
Holistic Adaptive Optimization Techniques for Distributed
Data Streaming Systems

Victoria Vysotska1, Iryna Kyrychenko2, Vadym Demchuk2 and Iryna Gruzdo2

1 Lviv Polytechnic National University, Stepan Bandera Street, 12, Lviv, 79013, Ukraine
2 Kharkiv National University of Radio Electronics, Nauky Ave. 14, Kharkiv, 61166, Ukraine

Abstract
This research article presents an approach to performance tuning in distributed data streaming systems
through the development of the Holistic Adaptive Optimization Technique (HAOT). The importance of
parameter tuning is underscored by its potential to significantly improve system performance without
altering the existing design, thereby saving costs and avoiding the expenses associated with system
redesign. However, traditional tuning methods often fall short by failing to optimize all components of
the streaming architecture, leading to suboptimal performance. To address these shortcomings, our
study introduces HAOT, a comprehensive optimization framework that dynamically integrates machine
learning techniques to continuously analyze and adapt the configurations of sources, streaming engines,
and sinks in real-time. This holistic approach not only aims to overcome the limitations of existing
parameter tuning methods but also reduces the reliance on skilled engineers by automating the
optimization process. Our results demonstrate the effectiveness of HAOT in enhancing the performance
of distributed data streaming systems, thereby offering significant improvements over traditional

tuning methods.

Keywords
Distributed Data Streaming Systems, Performance Tuning, Parameter Tuning, Machine Learning, Real-
time Configuration Adaptation, Stream Processing, Automatic Parameter Tuning, System Optimization,
Infrastructure Cost Savings, Data Pipeline Management, Evaluation Methods, Performance Metrics,
Workflow Optimization, Data Management Techniques, Pipeline Efficiency, Process Improvement 1

1. Introduction

Our data-driven world demands immediate insights for quick decision-making. Real-time data
processing offers the power to analyze information as it's generated. This is rapidly becoming
essential in industries such as [1]:

• IoT Monitoring. In this realm, instant analysis of sensor data is transformative. It enables
operational optimizations such as fine-tuning production processes in real-time, anticipating
maintenance requirements before machinery fails, and triggering timely alerts to prevent
incidents. This is not just about efficiency; it's about leveraging continuous streams of data to
create a safer, more reliable, and cost-effective operational environment.
• Fraud Detection. In the financial and online retail sectors, real-time pattern recognition is
a game-changer. By analyzing transactions as they happen, institutions can identify suspicious
activities and halt fraudulent transactions before they are completed. This immediate
response is crucial in a landscape where fraudsters continuously evolve their tactics. Beyond
protection, this real-time vigilance enhances trust and security in digital platforms.
• Online Personalization. The digital consumer experience thrives on personalization. By
analyzing user behavior data in real time, platforms can deliver tailored recommendations and
content that resonate with individual preferences and current trends. This not only boosts

COLINS-2024: 8th International Conference on Computational Linguistics and Intelligent Systems, April 12–13, 2024,

Lviv, Ukraine

 victoria.a.vysotska@lpnu.ua (V. Vysotska); iryna.kyrychenko@nure.ua (I. Kyrychenko); vaddemgen@gmail.com (V.

Demchuk); irina.gruzdo@nure.ua (I. Gruzdo)

 0000-0001-6417-3689 (V. Vysotska); 0000-0002-7686-6439 (I. Kyrychenko); 0000-0003-3700-2344 (V. Demchuk);

0000-0002-4399-2367 (I. Gruzdo)

© 2024 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

customer engagement but also drives sales and loyalty by providing a uniquely personalized
shopping or browsing experience.
• Real-time processing overcomes the limitations of traditional batch analysis methods,
offering key benefits [1, 2]:
• Improved customer experience. The ability to immediately respond to customer needs
and preferences is invaluable. Real-time insights allow businesses to offer personalized
experiences, resolve issues promptly, and thus significantly enhance customer satisfaction.
• Proactive Problem Solving. By identifying potential issues as they arise, businesses can
address problems before they escalate. This proactive approach minimizes disruptions and
can prevent minor issues from turning into major crises.
• Competitive Advantage. In today's fast-paced market, agility and responsiveness are
critical. Businesses that can quickly adapt to changes and leverage real-time insights gain a
crucial edge over competitors who rely on slower, more traditional data analysis methods.
As industries continue to evolve and generate more data, the demand for real-time data

processing is set to increase. This trend underscores the shift towards more dynamic, data-driven
decision-making processes that prioritize speed, accuracy, and efficiency. The future of business
lies in the ability to harness the power of real-time data, transforming raw information into
actionable insights instantaneously.

