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Abstract
Autoencoders have emerged as powerful tools for unsupervised representation learning, finding applica-
tions in various domains such as computer vision, natural language processing, and anomaly detection.
More generally, the latent space reconstruction mechanism can be extended to the reconstruction of
any type of data. This extended abstract presents an idea of representation learning applicable to data
with an initial instant described by a baseline (input data), and an instant in the future referable to a
follow-up (output data). The novel approach consists of combining a construction-focused loss with a
classification-driven loss. The proposed hybrid autoencoder architecture aims to simultaneously enhance
data reconstruction while learning discriminative features for classification tasks. Initial experimental
results demonstrate the efficacy of the proposed hybrid autoencoder on a long-covid dataset.
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1. Introduction

Traditional data representation techniques often rely on manual feature engineering, which
is labor-intensive, domain-specific, and might miss out on intricate patterns present within
the data. Autoencoders [1], a class of neural networks, present an appealing solution to this
challenge by enabling the automatic learning of data representations in an unsupervised manner.
The core idea of an autoencoder revolves around dimensionality reduction, wherein the network
learns a compressed representation of the input data that captures its salient features. This
compressed representation, often referred to as ”latent space”, can then be used for various
downstream tasks such as classification, reconstruction, and generation. In our research context,
the input space corresponds to the patient’s description at the time of hospitalization. In
contrast, the output space is expanded to include follow-up data, specifically one year after
hospitalization. This augmentation of the output space serves as a valuable means to inform
and guide the representation of the latent space within our model. Furthermore, to classify
patients who may be suffering from long-covid, we introduce an additional classification head
building upon the hidden patient representation.
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2. Methodology

The autoencoder architecture includes two basic modules: encoder and decoder. In the
following, we will present these two components.

Encoder: this module allows the compression of the initial features space into the latent
representation. In our setting, the encoder is realized by a fully connected layer that maps the
input space into a lower dimensional latent representation. The encoder takes as input a sample
𝑥 ∈ ℝ𝑑𝑖𝑛 and outputs a representation ℎ ∈ ℝ𝑑ℎ𝑖𝑑 , where 𝑑𝑖𝑛 ≫ 𝑑ℎ𝑖𝑑. During the encoding phase,
we also introduce non-linearity by applying a non-linear activation function immediately after
the fully connected layer. Finally, to reduce overfitting and improve the model generalization
we also adopt a dropout layer [2].

Decoder: module that reconstructs the output data starting from the latent representation.
In most settings, this module is designed to complement the encoder, aiming to reconstruct
the input sample 𝑥 from the latent representation ℎ. However, in our experiments, we chose
to expand the output dimension 𝑑𝑜𝑢𝑡 to include the features of the patients at follow-up time
𝑑𝑜𝑢𝑡 = 𝑑𝑖𝑛 + 𝑑𝑓 𝑢. In this configuration, the encoder needs to map the input features to a latent
representation that not only compresses the data but also retains sufficient information for
accurate reconstruction of the follow-up details during the decoding phase. As a result, the
model can potentially learn patterns that span across the hospitalization and follow-up time.

Lastly, to address the task of classifying patients with or without long-covid syndrome, we
incorporate a classification head into the model.

2.1. Dual loss function

During the learning process, the model uses a loss function comprised of two separate com-
ponents. The first part ℒ𝑟 is responsible for the reconstruction part of the learning task. In
particular, we resorted to the Mean Squared Error (MSE) loss that calculates the distance be-
tween the reconstructed data and the training samples. The second component denoted byℒ𝑐
is used for the classification of long-covid syndrome, using the Binary Cross Entropy loss (BCE).
We chose to mix these two losses by introducing two coefficients, denoted as 𝛼 and 𝛽, enabling
us to seamlessly balance between a reconstruction and classification regimen. The complete
loss function is described as follows:

ℒ = 𝛼ℒ𝑐 + 𝛽ℒ𝑟

3. Experiments

During the experiments, we applied the model to a real-world dataset. In the subsequent
sections, we will start by giving an overview of the long-covid scenario, presenting dataset
statistics, and finally, we will discuss the model configuration and performances.



