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Abstract 
This research article presents an approach to performance tuning in distributed data streaming systems 
through the development of the Holistic Adaptive Optimization Technique (HAOT). The importance of 
parameter tuning is underscored by its potential to significantly improve system performance without 
altering the existing design, thereby saving costs and avoiding the expenses associated with system 
redesign. However, traditional tuning methods often fall short by failing to optimize all components of 
the streaming architecture, leading to suboptimal performance. To address these shortcomings, our 
study introduces HAOT, a comprehensive optimization framework that dynamically integrates machine 
learning techniques to continuously analyze and adapt the configurations of sources, streaming engines, 
and sinks in real-time. This holistic approach not only aims to overcome the limitations of existing 
parameter tuning methods but also reduces the reliance on skilled engineers by automating the 
optimization process. Our results demonstrate the effectiveness of HAOT in enhancing the performance 
of distributed data streaming systems, thereby offering significant improvements over traditional 

tuning methods. 
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1. Introduction 

Our data-driven world demands immediate insights for quick decision-making. Real-time data 
processing offers the power to analyze information as it's generated. This is rapidly becoming 
essential in industries such as [1]: 

• IoT Monitoring. In this realm, instant analysis of sensor data is transformative. It enables 
operational optimizations such as fine-tuning production processes in real-time, anticipating 
maintenance requirements before machinery fails, and triggering timely alerts to prevent 
incidents. This is not just about efficiency; it's about leveraging continuous streams of data to 
create a safer, more reliable, and cost-effective operational environment. 
• Fraud Detection. In the financial and online retail sectors, real-time pattern recognition is 
a game-changer. By analyzing transactions as they happen, institutions can identify suspicious 
activities and halt fraudulent transactions before they are completed. This immediate 
response is crucial in a landscape where fraudsters continuously evolve their tactics. Beyond 
protection, this real-time vigilance enhances trust and security in digital platforms. 
• Online Personalization. The digital consumer experience thrives on personalization. By 
analyzing user behavior data in real time, platforms can deliver tailored recommendations and 
content that resonate with individual preferences and current trends. This not only boosts 
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customer engagement but also drives sales and loyalty by providing a uniquely personalized 
shopping or browsing experience. 
• Real-time processing overcomes the limitations of traditional batch analysis methods, 
offering key benefits [1, 2]: 
• Improved customer experience. The ability to immediately respond to customer needs 
and preferences is invaluable. Real-time insights allow businesses to offer personalized 
experiences, resolve issues promptly, and thus significantly enhance customer satisfaction. 
• Proactive Problem Solving. By identifying potential issues as they arise, businesses can 
address problems before they escalate. This proactive approach minimizes disruptions and 
can prevent minor issues from turning into major crises. 
• Competitive Advantage. In today's fast-paced market, agility and responsiveness are 
critical. Businesses that can quickly adapt to changes and leverage real-time insights gain a 
crucial edge over competitors who rely on slower, more traditional data analysis methods. 
As industries continue to evolve and generate more data, the demand for real-time data 

processing is set to increase. This trend underscores the shift towards more dynamic, data-driven 
decision-making processes that prioritize speed, accuracy, and efficiency. The future of business 
lies in the ability to harness the power of real-time data, transforming raw information into 
actionable insights instantaneously. 

This article aims to provide a comprehensive guide to performance optimization techniques 
within streaming data systems.  Aimed at practitioners with an intermediate understanding of 
streaming architectures, it will delve into common bottlenecks, practical optimization strategies, 
and essential monitoring tools. The article highlights optimization techniques applicable across 
significant streaming platforms while offering insights into platform-specific tuning methods. 