This article aims to provide a comprehensive guide to performance optimization techniques
within streaming data systems. Aimed at practitioners with an intermediate understanding of
streaming architectures, it will delve into common bottlenecks, practical optimization strategies,
and essential monitoring tools. The article highlights optimization techniques applicable across
significant streaming platforms while offering insights into platform-specific tuning methods.

2. Related Works

There is already a substantial amount of existing research focused on enhancing the performance
of data streaming systems, underscoring the critical nature of this topic for various industries.
These studies aim to address the complex challenges associated with processing large volumes
of real-time data, striving to improve efficiency, reduce latency, and ensure reliability, which are
pivotal for sectors such as finance, healthcare, manufacturing, and telecommunications. These
extensive research papers reflect the growing recognition of the importance of data streaming
performance in today's increasingly digital and data-driven business environments.

One of the most recent papers is research conducted by K.J. Matteussi, J.C.S. dos Anjos, V.R.Q.
Leithardt, and C.F.R Geyer titled “Performance Evaluation Analysis of Spark Streaming
Backpressure for Data-Intensive Pipelines” [3]. This research paper states that, unlike traditional
datasets with finite boundaries, processing streaming data presents a unique set of complexities.
Some of the most significant challenges include:

• Unbounded Data Streams. Streaming data sources continuously emit information, leading
to a potentially infinite stream. Streaming systems must be able to process this constant influx
without reaching storage or computational limits. This requires techniques like windowing to
segment the data into manageable chunks and strategies to discard older data smartly.
• Low-Latency Requirements. Real-time insights are the bedrock of many streaming
applications. Use cases like fraud detection or network monitoring demand swift action based
on the most recent data. Streaming data systems must be designed to minimize delays in data
ingestion, processing, and decision-making.
The authors delve into an in-depth analysis focusing on the performance aspects of

backpressure mechanisms within Apache Spark Streaming environments, particularly in the
context of data-intensive pipelines.

Another similar work titled “Beyond Analytics: The Evolution of Stream Processing Systems”
[4] considers other challenges:

• Maintaining Accuracy and Consistency. Data streams often merge information from
various sources, sometimes with differing formats and potential inconsistencies.
Synchronization, error handling, and continuous data quality checks become essential for
accurate, reliable results.
• Fault Tolerance. In a world of constant data flow, hardware failures or unexpected errors
are bound to happen. Building in redundancy, distributed processing, and automated failover
mechanisms minimizes the risk of losing data or experiencing service outages, which could be
critical for business continuity in real-time systems.
• Scalability. The volume and velocity of data streams fluctuate. A spike in activity shouldn't
crash the system. Services must seamlessly adjust their resources up or down in response to
the shifting data flow to maintain performance and avoid costly over-provisioning.
The paper emphasizes a shift in how streaming systems are applied today. Instead of being

confined to traditional tasks like window aggregates and joins, modern streaming systems are
increasingly utilized for building scalable, general event-driven applications, which poses new
challenges and considerations for their design, architecture, and intended use. This marks a
significant shift in the stream processing paradigm, urging the database community to reevaluate
current trends and methodologies.

Successfully optimizing streaming data systems relies on deeply understanding these inherent
challenges and developing effective strategies to overcome them.

While the previous articles focus on the weaknesses of stream processing in various aspects,
they highlight the importance of high availability and high performance. In the paper “A Survey
on Automatic Parameter Tuning for Big Data Processing System” [5] the authors consider
parameter tuning to address the common streaming problems. The researchers note that the
significance of performance tuning is widely recognized in the industry, as appropriate
configurations can lead to notable performance improvements without changing an existing
system's design. In contrast, improper ones may result in significant performance declines. The
benefits of parameter tuning techniques include cost savings on infrastructure and avoiding
expenses associated with redesigning the system.

In recent years, considerable research has focused on automating performance tuning in
distributed data streaming systems, employing a range of strategies: cost modeling, simulation-
based, experiment-driven, machine learning, and automatic parameter tuning.

The work [6] considers the Cost Modeling approach for parameter tuning. It involves using
cost models and statistics to find optimal parameter settings. A cost model estimates the
resources (such as CPU, memory, and I/O) required for a given configuration of the streaming
system. By understanding the relationship between system parameters and their impact on
performance, developers can adjust settings to minimize costs while maintaining or improving
performance. So, the approach is very efficient for predicting performance and has good accuracy.
However, this approach requires a deep understanding of the system's internals and the ability
to model the costs associated with different configurations accurately.