3.1. Long-COVID scenario

Following the characterization in [3], long-COVID-19 syndrome consists of signs and symptoms
(sequelae) consistent with COVID-19 that are present beyond 12 weeks of the onset of acute
COVID-19 infection, and not ascribable to alternative causes (i.e., other diseases). Consider the
syndrome to be defined as the persistence of at least one of such symptoms, where instances
are the patients’ data collected at hospitalization, and the labels are the long-COVID symptoms
persisting at follow-up.
Concerning patient characterization, baseline data indicate 38 features describing the
demographic and medical history of the patient, while hospitalization data (14 features) refer
to the patient’s symptoms at hospitalization (acute COVID-19 onset). Baseline data are not
directly related to COVID-19 infection but are important factors to take into account in order
to make an accurate diagnosis or prediction. Features in the baseline data can be grouped in
terms of demographic characteristics (sex, age, smoking attitude, ...) and of prior comorbidities
(obesity, chronic liver disease, hypertension, anxiety and depression, ...).
Hospitalization data include the patient’s symptoms at COVID-19 onset (fever, cough, dyspnea,
arthralgia, ...), drugs administered (hydroxychloroquine, monoclonal antibodies, glucocorticoids,
antivirals, ...), and hospitalization information (duration, oxygen administration, ICU intubation,
..). Baseline and hospitalization jointly form the input space.
The follow-up data (27 features) contains among others the same symptoms present in the
hospitalization but at a different instant (one year in the future). The follow-up set combined
with the input space forms the output space.

The original dataset consisted of 324 entries, representing a very limited data scenario for a
deep learning architecture. To augment our dataset with additional samples, we employed the
Synthetic Minority Over-sampling Technique (SMOTE) [4], resulting in an expanded dataset
containing over 400 samples.

3.2. Results

We conducted a series of tests on the aforementioned dataset to assess whether the latent space
constructed by our model could establish a correlation between hospitalization and follow-up
while simultaneously maintaining discriminative capabilities for identifying cases of long-covid.
Detailed hyperparameters employed during the model training are provided in Table 1.
To address the limitations posed by the dataset size, we adopted a shallow dimension for the
latent space and relatively high dropout probability. This decision is justified by the dataset’s
size, as maintaining a compact representation enhances the model’s generalization capacity
when there are limited examples available.

The average accuracy achieved in our experiments is 71% ± 0.9. We applied PCA to the latent
space embeddings varying the 𝛼 parameter of the loss, which governs the classification con-
tribution to the loss. As illustrated in Figure 1, it is clear that as the value of alpha increases,
the explained variance of the embeddings also rises. This suggests that the clusters become
progressively more linearly separable. The result is especially promising considering the scarcity



of data and the complexity of the multi-class classification problem.

Figure 1: Explained variance of the PCA of the latent space at different values of 𝛼 parameter of the
loss.

3.2.1. Latent space representation.

The dual loss framework enables the creation of a latent space that takes into account the
presence of at least one of the symptoms as a discriminator. This capability is made possible by
the end-to-end architecture of our model. When visualizing the latent space in two dimensions
using t-distributed stochastic neighbor embedding (t-SNE) [5], we observe the emergence of
two distinct clusters that represent the distribution of samples within the latent space. Figure 2
illustrates these clusters within the latent space, with sample points color-coded to indicate the
presence or absence of symptoms.

Parameter Configuration
Hidden dimension 128
Latent size 16
𝛼 1
𝛽 0.7
Reconstruction Loss MSE
Learning rate 0.001
Dropout 0.5

Table 1
The hyperparameters of the model used during the experiments.

4. Conclusion

In conclusion, this paper has introduced a hybrid autoencoder architecture that leverages
both construction-focused and classification-driven loss functions to enhance unsupervised



Figure 2: Latent space visualization. Yellow dots represent samples with at least 1 residual symptom at
follow-up and vice versa.

representation learning. Autoencoders have already proven their utility in various domains,
and this work extends their applicability to data with a temporal aspect. By incorporating both
reconstruction and discriminative feature learning objectives, our approach aims to provide a
comprehensive solution for a wide range of tasks.
Our initial experiments on a long-covid dataset have yielded promising results, demonstrating
the effectiveness of the proposed hybrid autoencoder in capturing meaningful representations
from sequential data. These findings pave the way for future research in utilizing autoencoders
for time-dependent data and underline the potential impact of this approach in addressing
complex real-world problems.
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