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Abstract
Despite being studied for over twenty years, Recommender Systems (RSs) still suffer from important
issues that limit their applicability in real-world scenarios. Data sparsity, cold start, and explainability
are some of the most impacting problems. Intuitively, these historical limitations can be mitigated by
injecting prior knowledge into recommendation models. Neuro-Symbolic (NeSy) approaches are suitable
candidates for achieving this goal. However, the application of such systems to RSs is still in its early
stages, and most of the proposed architectures do not really exploit the advantages of a NeSy approach.
To this end, we conducted preliminary experiments with a Logic Tensor Network (LTN), a novel NeSy
framework. We used the LTN to train a vanilla Matrix Factorization model using a First-Order Logic
knowledge base as an objective. In particular, we encoded facts to enable the regularization of the latent
factors using content information, obtaining promising results. In this paper, we show our preliminary
results with the LTN and propose interesting future works in this novel research area.
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1. Introduction

Recommender Systems (RSs) are nowadays essential tools for e-services. Specifically, they aim
to mitigate information overload by suggesting novel items to users based on their preferences.
Since the beginning of the RSs literature, Collaborative Filtering (CF) has been affirmed to be
the de facto recommendation approach. Latent Factor Models, particularly Matrix Factorization
(MF) [1], have been proven to be the most successful CF technique, and this has been further
emphasized with the deep learning rise [2].
Despite being studied for over twenty years, state-of-the-art recommendation models still

suffer from historical limitations that limit their applicability in real-world scenarios. Among
the well-known issues of RSs, there are data sparsity, cold-start, and explainability.
Intuitively, these issues can be mitigated by providing additional knowledge to the model.

Such knowledge should be carefully designed to compensate for data scarcity, provide additional
information when no ratings are available, or enhance model transparency. We believe Neuro-
Symbolic (NeSy) [3] approaches are promising candidates for injecting knowledge inside models.
Specifically, they aim to integrate learning and (symbolic) reasoning to obtain the best from
both worlds. In particular, (𝑖) symbolic methods typically work well with poor training data,
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while neural networks struggle. Then, (𝑖𝑖) symbolic methods are usually explainable by design,
while neural networks are black-boxes. Finally, (𝑖𝑖𝑖) symbolic methods manage to work in the
absence of data (i.e., zero-shot learning), while for neural networks, it is impossible. Ideally, by
integrating these two paradigms, it could be possible to obtain a recommendation engine that
can deal well with sparsity, address cold-start cases, and make its predictions less opaque.

Many Neuro-Symbolic recommenders have been proposed recently [4, 5, 6]. However, these
methods do not totally exploit the advantages of the NeSy system, or they have not been applied
to overcome the aforementioned limitations, where we believe they are particularly suited.
For example, they implement the symbolic part using neural networks or use too simple logic
(e.g., propositional logic) that is not expressive enough to model real-world problems [4]. To
this end, in a preliminary experiment, we used a Logic Tensor Network (LTN) [7, 8] to encode
logical axioms for enabling regularization of a vanillaMatrix Factorization (MF) based on logical
reasoning. We obtained promising results, showing that the benefits of the encoded knowledge
increase with the sparsity of the user-item ratings.

2. Preliminary experiments

In our preliminary experiments on Neuro-Symbolic Integration, we selected Logic Tensor
Networks (LTN) [7] as the NeSy framework to perform recommendations. LTN allows learning
a neural model using the satisfaction of a FOL knowledge base as an objective. Specifically,
it defines a FOL language, called Real Logic, that allows mapping every symbolic expression
to the domain of real numbers. By doing so, the logical formulas in the knowledge base form
a computational graph that can be used for gradient-based optimization. To this end, Real
Logic defines the grounding function 𝒢, which defines the mapping between the symbolic and
real domains. Specifically, individuals are mapped to tensors of real values, variable symbols
to sequences of individuals, functional symbols to real functions, and predicate symbols to
real functions with output in [0., 1.]. Then, connectives (i.e., ∧, ∨, ¬, ⟹ ) are mapped to fuzzy
semantics [9], while quantifiers (i.e., ∀, ∃) are mapped to special aggregation functions (e.g.,
generalized means).
Intuitively, functional and predicate symbols can be represented as neural networks pa-

rameterized by 𝜃. We refer to 𝒢(𝑠|𝜃) as a parametric grounding, meaning symbol 𝑠 depends
on some parameters 𝜃 that can be learned. LTN allows learning parametric groundings by
maximally satisfying a specified knowledge base 𝒦 = {𝜙1, … , 𝜙𝑛}, where 𝜙1, … , 𝜙𝑛 are closed
formulas. More formally, the objective of the LTN is 𝜃∗ = argmax𝜃 SatAgg𝜙∈𝒦 𝒢(𝜙|𝜃), where
𝒢(𝜙|𝜃) means formula 𝜙 includes some functional or predicate symbols parameterized by 𝜃.
SatAgg ∶ [0., 1.]∗ ↦ [0., 1.] is a formula aggregating operator, usually defined with MEp [7],
namely the fuzzy operator that represents ∀.