The simulation-based approach is considered in the work “CEPSim: Modelling and simulation
of Complex Event Processing systems in cloud environments” [7]. Simulation-based tuning
involves using a simulator to estimate the performance of an application under various settings.
This approach allows for evaluating different configuration settings without affecting the actual
production system. Simulations can model different aspects of the system, including network
latency, processing speed, and data arrival rates, to identify the best configurations for specific
workload patterns. The key advantages of this approach are the ability to test a wide range of
scenarios and configurations without the need for extensive physical resources and efficiency in
predicting fine-grained performance. The limitations of the simulation-based approach include
complexity in fully replicating the intricate internal dynamics of a system, ineffectiveness in
reflecting the fluctuating utilization of a cluster, and suboptimal efficiency in identifying the best
settings.

The paper titled “Automatic Performance Tuning for Distributed Data Stream Processing
System” [8] embraces the techniques mentioned above and considers other ones, such as
experiment-driven, machine learning, and automation parameter tunning approaches.

The experiment-driven approach is a more hands-on method, where the application is
executed iteratively with different settings to find the optimal configuration. This approach often
involves a search algorithm that guides the selection of parameter settings based on the
performance outcomes of previous experiments. Common search algorithms include grid search,
random search, and more sophisticated ones like Bayesian optimization. This method is
beneficial for complex systems where the relationship between parameters and performance is
poorly understood and cannot be easily modeled. So, the approach works well for various system
versions and hardware and finds the best performance for the real system, while it is time-
consuming and cost-ineffective as it requires multiple runs.

Automatic tuning involves changing configurations dynamically while applications run based
on real-time performance metrics. This adaptive approach allows the system to self-optimize in
response to changing workloads and conditions. Automatic tuning requires continuous
monitoring and a feedback loop where performance data is used to adjust the system's
configuration immediately. This approach best suits environments with highly variable
workloads and performance requirements.

The machine learning approach is well described in research papers [9] and [10] as well. It
leverages data-driven techniques to model and predict application performance under different
settings. By training a machine learning model on historical performance data and application
logs, this approach can identify patterns and relationships that may not be apparent through
traditional analysis. Once trained, the model can predict the performance outcomes of different
configurations, allowing for rapid identification of optimal settings. This approach is particularly
effective in dynamic environments where system behavior changes over time. However, this
approach requires enormous datasets for training the model, which is very expensive to collect;
otherwise, the accuracy is low [11, 12].

Beyond enhancing performance through parameter adjustments, a critical aspect is to
determine performance metrics for streaming systems. The research papers [13, 14] consider the
following performance metrics for streaming systems:

• Input Rate - this metric refers to the rate at which data is being received by stream
processing applications. It is usually measured in records per second (or messages per second)
and is crucial for understanding the volume of data being fed into the system. A high input rate
compared to the system's processing capacity can lead to backpressure, where the system
cannot process incoming data as fast as it arrives, potentially leading to increased latency or
data loss.
• Processing Rate – this measures the rate at which the Spark Streaming application
processes data, typically expressed in records per second. This metric should ideally be higher
than the input rate to ensure that the system can keep up with the data flow without
accumulating delays. The processing rate depends on various factors, including the complexity
of the computations, the system's configuration, and the available resources (CPU, memory,
etc.).
• Input Rows – this metric represents the total number of records received by the
streaming application within a given time frame, often corresponding to the batch interval.
Monitoring the number of input rows helps in understanding the data volume and ensuring
that the system is configured correctly to handle the load. It also helps in identifying trends or
spikes in the data input, which may require adjusting the system's capacity or optimizing the
processing logic.
• Batch Duration – this is the time taken to process one batch of data and is a critical metric
for understanding the performance of a streaming application. The batch duration includes
the time to read the input data, process it, and write the output. The ideal batch duration
should be less than the batch interval (the time between the start of consecutive batches) to

prevent the system from falling behind. If the batch duration is consistently longer than the
batch interval, it can lead to increased latency and backpressure.
• Operation Duration - this metric, also known as the micro-batch duration, refers to the
amount of time required to prepare and commit a micro-batch. This includes the time taken
for tasks such as fetching the data from the source and writing the processed data to the sink.
The operation duration is a subset of the batch duration and is crucial for diagnosing
performance bottlenecks within individual stages of the data processing pipeline. A longer
operation duration indicates that certain operations within the batch are time-consuming and
may need optimization.
However, although Machine Learning and Automatic Tuning methods offer substantial