 

2. Related Works 

There is already a substantial amount of existing research focused on enhancing the performance 
of data streaming systems, underscoring the critical nature of this topic for various industries. 
These studies aim to address the complex challenges associated with processing large volumes 
of real-time data, striving to improve efficiency, reduce latency, and ensure reliability, which are 
pivotal for sectors such as finance, healthcare, manufacturing, and telecommunications. These 
extensive research papers reflect the growing recognition of the importance of data streaming 
performance in today's increasingly digital and data-driven business environments. 

One of the most recent papers is research conducted by K.J. Matteussi, J.C.S. dos Anjos, V.R.Q. 
Leithardt, and C.F.R Geyer titled “Performance Evaluation Analysis of Spark Streaming 
Backpressure for Data-Intensive Pipelines” [3]. This research paper states that, unlike traditional 
datasets with finite boundaries, processing streaming data presents a unique set of complexities. 
Some of the most significant challenges include: 

• Unbounded Data Streams. Streaming data sources continuously emit information, leading 
to a potentially infinite stream. Streaming systems must be able to process this constant influx 
without reaching storage or computational limits. This requires techniques like windowing to 
segment the data into manageable chunks and strategies to discard older data smartly. 
• Low-Latency Requirements. Real-time insights are the bedrock of many streaming 
applications. Use cases like fraud detection or network monitoring demand swift action based 
on the most recent data. Streaming data systems must be designed to minimize delays in data 
ingestion, processing, and decision-making. 
The authors delve into an in-depth analysis focusing on the performance aspects of 

backpressure mechanisms within Apache Spark Streaming environments, particularly in the 
context of data-intensive pipelines. 

Another similar work titled “Beyond Analytics: The Evolution of Stream Processing Systems” 
[4] considers other challenges: 



• Maintaining Accuracy and Consistency. Data streams often merge information from 
various sources, sometimes with differing formats and potential inconsistencies. 
Synchronization, error handling, and continuous data quality checks become essential for 
accurate, reliable results. 
• Fault Tolerance. In a world of constant data flow, hardware failures or unexpected errors 
are bound to happen. Building in redundancy, distributed processing, and automated failover 
mechanisms minimizes the risk of losing data or experiencing service outages, which could be 
critical for business continuity in real-time systems. 
• Scalability. The volume and velocity of data streams fluctuate. A spike in activity shouldn't 
crash the system. Services must seamlessly adjust their resources up or down in response to 
the shifting data flow to maintain performance and avoid costly over-provisioning. 
The paper emphasizes a shift in how streaming systems are applied today. Instead of being 

confined to traditional tasks like window aggregates and joins, modern streaming systems are 
increasingly utilized for building scalable, general event-driven applications, which poses new 
challenges and considerations for their design, architecture, and intended use. This marks a 
significant shift in the stream processing paradigm, urging the database community to reevaluate 
current trends and methodologies. 

Successfully optimizing streaming data systems relies on deeply understanding these inherent 
challenges and developing effective strategies to overcome them. 

While the previous articles focus on the weaknesses of stream processing in various aspects, 
they highlight the importance of high availability and high performance. In the paper “A Survey 
on Automatic Parameter Tuning for Big Data Processing System” [5] the authors consider 
parameter tuning to address the common streaming problems. The researchers note that the 
significance of performance tuning is widely recognized in the industry, as appropriate 
configurations can lead to notable performance improvements without changing an existing 
system's design. In contrast, improper ones may result in significant performance declines. The 
benefits of parameter tuning techniques include cost savings on infrastructure and avoiding 
expenses associated with redesigning the system. 

In recent years, considerable research has focused on automating performance tuning in 
distributed data streaming systems, employing a range of strategies: cost modeling, simulation-
based, experiment-driven, machine learning, and automatic parameter tuning. 

The work [6] considers the Cost Modeling approach for parameter tuning. It involves using 
cost models and statistics to find optimal parameter settings. A cost model estimates the 
resources (such as CPU, memory, and I/O)  required for a given configuration of the streaming 
system. By understanding the relationship between system parameters and their impact on 
performance, developers can adjust settings to minimize costs while maintaining or improving 
performance. So, the approach is very efficient for predicting performance and has good accuracy. 
However, this approach requires a deep understanding of the system's internals and the ability 
to model the costs associated with different configurations accurately. 