In what follows, we refer to Likes(𝑢, 𝑖) as a binary predicate returning whether a user 𝑢 likes
an item 𝑖. Note that 𝒢(Likes |𝜃) can be any recommendation model returning the prediction
for a user-item pair in the dataset. In our experiments, we implemented 𝒢(Likes |𝜃) as a Matrix
Factorization model. Specifically, 𝒢(Likes |𝜃) ∶ 𝑢, 𝑖 ↦ 𝜎(U𝑢 ⋅ I⊤𝑖 + u𝑢 + i𝑖), where U ∈ ℝ𝑛×𝑘,
I ∈ ℝ𝑚×𝑘, u ∈ ℝ𝑛, and i ∈ ℝ𝑚 are the users’ and items’ latent factors, and users’ and items’
biases, respectively. 𝑛 denotes the number of users, 𝑚 the number of items, and 𝑘 the number of



latent factors. 𝜎 is the logistic function. Specifically, 𝜎 allows Likes to be interpreted as a fuzzy
predicate.

2.1. Recommendation loss function definition

LTN allows defining the recommendation objective as a set of logical axioms. Thanks to the
expressiveness of FOL, one can express fine-grained constraints that can represent complex
loss functions. For example, the loss function for training an MF model could be the following.

∀(𝑢+, 𝑖+) Likes(𝑢+, 𝑖+) (1)

∀(𝑢−, 𝑖−)¬ Likes(𝑢−, 𝑖−) (2)

Intuitively, 𝑢+ and 𝑖+ are variable symbols denoting positive user-item pairs, while 𝑢− and 𝑖−
denote negative user-item pairs. Axiom (1) states that for each positive user-item pair, the
prediction of the MF model should be a positive truth value (i.e., the user should like the item).
In contrast, Axiom (2) states that for each negative user-item pair, the prediction of the MF
model should be a negative truth value since the loss imposes maximizing the negation of
Likes. In other words, by satisfying this knowledge base, the LTN learns how to train the MF to
factorize the user-item matrix using the ground truth (i.e., the target ratings).

2.2. Model regularization by logical reasoning

Encoding additional information to regularize the recommendation model is straightforward.
This can be done by encoding additional axioms that enable logical reasoning based on side
or content information. Following this intuition, we conducted a preliminary experiment [6]
to see if LTN could enable an underlying MF model reasoning about some additional content
information. In particular, an experiment that drastically reduces the density of user-item
ratings showed that the benefits of the encoded knowledge increase with the sparsity of the
dataset, proving our NeSy approach has been beneficial in dealing with sparsity. Specifically,
we added the following axiom to the previous knowledge base. Note the experiment has been
conducted on MindReader1, a movie recommendation dataset providing ratings for both movies
and movie genres.

∀(𝑢?, 𝑖?)(∃𝑔¬ LikesGenre(𝑢?, 𝑔) ∧ HasGenre(𝑖?, 𝑔)) ⟹ ¬ Likes(𝑢?, 𝑖?) (3)

In the formalization, 𝑢? and 𝑖? are variable symbols denoting user-movie pairs for which the
rating is unknown, while 𝑔 is a variable symbol denoting the movie genres of the movies of
the dataset. Then, LikesGenre is a fixed (i.e., not learnable) binary predicate returning one if
user 𝑢 likes genre 𝑔, zero otherwise. Similarly, HasGenre is a fixed binary predicate returning
one if a movie 𝑖 belongs to genre 𝑔, zero otherwise. Note these two predicates can be easily
implemented as lookup tables filled with data from the dataset.
Intuitively, Axiom (3) states that every time there is a user-movie pair for which we do not

have information (i.e., the rating is missing), if we know user 𝑢? does not like some genre 𝑔 of the
1https://mindreader.tech/dataset/

https://mindreader.tech/dataset/


associated movie 𝑖?, then 𝑢? should not like 𝑖?. This formula enables the underlying MF model
to reason about relationships between users, movies, and movie genres. In this sense, it acts as
a kind of logical regularization for the latent factors of the MF. In particular, we designed this
axiom based on the idea that when no ratings are available, knowing something about movie
genres is better than knowing nothing. This intuition has been evidenced by our results [6],
which prove that the addition of the formula has been crucial to deal with sparsity.

3. Proposed directions

This section proposes possible extensions of our NeSy model to solve different recommendation
tasks.