advantages regarding resource optimization and simplicity in deployment, they mainly
concentrate on enhancing the performance of streaming platforms like Spark Streaming, Flink,
and Kafka Streams. This approach results in a critical shortfall: the overlooked improvement of
data sources and destinations, which are essential elements of the streaming framework.
Consequently, we have adopted the Holistic Adaptive Optimization Technique to overcome the
constraints associated with conventional tuning approaches. This innovative strategy offers an
extensive and flexible optimization framework, incorporating machine learning algorithms to
perpetually evaluate and modify the settings of sources, streaming platforms, and destinations in
a real-time manner.

3. Holistic Adaptive Optimization Technique for Parameter Tuning

In this section, we would like to consider the "Holistic Adaptive Optimization Technique" (HAOT)
for parameter tuning in distributed stream processing systems. The HAOT is designed to address
the limitations of traditional parameter tuning methods by providing a comprehensive and
dynamic optimization framework that integrates machine learning techniques to continuously
analyze and adapt the configurations of sources, streaming engines, and sinks in real time.

3.1. Methodology HAOT

HAOT operates on the principle of real-time performance feedback and adaptive configuration
adjustments.

The approach involves the following key steps:
• Data collection continuously monitoring the performance metrics of the streaming
application, including throughput, latency, and resource utilization, alongside the
configurations of sources, streaming engines, and sinks.
• Utilizing machine learning algorithms to analyze the collected data and identify the
relationships between the configurations of the sources, streaming engines, and sinks and
their impact on application performance. This involves constructing a model that can predict
the performance impact of varying configurations.
• Based on the insights gained from the dependency analysis, dynamically adjust the
configurations of the sources, streaming engines, and sinks to optimize performance. This step
employs machine learning models to predict optimal configurations under current operational
conditions.
• As the streaming application runs, continuously update the machine learning models with
new performance data, allowing the system to adapt to changing data patterns and operational
conditions. This ensures that the optimization remains relevant and effective over time.
Fig. 1 represents the diagram of a system where HAOT is applied.

Figure 1: General architecture of a streaming system with applied HAOT

The architecture of distributed data streaming pipelines has the following components [1]:
• Streaming sources – these are the origins of data streams, which could be a variety of real-
time data generating sources such as IoT devices, social media feeds, log files, or sensors. These
sources continuously produce data that is ingested into the streaming pipeline. They are
responsible for pushing data into the system in real-time or near-real-time;
• Streaming processing cluster – once the data is ingested from the streaming sources, it is
handled by a streaming processing cluster. This cluster consists of distributed computing
resources specifically designed to process large volumes of data in real-time. The processing
cluster can perform a variety of tasks, such as filtering, aggregating, transforming, and
analyzing the streaming data. It operates on data in a continuous fashion, often employing
parallel processing and fault-tolerant techniques to handle high throughput and ensure data
integrity. The cluster is scalable to accommodate varying loads of incoming data streams;
• Sinks (or outputs) – after the streaming data has been processed, it needs to be sent to a
destination, known as a sink or output. Sinks can vary based on the requirements of the
application and might include databases, data warehouses, file systems, or real-time
dashboards. The choice of the sink depends on how the processed data will be used — whether
for real-time analytics, stored for batch processing later, or used for immediate decision-
making. The sink is the endpoint of the streaming pipeline where processed data is made
available for use or further analysis.
HAOT introduces a few services into the existing architecture:
• Data Collection Service – the component that is responsible for gathering and organizing
data from various sources that will be used for optimization using connectors. The data can
include performance metrics, system logs, environmental conditions, and more, depending on
the specific streaming pipeline. The Data Collection Service ensures that the data is collected
in a consistent, efficient, and secure manner. It preprocesses the data (e.g., cleaning,
normalizing, and transforming) to make it suitable for analysis and modeling. This service is
crucial as the quality and relevance of the data directly impact the effectiveness of the
optimization process.

• ML Model – is the key component of the proposed HAOT implementation. This model is
designed to learn from the data collected and identify patterns, relationships, and trends that
may not be apparent to human analysts. The ML model can be based on various algorithms,
including regression, classification, clustering, or deep learning, depending on the problem at
hand. It is trained with historical data to predict outcomes, optimize processes, or provide
insights. Over time, the model can be retrained or adjusted as more data is collected and as
conditions change, enabling it to adapt to new patterns and improve its accuracy and
effectiveness.
• Control Module – acts as the decision-maker and executor within HAOT. It uses the
insights and recommendations generated by the ML model to make informed decisions or
adjustments to the system or process being optimized. This involves changing parameters or
adjusting strategies. The Control Module is designed to ensure that these changes are made in
a controlled, measurable, and reversible manner, allowing for continuous monitoring and
adjustment based on performance feedback and evolving conditions. It serves as the interface
between the analytical insights generated by the ML model and the operational components
of the system, ensuring that the optimization is implemented effectively and efficiently.