The simulation-based approach is considered in the work “CEPSim: Modelling and simulation 
of Complex Event Processing systems in cloud environments” [7]. Simulation-based tuning 
involves using a simulator to estimate the performance of an application under various settings. 
This approach allows for evaluating different configuration settings without affecting the actual 
production system. Simulations can model different aspects of the system, including network 
latency, processing speed, and data arrival rates, to identify the best configurations for specific 
workload patterns. The key advantages of this approach are the ability to test a wide range of 
scenarios and configurations without the need for extensive physical resources and efficiency in 
predicting fine-grained performance. The limitations of the simulation-based approach include 
complexity in fully replicating the intricate internal dynamics of a system, ineffectiveness in 
reflecting the fluctuating utilization of a cluster, and suboptimal efficiency in identifying the best 
settings. 



The paper titled “Automatic Performance Tuning for Distributed Data Stream Processing 
System” [8] embraces the techniques mentioned above and considers other ones, such as 
experiment-driven, machine learning, and automation parameter tunning approaches. 

The experiment-driven approach is a more hands-on method, where the application is 
executed iteratively with different settings to find the optimal configuration. This approach often 
involves a search algorithm that guides the selection of parameter settings based on the 
performance outcomes of previous experiments. Common search algorithms include grid search, 
random search, and more sophisticated ones like Bayesian optimization. This method is 
beneficial for complex systems where the relationship between parameters and performance is 
poorly understood and cannot be easily modeled. So, the approach works well for various system 
versions and hardware and finds the best performance for the real system, while it is time-
consuming and cost-ineffective as it requires multiple runs. 

Automatic tuning involves changing configurations dynamically while applications run based 
on real-time performance metrics. This adaptive approach allows the system to self-optimize in 
response to changing workloads and conditions. Automatic tuning requires continuous 
monitoring and a feedback loop where performance data is used to adjust the system's 
configuration immediately. This approach best suits environments with highly variable 
workloads and performance requirements. 

The machine learning approach is well described in research papers [9] and [10] as well. It 
leverages data-driven techniques to model and predict application performance under different 
settings. By training a machine learning model on historical performance data and application 
logs, this approach can identify patterns and relationships that may not be apparent through 
traditional analysis. Once trained, the model can predict the performance outcomes of different 
configurations, allowing for rapid identification of optimal settings. This approach is particularly 
effective in dynamic environments where system behavior changes over time. However, this 
approach requires enormous datasets for training the model, which is very expensive to collect; 
otherwise, the accuracy is low [11, 12]. 

Beyond enhancing performance through parameter adjustments, a critical aspect is to 
determine performance metrics for streaming systems. The research papers [13, 14] consider the 
following performance metrics for streaming systems: 

• Input Rate - this metric refers to the rate at which data is being received by stream 
processing applications. It is usually measured in records per second (or messages per second) 
and is crucial for understanding the volume of data being fed into the system. A high input rate 
compared to the system's processing capacity can lead to backpressure, where the system 
cannot process incoming data as fast as it arrives, potentially leading to increased latency or 
data loss. 
• Processing Rate – this measures the rate at which the Spark Streaming application 
processes data, typically expressed in records per second. This metric should ideally be higher 
than the input rate to ensure that the system can keep up with the data flow without 
accumulating delays. The processing rate depends on various factors, including the complexity 
of the computations, the system's configuration, and the available resources (CPU, memory, 
etc.). 
• Input Rows – this metric represents the total number of records received by the 
streaming application within a given time frame, often corresponding to the batch interval. 
Monitoring the number of input rows helps in understanding the data volume and ensuring 
that the system is configured correctly to handle the load. It also helps in identifying trends or 
spikes in the data input, which may require adjusting the system's capacity or optimizing the 
processing logic. 
• Batch Duration – this is the time taken to process one batch of data and is a critical metric 
for understanding the performance of a streaming application. The batch duration includes 
the time to read the input data, process it, and write the output. The ideal batch duration 
should be less than the batch interval (the time between the start of consecutive batches) to 



