Evaluation	

SHAP and LIME operate on distinct principles to determine the contribution of each feature to the 
outcome. The critical question lies in the extent of the differences in the explanations derived from 
these two methods. To evaluate their consistency, our approach involved identifying features that 
show statistical correlation with the predicted results, as assessed by Spearman’s correlation with a 
significance threshold set at α = 0.05. This threshold was chosen to discern features significantly 
correlated with the outcomes. The next step is to compare the ranks of contributions as provided by 
SHAP and LIME, utilizing the Kendall’s tau for this comparative analysis. 
The	Kendall	 correlation	 coefficient	measures	 the	 degree	 of	 similarity	 between	 two	 sets	 of	

rankings	assigned	to	the	same	group	of	objects	[18].	Firstly,	we	rank	the	selected	features	based	
on	their	 influence	on	the	prediction	outcome.	This	process	results	in	two	sets	of	ranking	data,	
each	ordering	the	same	set	of	 features.	For	each	pair	of	 features,	we	examine	their	respective	
positions	 in	both	ranking	sets	and	calculate	 their	relative	positions.	Consequently,	 if	a	 feature	
ranks	higher	 than	another	 in	both	 sets,	 the	pair	 is	deemed	 'consistent';	 the	opposite	 scenario	
indicates	inconsistency.	Once	considers	all	pairs	of	features,	calculating	the	difference	between	
the	 number	 of	 consistent	 pairs	 and	 inconsistent	 pairs,	 divided	 by	 the	 total	 number	 of	 pairs.	
Following	is	the	formula	of	Kendall	correlation	coefficient:	

 
τ	 = 	 0!	#	0$

%
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                                                                   (4) 

 
• n4	: The number of concordant pairs  



• n5 : The number of discordant pairs. 
• n : The sample sizes.  

 
The value of this coefficient ranges from -1 and 1. A value approaching 1 indicates a high level of 

consistency in the rankings, while a value approaching -1 signifies a substantial degree of inconsistency 
[19]. 

4. Results	and	Discussion	

4.1	Reply	RQ1	

As illustrated in Figure 1, the accuracy assessments demonstrate that all models achieved accuracy 
rates around 80%. Notably, both Logistic Regression and Decision Tree models showed remarkable 
performance. Logistic Regression achieved an 84.6% accuracy rate with 16 components, while the 
Decision Tree reached a same level of accuracy with 58 components. 

The final decision to focus on Logistic Regression for in-depth analysis stems from a crucial 
observation. Under the premise of using PCA as a method for feature extraction, the Decision Tree 
model becomes less interpretable. Initially, the Decision Tree was a preferred choice due to its well-
known ease of interpretability. However, it was crucial to assess whether its performance was 
sufficiently superior to warrant detailed explanation. Upon further analysis, it was found that its 
accuracy was comparable to that of the Logistic Regression model. Therefore, we decided to apply 
SHAP and LIME to the Logistic Regression model. 
 

 
Figure	1:	Accuracy	vs.	Number	of	PCA	Components	

 
In the results, we present the explanation of SHAP’s prediction for individual instance in the form 

of a waterfall plot. This mode of presentation is very similar to the way data is represented in LIME 
results, which aids in our comparison of each instance. 

 

        
Figure	2:	SHAP	interpretation	of	student	A,	B	(left	to	right)	
 



This SHAP waterfall plot illustrates how feature contributions (red and blue bars) move the model 
prediction from a baseline value (the average output of the model) E[f(x)]	to the final prediction f(x). 
Blue bars represent features that decrease the prediction probability, while red bars indicate those 
that increase it. The gray texts in front of the feature names are the value to each features. 

In Figure 2, the model predicts Student A as at-risk with a probability value of  0.665, surpassing 
the threshold for risk. Key features like ‘ADD_MEMO’, ‘srl_s_28’, and ‘srl_s_29’’ positively influence 
this outcome. In contrast, ’srl_m_18’ and 192 other features collectively decrease the prediction 
probability by about 0.16. Figure 2 shows Student B as not at-risk with a predictive value of 0.448, 
influenced by features like ‘SEARCH’, ’SEARCH_JUMP’, and ‘srl_m_30’ which lower the risk probability. 

LIME’s plot in Figure 3 indicates Student A as at-risk with a 0.66 predictive probability, consistent 
with the number displayed on SHAP analysis. Influential features include ‘LINK_CLICK’, 
‘SEARCH_JUMP’, and ‘srl_s_3. Conversely, features like ‘CLEAR_HW_MEMO, and 
‘OPEN_RECOMMENDATION’ contribute to a lower risk prediction. Figure 3 predicts Student B as not 
at-risk at 0.55 probability, significantly influenced by ‘RuntimeError’ and ‘HTTPError’. 
 