3.2. Statement of Performance Tunning Problem for HAOT

The parameter tuning statement can be defined as finding optimal options using the
arguments of the maxima (argmax) approach [5]. Let’s consider a data streaming pipeline 𝑃
executed on a stream data processing engine. It has the following form:

𝑃 = 〈𝑗, 𝑠, 𝑡, 𝑟, 𝑐〉, (1)
where 𝑗 – a job executed as a part of the pipeline 𝑃;
𝑠 – properties of an input data stream;
𝑡 – properties of the target sink;
𝑟 – resources available for the cluster;
𝑐 – a configuration set of the source, job, and sink for the pipeline 𝑃.
Let 𝑐𝑖 donate a parameter from the configuration set 𝑐 = 〈𝑐1, 𝑐2, . . . , 𝑐𝑛〉 that is a value from

the finite domain 𝐷(𝑐𝑖), and 𝑛 is the number of parameters in the set. Now we can define the
configuration space 𝑆 as the Cartesian product of the configuration domains 𝐷(𝑐𝑖):

𝑆 = 𝐷(𝑐1) × 𝐷(𝑐2) ×⋯× 𝐷(𝑐𝑛), (2)
Given the pipeline job 𝑗 that processes an input data stream 𝑠 over cluster resources 𝑟 and

loads data to the sink 𝑡, the parameter tuning can be considered as evaluating the optimal
configuration 𝑐𝑜𝑝𝑡 that maximizes performance metric function 𝐹 over configuration space 𝑆:

𝑐𝑜𝑝𝑡 = argmax
𝑐∈𝑆

𝐹(𝑗, 𝑠, 𝑡, 𝑟, 𝑐). (3)

The primary distinction between the current method for determining the best parameters for
a specific metric outlined in the paperwork [5] lies in considering the characteristics and settings
of the input sources 𝑠 and outputs – sinks 𝑟.

4. Experiment

To assess HAOT, we chose data streaming pipelines with the following technology stack:
• Sources: Confluent Kafka
• Processing Engine: Databricks Apache Spark
• Sink: Delta Lake on top of Azure Blob Storage
This pipeline was run daily for 2 months and had full logs and metrics. This allowed us to

choose parameters using the ML model.
These technologies are characterized by a vast array of parameters, making it impractical at

this stage to train the machine learning model with all possible variables. Nonetheless, the
primary objective of this paper is to determine the feasibility of this approach. The parameters
taken for the experiment are described in Table 1.

Table 1
Parameters of the Tested Distributed Data Streaming Pipeline

Technology Component Parameter Description

Confluent
Kafka

Source partitions A number of partitions of a Kafka
topic. Ideally, this parameter should
be adjusted by the control module.
However, we will skip this at the
current stage as this is a complex
task [15].

Databricks
Apache Spark

Processing
Engine

maxOffsetsPerTrigger Limit on the maximum count of
offsets processed per triggering
period

 minOffsetsPerTrigger Limit on the minimum count of
offsets processed per triggering
period

 minPartitions Preferred minimum quantity of
partitions for reading from Kafka.
By default, the Spark parallelism
level is limited to the number of
Kafka partitions. This parameter
allows to increase number of
parallel tasks.

 spark.sql.shuffle.partitions Configures the number of partitions
to use when shuffling data for joins
or aggregations

 Trigger The parameter determines the
processing time interval of the
streaming query

 spark.memory.fraction Proportion of heap space allocated
for execution and storage. A lower
value results in more frequent
occurrences of spills and evictions
of cached data [16].

Delta Table Sink delta.targetFileSize A fixed target file size for the table.
 delta.autoOptimize.

autoCompact
This parameter controls the
automatic compaction of small files
in a Delta Lake table.

 delta.autoOptimize.
optimizeWrite

This parameter governs the
automatic optimization of the write
operation into a Delta Lake table
[17].

In the experiment, the following options were unchanged. The Kafka topic had 6 partitions and

the target delta table had following options – autoCompact and optimizeWrite. The other options
were set by the ML model.