prevent the system from falling behind. If the batch duration is consistently longer than the 
batch interval, it can lead to increased latency and backpressure. 
• Operation Duration - this metric, also known as the micro-batch duration, refers to the 
amount of time required to prepare and commit a micro-batch. This includes the time taken 
for tasks such as fetching the data from the source and writing the processed data to the sink. 
The operation duration is a subset of the batch duration and is crucial for diagnosing 
performance bottlenecks within individual stages of the data processing pipeline. A longer 
operation duration indicates that certain operations within the batch are time-consuming and 
may need optimization. 
However, although Machine Learning and Automatic Tuning methods offer substantial 

advantages regarding resource optimization and simplicity in deployment, they mainly 
concentrate on enhancing the performance of streaming platforms like Spark Streaming, Flink, 
and Kafka Streams. This approach results in a critical shortfall: the overlooked improvement of 
data sources and destinations, which are essential elements of the streaming framework. 
Consequently, we have adopted the Holistic Adaptive Optimization Technique to overcome the 
constraints associated with conventional tuning approaches. This innovative strategy offers an 
extensive and flexible optimization framework, incorporating machine learning algorithms to 
perpetually evaluate and modify the settings of sources, streaming platforms, and destinations in 
a real-time manner. 

 

3. Holistic Adaptive Optimization Technique for Parameter Tuning 

In this section, we would like to consider the "Holistic Adaptive Optimization Technique" (HAOT) 
for parameter tuning in distributed stream processing systems. The HAOT is designed to address 
the limitations of traditional parameter tuning methods by providing a comprehensive and 
dynamic optimization framework that integrates machine learning techniques to continuously 
analyze and adapt the configurations of sources, streaming engines, and sinks in real time. 

3.1. Methodology HAOT 

HAOT operates on the principle of real-time performance feedback and adaptive configuration 
adjustments.  

The approach involves the following key steps: 
• Data collection continuously monitoring the performance metrics of the streaming 
application, including throughput, latency, and resource utilization, alongside the 
configurations of sources, streaming engines, and sinks. 
• Utilizing machine learning algorithms to analyze the collected data and identify the 
relationships between the configurations of the sources, streaming engines, and sinks and 
their impact on application performance. This involves constructing a model that can predict 
the performance impact of varying configurations. 
• Based on the insights gained from the dependency analysis, dynamically adjust the 
configurations of the sources, streaming engines, and sinks to optimize performance. This step 
employs machine learning models to predict optimal configurations under current operational 
conditions. 
• As the streaming application runs, continuously update the machine learning models with 
new performance data, allowing the system to adapt to changing data patterns and operational 
conditions. This ensures that the optimization remains relevant and effective over time. 
Fig. 1 represents the diagram of a system where HAOT is applied. 

 
 
 

 