 
Figure	3:	LIME	interpretation	of	student	A,	B	(left	to	right)	
 

To identify the key features contributing to succeed in the LBLS dataset, we assess the contribution 
of features to the prediction. For SHAP analysis, we employed global explanation to find out the top 
five features with the highest contribution values. Since LIME lacks a global explanation mechanism, 
we aggregated the top five features with the most significant impact from each predictions. The five 
most influential features in the global explanation of SHAP were ADD_RECOMMENDATION, 
ADD_HW_MEMO, s_41, s_26, and TabError; whereas, for LIME, they were LINK_CLICK, HTTPError, 
ZeroDivisionError, RecursionError, and s_32. 

4.2	Reply	RQ2	

We select 93 features that are statistically correlated to the result using Spearman’s correlation 
coefficient. In the next step of the analysis, we will employ SHAP and LIME to evaluate the prediction 
concerning student A. Our focus will be on capturing the rankings of all 93 features. Following this, 
using Kendall’s tau coefficient to assess the similarity between these rankings. 
 
Table 1 
Features that are statistically correlated to predicting result 

Features Description ρ 
CLOSE Closed the book. -0.11* 
OPEN Opened the book.  -0.12** 
PAGE_JUMP Jumped to a particular page. 0.17*** 
CODE_COPY Number of times a student copy codes. 0.33*** 
CODE_EXECUTION Number of times a student execute codes. 0.28*** 
Other 88 features  

*p < .05    **p < .01   ***p < .001 
 



Each blue dot on the graph represents a unique feature. When a dot aligns with the diagonal, it 
signifies that SHAP and LIME assign the same ranking to that feature’s weight. For the interpretative 
analysis of Student A and Student B, the Kendall’s tau are 0.66 and 0.64, respectively, suggesting a 
moderate but noticeable positive correlation between the two datasets. This implies that an increase 
in one dataset’s values is generally mirrored by an increase in the other, although the relationship is 
not exceptionally strong. The analysis yields remarkably low P-values for the weight rankings, all of 
which are below 0.001, reinforce the significance of this correlation. 

The graph reveals a tendency for the features’ weight rankings, as determined by both 
interpretation methods, to cluster near the diagonal, particularly those with higher (towards the start) 
and lower weights (towards the end). This pattern suggests a greater consistency in how both 
methods evaluate these features. Conversely, the rankings of features in the central region of the 
graph tend to be more dispersed. 

In the two prediction points, SHAP and LIME show a moderate level of consistency in assessing 
feature importance, with a tendency for feature rankings to cluster near the diagonal line indicating 
higher consistency in evaluating the most and least important features. The dispersion of feature 
rankings in the central area of the graph suggests greater variability in interpreting features of medium 
importance. The low P-values enhance the credibility of the results, suggesting that the observed 
correlations are not random but reflect the underlying patterns in the data. 
 
Table 2 
Features that are statistically correlated to predicting result 

Rank Feature Weight Ranking by SHAP Feature Weight Ranking by LIME 
1 srl_s_9 srl_m_17 
2 FileNotFoundError srl_m_15 
3 srl_m_3 PREV 
4 srl_m_9 srl_s_23 
5 ConversionError s_10 

And other 88 features 
 

      
Figure	4:	Kendall’s	Tau	Rank	Correlation	of	student	A	and	B	
 

Finally, we compared the feature weight rankings explained by SHAP and LIME for each prediction 
point pairwise, calculating the average of Kendall's tau and p-value. We obtained an average Kendall's 
tau of 0.623 and an average p-value of 0.000979.  This suggests that there is also a moderate to strong 
correlation in the feature importance rankings between the two methods for each prediction point. 
In other words, the rankings of feature importance are relatively consistent between the two methods, 
and the p-value being far below 0.05 shows that the correlation in rankings between SHAP and LIME 
is statistically significant. 

5. Conclusion	



In this study, we emphasize the importance of xAI in preventing over-generalization of machine 
learning algorithms, especially in fields of learning analytics. We use PCA for feature extraction, 
comparing accuracies of multiple models, and selected one that is both simple to use and highly 
accurate. We then combine various statistical methods to check if SHAP and LIME explanations of 
feature weight rankings are consistent. The results show moderate consistency in SHAP and LIME 
rankings among 93 selected features related to prediction outcomes, with high confidence. In learning 
analytics, divergent results from xAI in predicting at-risk students can complicate strategy formulation 
for stakeholders. Our study has analyzed explanations for two students predicted with different labels. 
Future research could explore which explanation is more trustable when there is a lack of consistency, 
whether to sacrifice model accuracy for higher consistency, or to involve more human intuition in 
assessing the reasonableness of explanations. As for key feature identification for student learning 
performance and strategy formulation for adaptive development, it undoubtedly requires 
involvement from school teachers, educators, and psychologists. 
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