The input dataset had the characteristics mentioned in Table 2.

Table 2
Input Dataset Characteristics

Property Value

Size 80 million

Record Data Type Avro using Confluent serializer
Average Record Size (In Kafka) 243 bytes – the value is low as the Avro format uses compact

binary encoding to reduce the size of the serialized data
Total Dataset Size (In Kafka) 18 GB

The Databricks Spark cluster had 28 CPU cores and 184 GB of memory in total. The fine-

grained characteristics are defined in Table 3.

Table 3
Databricks Spark Cluster

Cluster Component Characteristic Value

Driver Node type Standard_D4ads_v5
 CPU Cores 4
 Memory 16
Worker Node type Standard_DS13_v2
 CPU Cores 8
 Memory 56
 Spark Version Spark 3.4.1, Scala 2.12
 Worker Count 3

The performance metrics were taken from Spark logs capturing Spark ProgressReporter [18].

Table 4 has the list of metrics and their correspondence with the parameters in the
ProgressReporter. And additional metric was Kafka lag – the difference between current
application offsets and maximum topic offsets [15].

Table 4
Databricks Spark Cluster

Metric Source Parameter

Input Rate Spark Streaming inputRowsPerSecond
Processing Rate Spark Streaming processedRowsPerSecond
Input Rows Spark Streaming numInputRows
Batch Duration Spark Streaming durationMs.triggerExecution
Operation Duration Spark Streaming durationMs
Kafka Lag Kafka metrics.avgOffsetsBehindLatest

The experiment setup:
• Base – the first part of the experiment involved running the Spark streaming pipeline with
metrics collection and parameter tuning activated solely for Spark Streaming. This served as
the baseline for performance metrics, where only the internal components of Spark Streaming
were optimized based on available data, without external influences from other components
of the pipeline.
• HAOT Applied – in the second part, the experiment extended metrics collection and
parameter tuning to include not only Spark Streaming but also Kafka and the target Delta table
(mentioned in table 1). This approach represents the holistic application of HAOT, where the
optimization technique is applied across the entire data pipeline rather than in isolated
segments.

5. Results

The ML model has set the following parameters for the first experiment – Base (see Table 5).

Table 5
Parameters of the run “Base”

Technology Component Parameter Value

Confluent
Kafka

Source partitions 6 (Static)

Databricks
Apache Spark

Processing
Engine

maxOffsetsPerTrigger 240000 (default for the setup)

 minOffsetsPerTrigger none (default)
 minPartitions none (default)
 spark.sql.shuffle.partitions 50
 Trigger AvailableNow (Static)
 spark.memory.fraction 0.7
Delta Table Sink delta.targetFileSize none (default)
 delta.autoOptimize.

autoCompact
true (static)

 delta.autoOptimize.
optimizeWrite

true (static)

For the second experiment (HAOT Applied), the ML model provided different parameters, as

mentioned in Table 6. While the option spark.memory.fraction has the same value, the other
crucial options, such as minPartitions (the number of active tasks or Kafka consumers that will
be created to read the topic), spark.sql.shuffle.partitions (the number of partitions after the
shuffle), and delta.targetFileSize (the size of the target partitions) has different values.

Table 6
Parameters of the run “HAOT Applied”

Technology Component Parameter Value

Confluent
Kafka

Source partitions 6 (Static)

Databricks
Apache Spark

Processing
Engine

maxOffsetsPerTrigger 960000 (default for the setup)

 minOffsetsPerTrigger none (default)
 minPartitions 24
 spark.sql.shuffle.partitions 24
 Trigger AvailableNow (Static)
 spark.memory.fraction 0.7
Delta Table Sink delta.targetFileSize 256 MB
 delta.autoOptimize.

autoCompact
true (static)

 delta.autoOptimize.
optimizeWrite

true (static)

The results of average metric values of the 2 runs (“Base” and “HAOT Applied”) are presented

in Table 7.

Table 7
Experiment Results

Metric Description The Base Run HAOT Applied Difference

Input Rate / sec The bigger the better 29818 35843 20.21%
Processing Rate / sec The bigger the better 30817 43335 40.62%
Input Rows The bigger the better 239593 878511 266.67%

Batch Duration (ms) The lower the better 16230 39515 143.47%
Operation Duration (ms) The lower the better 7918 19637 148.00%
Total Execution Time (sec) The lower the better 2835 1809 -36.19%

The bar chart of the data above is provided in Figure 2.