Figure 1: General architecture of a streaming system with applied HAOT 
 

The architecture of distributed data streaming pipelines has the following components [1]: 
• Streaming sources – these are the origins of data streams, which could be a variety of real-
time data generating sources such as IoT devices, social media feeds, log files, or sensors. These 
sources continuously produce data that is ingested into the streaming pipeline. They are 
responsible for pushing data into the system in real-time or near-real-time; 
• Streaming processing cluster – once the data is ingested from the streaming sources, it is 
handled by a streaming processing cluster. This cluster consists of distributed computing 
resources specifically designed to process large volumes of data in real-time. The processing 
cluster can perform a variety of tasks, such as filtering, aggregating, transforming, and 
analyzing the streaming data. It operates on data in a continuous fashion, often employing 
parallel processing and fault-tolerant techniques to handle high throughput and ensure data 
integrity. The cluster is scalable to accommodate varying loads of incoming data streams; 
• Sinks (or outputs) – after the streaming data has been processed, it needs to be sent to a 
destination, known as a sink or output. Sinks can vary based on the requirements of the 
application and might include databases, data warehouses, file systems, or real-time 
dashboards. The choice of the sink depends on how the processed data will be used — whether 
for real-time analytics, stored for batch processing later, or used for immediate decision-
making. The sink is the endpoint of the streaming pipeline where processed data is made 
available for use or further analysis. 
HAOT introduces a few services into the existing architecture: 
• Data Collection Service – the component that is responsible for gathering and organizing 
data from various sources that will be used for optimization using connectors. The data can 
include performance metrics, system logs, environmental conditions, and more, depending on 
the specific streaming pipeline. The Data Collection Service ensures that the data is collected 
in a consistent, efficient, and secure manner. It preprocesses the data (e.g., cleaning, 
normalizing, and transforming) to make it suitable for analysis and modeling. This service is 
crucial as the quality and relevance of the data directly impact the effectiveness of the 
optimization process. 



• ML Model – is the key component of the proposed HAOT implementation. This model is 
designed to learn from the data collected and identify patterns, relationships, and trends that 
may not be apparent to human analysts. The ML model can be based on various algorithms, 
including regression, classification, clustering, or deep learning, depending on the problem at 
hand. It is trained with historical data to predict outcomes, optimize processes, or provide 
insights. Over time, the model can be retrained or adjusted as more data is collected and as 
conditions change, enabling it to adapt to new patterns and improve its accuracy and 
effectiveness. 
• Control Module – acts as the decision-maker and executor within HAOT. It uses the 
insights and recommendations generated by the ML model to make informed decisions or 
adjustments to the system or process being optimized. This involves changing parameters or 
adjusting strategies. The Control Module is designed to ensure that these changes are made in 
a controlled, measurable, and reversible manner, allowing for continuous monitoring and 
adjustment based on performance feedback and evolving conditions. It serves as the interface 
between the analytical insights generated by the ML model and the operational components 
of the system, ensuring that the optimization is implemented effectively and efficiently. 

3.2. Statement of Performance Tunning Problem for HAOT 

The parameter tuning statement can be defined as finding optimal options using the 
arguments of the maxima (argmax) approach [5]. Let’s consider a data streaming pipeline 𝑃 
executed on a stream data processing engine. It has the following form: 

𝑃 = 〈𝑗, 𝑠, 𝑡, 𝑟, 𝑐〉, (1) 
where 𝑗 – a job executed as a part of the pipeline 𝑃; 
𝑠 – properties of an input data stream; 
𝑡 – properties of the target sink; 
𝑟 – resources available for the cluster; 
𝑐 – a configuration set of the source, job, and sink for the pipeline 𝑃. 
Let  𝑐𝑖  donate a parameter from the configuration set 𝑐 = 〈𝑐1, 𝑐2, . . . , 𝑐𝑛〉 that is a value from 

the finite domain 𝐷(𝑐𝑖), and 𝑛 is the number of parameters in the set. Now we can define the 
configuration space 𝑆 as the Cartesian product of the configuration domains 𝐷(𝑐𝑖): 

𝑆 = 𝐷(𝑐1) × 𝐷(𝑐2) ×⋯× 𝐷(𝑐𝑛), (2) 
Given the pipeline job 𝑗 that processes an input data stream 𝑠 over cluster resources 𝑟 and 

loads data to the sink 𝑡, the parameter tuning can be considered as evaluating the optimal 
configuration 𝑐𝑜𝑝𝑡 that maximizes performance metric function 𝐹 over configuration space 𝑆: 

𝑐𝑜𝑝𝑡 = argmax
𝑐∈𝑆

𝐹(𝑗, 𝑠, 𝑡, 𝑟, 𝑐). (3) 

The primary distinction between the current method for determining the best parameters for 
a specific metric outlined in the paperwork [5] lies in considering the characteristics and settings 
of the input sources 𝑠 and outputs – sinks 𝑟. 

4. Experiment 

To assess HAOT, we chose data streaming pipelines with the following technology stack: 
• Sources: Confluent Kafka 
• Processing Engine: Databricks Apache Spark 
• Sink: Delta Lake on top of Azure Blob Storage 
This pipeline was run daily for 2 months and had full logs and metrics. This allowed us to 

choose parameters using the ML model. 
These technologies are characterized by a vast array of parameters, making it impractical at 

this stage to train the machine learning model with all possible variables. Nonetheless, the 
primary objective of this paper is to determine the feasibility of this approach. The parameters 
taken for the experiment are described in Table 1. 

 



Table 1 
Parameters of the Tested Distributed Data Streaming Pipeline 

Technology Component Parameter Description 

Confluent 
Kafka 

Source partitions A number of partitions of a Kafka 
topic. Ideally, this parameter should 
be adjusted by the control module. 
However, we will skip this at the 
current stage as this is a complex 
task [15]. 

Databricks 
Apache Spark 

Processing 
Engine 

maxOffsetsPerTrigger Limit on the maximum count of 
offsets processed per triggering 
period 

  minOffsetsPerTrigger Limit on the minimum count of 
offsets processed per triggering 
period 

  minPartitions Preferred minimum quantity of 
partitions for reading from Kafka. 
By default, the Spark parallelism 
level is limited to the number of 
Kafka partitions. This parameter 
allows to increase number of 
parallel tasks. 

  spark.sql.shuffle.partitions Configures the number of partitions 
to use when shuffling data for joins 
or aggregations 

  Trigger The parameter determines the 
processing time interval of the 
streaming query 

  spark.memory.fraction Proportion of heap space allocated 
for execution and storage. A lower 
value results in more frequent 
occurrences of spills and evictions 
of cached data [16]. 

Delta Table Sink delta.targetFileSize A fixed target file size for the table. 
  delta.autoOptimize. 

autoCompact 
This parameter controls the 
automatic compaction of small files 
in a Delta Lake table. 

  delta.autoOptimize. 
optimizeWrite 

This parameter governs the 
automatic optimization of the write 
operation into a Delta Lake table 
[17]. 

 
In the experiment, the following options were unchanged. The Kafka topic had 6 partitions and 

the target delta table had following options – autoCompact and optimizeWrite. The other options 
were set by the ML model. 

The input dataset had the characteristics mentioned in Table 2. 
 

Table 2 
Input Dataset Characteristics 

Property Value 

Size 80 million 



Record Data Type Avro using Confluent serializer 
Average Record Size (In Kafka) 243 bytes – the value is low as the Avro format uses compact 

binary encoding to reduce the size of the serialized data 
Total Dataset Size (In Kafka) 18 GB 

 
The Databricks Spark cluster had 28 CPU cores and 184 GB of memory in total. The fine-

grained characteristics are defined in Table 3. 
 

Table 3 
Databricks Spark Cluster 

Cluster Component Characteristic Value 

Driver Node type Standard_D4ads_v5 
 CPU Cores 4 
 Memory 16 
Worker Node type Standard_DS13_v2 
 CPU Cores 8 
 Memory 56 
 Spark Version Spark 3.4.1, Scala 2.12 
 Worker Count 3 

 
The performance metrics were taken from Spark logs capturing Spark ProgressReporter [18]. 

Table 4 has the list of metrics and their correspondence with the parameters in the 
ProgressReporter. And additional metric was Kafka lag – the difference between current 
application offsets and maximum topic offsets [15]. 