Figure 2: The bar chart represents the results of the 2 experiments

In the results above, we included the total execution time that was calculated as the difference

in seconds between starting processing data and the moment all records were processed.

6. Discussion

Even though the Batch Duration and Operation Duration metrics went up for the HAOT case, the
total execution time to handle the input dataset decreased by 36%. This means that, despite
longer processing times for individual batches, the overall data loading speed was significantly
improved. The reason for this rise is the latency to load bigger chunks of data from Kafka. Further
supporting this improvement, the Input Rate, Processing Rate, and Input Rows metrics increased
by 20%, 40%, and 267% respectively.

As mentioned above, the primary drawback of Cost Modeling, Simulation-based, and
Experiment-driven approaches lies in their resource-intensive nature. These methods demand
significant human and computational resources, making them costly to implement. Additionally,
integrating these approaches into existing production systems poses substantial challenges due
to their disruptive nature and the complexity of accurately modeling real-world scenarios.

On the other hand, Machine Learning and Adaptive Tuning approaches offer a more
streamlined alternative, requiring minimal human intervention and not necessarily depending
on highly specialized staff. These methods leverage algorithms to automatically adapt and
optimize performance, reducing the need for continuous human oversight and detailed technical
expertise. This aspect makes them particularly appealing to organizations seeking to optimize
their streaming data systems with reduced operational overhead [19].

However, while Machine Learning and Adaptive Tuning strategies provide considerable
benefits in terms of resource efficiency and ease of implementation, they primarily focus on
optimizing the streaming engines themselves, such as Spark Streaming, Flink, and Kafka Streams.
Neglecting the optimization of sources and sinks can lead to bottlenecks, data latency, and
underutilization of the streaming engine's capabilities, ultimately impacting the overall
performance of the streaming data system [20].

Therefore, while Machine Learning and Adaptive Tuning approaches streamline the
optimization process and reduce the demand for skilled engineers, their effectiveness can be
compromised if the optimization of sources and sinks is not adequately addressed. This oversight

can result in suboptimal system performance, highlighting the need for a holistic approach to
optimization that encompasses all components of the streaming architecture.

7. Conclusions

The considered approach (HAOT) offers several advantages over traditional tuning methods:
• HAOT's methodical consideration of the entire data pipeline, encompassing the data
sources, streaming engines, and sinks, ensures that optimizations are applied across the board
rather than in isolated sections. This holistic view ensures that improvements in one area do
not inadvertently impair performance in another, leading to enhancements in the overall
system performance. By treating the data pipeline as an interconnected system, HAOT helps
in identifying and rectifying bottlenecks or inefficiencies throughout, rather than just
optimizing individual components in isolation.
• The ability of HAOT to adjust the configurations of the entire data pipeline in real time
enables the system to react instantaneously to changes in data patterns, workload
fluctuations, and variations in system conditions. This dynamic adaptability ensures sustained
optimal performance under varying conditions without the need for manual intervention. As
the system automatically adjusts to the current data environment, it maintains efficiency and
effectiveness, preventing slowdowns or resource wastage.
• By continuously tuning configurations, HAOT minimizes the necessity for over-
provisioning resources to handle peak loads, which is a common practice in traditional
systems. Over-provisioning, while ensuring that the system can handle maximum expected
loads, often results in underutilized resources during normal or low usage periods. HAOT's
adaptive approach ensures that resources are allocated more efficiently based on current
needs, leading to significant cost savings in infrastructure and operational expenses.
• Traditional system tuning often requires the expertise of highly specialized engineers,
which can be a scarce and expensive resource. HAOT reduces this dependency by automating
the optimization process, making it more accessible to a wider range of users.
While HAOT presents a promising approach to parameter tuning, there are challenges to be

addressed, such as ensuring the scalability of the approach, dealing with the complexity of the
machine learning models, and maintaining the balance between optimization frequency and
system stability. Future work will focus on refining the approach to address these challenges,
improving the efficiency of the machine learning algorithms, and extending the approach to cover
a wider range of streaming platforms and application scenarios.

References

[1] P. Strengholt, Data Management at Scale: Modern Data Architecture with Data Mesh and Data
Fabric, 2nd. ed., O'Reilly Media, Inc., 2023, pp. 173-175.

[2] H. Dulay, and S. Mooney, Streaming Data Mesh: A Model for Optimizing Real-Time Data
Services, 1st. ed., O'Reilly Media, Inc., 2023, pp. 36-39.