 
Table 4 
Databricks Spark Cluster 

Metric Source Parameter 

Input Rate Spark Streaming inputRowsPerSecond 
Processing Rate Spark Streaming processedRowsPerSecond 
Input Rows Spark Streaming numInputRows 
Batch Duration Spark Streaming durationMs.triggerExecution 
Operation Duration Spark Streaming durationMs 
Kafka Lag Kafka metrics.avgOffsetsBehindLatest 

 
The experiment setup: 
• Base – the first part of the experiment involved running the Spark streaming pipeline with 
metrics collection and parameter tuning activated solely for Spark Streaming. This served as 
the baseline for performance metrics, where only the internal components of Spark Streaming 
were optimized based on available data, without external influences from other components 
of the pipeline. 
• HAOT Applied – in the second part, the experiment extended metrics collection and 
parameter tuning to include not only Spark Streaming but also Kafka and the target Delta table 
(mentioned in table 1). This approach represents the holistic application of HAOT, where the 
optimization technique is applied across the entire data pipeline rather than in isolated 
segments. 
 

5. Results 

The ML model has set the following parameters for the first experiment – Base (see Table 5). 



Table 5 
Parameters of the run “Base” 

Technology Component Parameter Value 

Confluent 
Kafka 

Source partitions 6 (Static) 

Databricks 
Apache Spark 

Processing 
Engine 

maxOffsetsPerTrigger 240000 (default for the setup) 

  minOffsetsPerTrigger none (default) 
  minPartitions none (default) 
  spark.sql.shuffle.partitions 50 
  Trigger AvailableNow (Static) 
  spark.memory.fraction 0.7 
Delta Table Sink delta.targetFileSize none (default) 
  delta.autoOptimize. 

autoCompact 
true (static) 

  delta.autoOptimize. 
optimizeWrite 

true (static) 

 
For the second experiment (HAOT Applied), the ML model provided different parameters, as 

mentioned in Table 6. While the option spark.memory.fraction has the same value, the other 
crucial options, such as minPartitions (the number of active tasks or Kafka consumers that will 
be created to read the topic), spark.sql.shuffle.partitions (the number of partitions after the 
shuffle), and delta.targetFileSize (the size of the target partitions) has different values. 

 
Table 6 
Parameters of the run “HAOT Applied” 

Technology Component Parameter Value 

Confluent 
Kafka 

Source partitions 6 (Static) 

Databricks 
Apache Spark 

Processing 
Engine 

maxOffsetsPerTrigger 960000 (default for the setup) 

  minOffsetsPerTrigger none (default) 
  minPartitions 24 
  spark.sql.shuffle.partitions 24 
  Trigger AvailableNow (Static) 
  spark.memory.fraction 0.7 
Delta Table Sink delta.targetFileSize 256 MB 
  delta.autoOptimize. 

autoCompact 
true (static) 

  delta.autoOptimize. 
optimizeWrite 

true (static) 

 
The results of average metric values of the 2 runs (“Base” and “HAOT Applied”) are presented 

in Table 7. 
 

Table 7 
Experiment Results 

Metric Description The Base Run HAOT Applied Difference 

Input Rate / sec The bigger the better 29818 35843 20.21% 
Processing Rate / sec The bigger the better 30817 43335 40.62% 
Input Rows The bigger the better 239593 878511 266.67% 



Batch Duration (ms) The lower the better 16230 39515 143.47% 
Operation Duration (ms) The lower the better 7918 19637 148.00% 
Total Execution Time (sec) The lower the better 2835 1809 -36.19% 

 
The bar chart of the data above is provided in Figure 2. 
 

 
Figure 2: The bar chart represents the results of the 2 experiments 

 
In the results above, we included the total execution time that was calculated as the difference 

in seconds between starting processing data and the moment all records were processed. 
 