[3] K.J. Matteussi, J.C.S. dos Anjos, V.R.Q. Leithardt, and C.F.R Geyer, Performance Evaluation
Analysis of Spark Streaming Backpressure for Data-Intensive Pipelines, Sensors 2022.
doi:10.20944/preprints202205.0334.v1.

[4] P. Carbone, and M. Fragkoulis et al., Beyond Analytics: The Evolution of Stream Processing
Systems, SIGMOD, 2020.

[5] H. Herodotou, Y. Chen and J. Lu, A Survey on Automatic Parameter Tuning for Big Data
Processing Systems, ACM Computing Surveys (CSUR), Vol. 53, 2020.

[6] M. T. Islam, S. Karunasekera, and R Buyya, Performance and Cost-Efficient Spark Job
Scheduling Based on Deep Reinforcement Learning in Cloud Computing Environments, IEEE
Transactions on Parallel and Distributed Systems, 2021.

[7] W. A. Higashino, M. A. M. Capretz, and L. F. Bittencourt, CEPSim: Modelling and simulation of
Complex Event Processing systems in cloud environments, Future Generation Computer
Systems, Vol. 65, 2016, pp. 119-140.

[8] H. Herodotou, L. Odysseos, Y. Chen, and J. Lu, Automatic Performance Tuning for Distributed
Data Stream Processing System, IEEE 38th International Conference on Data Engineering
(ICDE), 2022, doi:10.1109/ICDE53745.2022.00296.

[9] M. Trotter, T. Wood, and J. Hwang, Forecasting a Storm: Divining Optimal Configurations
using Genetic Algorithms and Supervised Learning, IEEE International Conference on
Autonomic Computing (ICAC), 2019. doi:10.1109/ICAC.2019.00025.

[10] H. Sagaama, N. B. Slimane, M. Marwani, and S. Skhiri, Automatic Parameter Tuning for Big
Data Pipelines with Deep Reinforcement Learning, IEEE Symposium on Computers and
Communications (ISCC), 2021. doi:10.1109/ISCC53001.2021.9631440.

[11] I. Gruzdo, I. Kyrychenko, G. Tereshchenko, O. Shanidze, Analysis of Models Usability Methods
Used on Design Stage to Increase Site Optimization, 2023 7th International Conference on
Computational Linguistics and Intelligent Systems (COLINS-2023), Vol. 3403, 2023,
pp. 387– 409.

[12] I. Kyrychenko, I. Tereshchenko, G. Proniuk, N. Geseleva, Predicate Clustering Method and its
Application in the System of Artificial Intelligence, 2023 7th International Conference on
Computational Linguistics and Intelligent Systems (COLINS-2023), Vol. 3396, 2023, pp.
395– 406.

[13] G. V. Dongen, and D. V. D. Poel, A Performance Analysis of Fault Recovery in Stream
Processing Frameworks, IEEE Access, Vol. 9, 2021. doi:10.1109/ACCESS.2021.3093208.

[14] K. J. Matteussi, J. C. S. dos Anjos, V. R. Q. Leithardt, and C. F. R. Geyer, Performance Evaluation
Analysis of Spark Streaming Backpressure for Data-Intensive Pipelines, IEEE Access, Vol. 9,
2021, doi:10.1109/ACCESS.2021.3093208.

[15] E. Eldor, Kafka Troubleshooting in Production: Stabilizing Kafka Clusters in the Cloud and
On-premises, Apress Berkeley, CA, 2023, pp. 25-36.

[16] A. A. Garcia, Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch
and Stream Data Processing, Apress Berkeley, CA, 2023, pp. 289-330.

[17] Phani Raj, Vinod Jaiswal, Azure Databricks Cookbook: Accelerate and scale real-time
analytics solutions using the Apache Spark-based analytics service, Packt Publishing, 2021,
pp. 240-302.

[18] B. R. Prasad, and S. Agarwal, Performance Analysis and Optimization of Spark Streaming
Applications Through Effective Control Parameters Tuning, in: P. K. Sa, M. N. Sahoo, M.
Murugappan (Ed.), Progress in Intelligent Computing Techniques: Theory, Practice, and
Applications, Vol. 1, Springer Publishing Company, Incorporated, 2018, pp. 99-110.

[19] J. Nathan Kutz, Machine learning for parameter estimation, Proceedings of The National
Academy of Sciences, Vol. 120, 2023, doi:10.1073/pnas.230099012.

[20] S. Nolan, A. Smerzi, and L. Pezze, A machine learning approach to Bayesian parameter
estimation., npj Quantum Inf 7, Vol. 169, 2021. doi:10.1038/s41534-021-00497-w.