6. Discussion 

Even though the Batch Duration and Operation Duration metrics went up for the HAOT case, the 
total execution time to handle the input dataset decreased by 36%. This means that, despite 
longer processing times for individual batches, the overall data loading speed was significantly 
improved. The reason for this rise is the latency to load bigger chunks of data from Kafka. Further 
supporting this improvement, the Input Rate, Processing Rate, and Input Rows metrics increased 
by 20%, 40%, and 267% respectively. 

As mentioned above, the primary drawback of Cost Modeling, Simulation-based, and 
Experiment-driven approaches lies in their resource-intensive nature. These methods demand 
significant human and computational resources, making them costly to implement. Additionally, 
integrating these approaches into existing production systems poses substantial challenges due 
to their disruptive nature and the complexity of accurately modeling real-world scenarios. 

On the other hand, Machine Learning and Adaptive Tuning approaches offer a more 
streamlined alternative, requiring minimal human intervention and not necessarily depending 
on highly specialized staff. These methods leverage algorithms to automatically adapt and 
optimize performance, reducing the need for continuous human oversight and detailed technical 
expertise. This aspect makes them particularly appealing to organizations seeking to optimize 
their streaming data systems with reduced operational overhead [19]. 

However, while Machine Learning and Adaptive Tuning strategies provide considerable 
benefits in terms of resource efficiency and ease of implementation, they primarily focus on 
optimizing the streaming engines themselves, such as Spark Streaming, Flink, and Kafka Streams. 
Neglecting the optimization of sources and sinks can lead to bottlenecks, data latency, and 
underutilization of the streaming engine's capabilities, ultimately impacting the overall 
performance of the streaming data system [20]. 

Therefore, while Machine Learning and Adaptive Tuning approaches streamline the 
optimization process and reduce the demand for skilled engineers, their effectiveness can be 
compromised if the optimization of sources and sinks is not adequately addressed. This oversight 



can result in suboptimal system performance, highlighting the need for a holistic approach to 
optimization that encompasses all components of the streaming architecture. 

 

7. Conclusions 

The considered approach (HAOT) offers several advantages over traditional tuning methods: 
• HAOT's methodical consideration of the entire data pipeline, encompassing the data 
sources, streaming engines, and sinks, ensures that optimizations are applied across the board 
rather than in isolated sections. This holistic view ensures that improvements in one area do 
not inadvertently impair performance in another, leading to enhancements in the overall 
system performance. By treating the data pipeline as an interconnected system, HAOT helps 
in identifying and rectifying bottlenecks or inefficiencies throughout, rather than just 
optimizing individual components in isolation. 
• The ability of HAOT to adjust the configurations of the entire data pipeline in real time 
enables the system to react instantaneously to changes in data patterns, workload 
fluctuations, and variations in system conditions. This dynamic adaptability ensures sustained 
optimal performance under varying conditions without the need for manual intervention. As 
the system automatically adjusts to the current data environment, it maintains efficiency and 
effectiveness, preventing slowdowns or resource wastage. 
• By continuously tuning configurations, HAOT minimizes the necessity for over-
provisioning resources to handle peak loads, which is a common practice in traditional 
systems. Over-provisioning, while ensuring that the system can handle maximum expected 
loads, often results in underutilized resources during normal or low usage periods. HAOT's 
adaptive approach ensures that resources are allocated more efficiently based on current 
needs, leading to significant cost savings in infrastructure and operational expenses. 
• Traditional system tuning often requires the expertise of highly specialized engineers, 
which can be a scarce and expensive resource. HAOT reduces this dependency by automating 
the optimization process, making it more accessible to a wider range of users. 
While HAOT presents a promising approach to parameter tuning, there are challenges to be 

addressed, such as ensuring the scalability of the approach, dealing with the complexity of the 
machine learning models, and maintaining the balance between optimization frequency and 
system stability. Future work will focus on refining the approach to address these challenges, 
improving the efficiency of the machine learning algorithms, and extending the approach to cover 
a wider range of streaming platforms and application scenarios. 
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