3.1. Hybrid recommendation

In Section 2.1, we showed how LTN could be used to implement a recommendation model
based on Collaborative Filtering. It is well-known that CF cannot deal with cold-start cases,
as collaborative information for newly added users and items is unavailable. For this reason,
hybrid recommendation models have been proposed. The idea is to merge CF with content-
based recommendations to deal with cold-start while maintaining all the advantages of CF.
Implementing this idea in LTN is straightforward. It involves adding the following axiom to the
knowledge base.

∀𝑢, 𝑖, 𝑖𝑐𝑜𝑙𝑑 Likes(𝑢, 𝑖) ∧ Sim(𝑖, 𝑖𝑐𝑜𝑙𝑑) ⟹ Likes(𝑢, 𝑖𝑐𝑜𝑙𝑑) (4)

Intuitively, Axiom (4) states that for each triple (𝑢, 𝑖, 𝑖𝑐𝑜𝑙𝑑), where 𝑢 is a user, 𝑖 is an item, and
𝑖𝑐𝑜𝑙𝑑 a cold-start item, if 𝑢 likes 𝑖, and 𝑖 and 𝑖𝑐𝑜𝑙𝑑 are similar, then 𝑢 should like 𝑖𝑐𝑜𝑙𝑑 too. Note the
predicate Sim can be implemented as a similarity measure based on content (e.g., movie genres
in common) or latent (i.e., pre-trained embeddings) information. The only constraint is the
output has to be in the range [0., 1.] as it has to be interpreted as a logical predicate by LTN.
Clearly, this formula will help the model deal with cold-start item cases, as when no information
is available about some ratings, we are using content information to compensate for this. The
LTN will perform hybrid recommendations by finding a trade-off between Axiom (4), Axiom (1),
and Axiom (2) in the objective. Note that a similar idea can also be used to deal with cold-start
users.

3.2. Cross-domain recommendation

Cross-domain recommendation aims at mitigating data sparsity by transferring knowledge
acquired from other domains (e.g., books, songs) to the target domain (e.g., movies). The source
domain is usually denser than the target domain, as the objective is to compensate for sparsity
in the latter. To this end, LTN can be used as an interface for transferring knowledge between
domains. To do that, the following axiom can be added to the knowledge base.

∀(𝑢, 𝑏, 𝑚) Likessource(𝑢, 𝑏) ∧ Sim(𝑏, 𝑚) ⟹ Likestarget(𝑢, 𝑚) (5)



In the formalization, 𝑢, 𝑏, and 𝑚 are variable symbols for denoting users, books, and movies,
respectively. Then, Likessource is a pre-trained recommendation model on book ratings (i.e.,
the source domain), while Likestarget represents the recommendation model we want to train
on the target domain (i.e., movie ratings in this example). Again, Sim is a predicate that can
be implemented using a similarity measure based on content information (e.g., storyline) or
latent structure. Intuitively, Axiom (5) states that every time a user 𝑢 likes a book 𝑏 in the
source domain, if the book is similar to a movie 𝑚 in the target domain, then 𝑢 should like 𝑚.
Clearly, this axiom allows the transfer of information between domains by logical reasoning.
We conducted some preliminary experiments based on this idea and obtained promising results.
Note one could apply Axiom (5) only when user-movie ratings are missing on the target domain.
In such cases, knowing something about the source domain acts as a kind of data augmentation
for the target domain and, hence, helps mitigate data sparsity.

3.3. Explainable recommendation

LTN has not been designed just for learning. In particular, it also provides the possibility to
query the knowledge base after the training phase. Querying is the process of grounding the
knowledge base with novel data and checking the satisfaction level of its formulas. We believe
this feature can be used to provide explanations for recommendations. For example, after we
train a model with Axiom (1), Axiom (2), and Axiom (3), we could check the satisfaction level
of the following formula for a test user 𝑢𝑠𝑒𝑟𝑡𝑒𝑠𝑡 to which we recommended the movie 𝐴𝑣𝑎𝑡𝑎𝑟.

∃𝑔 LikesGenre(𝑢𝑠𝑒𝑟𝑡𝑒𝑠𝑡, 𝑔) ∧ HasGenre(𝐴𝑣𝑎𝑡𝑎𝑟 , 𝑔)

Intuitively, if the formula is evaluated with a high truth value, it means our test user likes at
least one movie genre of 𝐴𝑣𝑎𝑡𝑎𝑟. Note that one can go through the computational graph of the
formula to understand precisely which genre it is and provide this finding as an explanation.

4. Conclusions

In this paper, we proposed different ways to use a Neuro-Symbolic approach to mitigate
important recommender systems’ limitations and solve interesting recommendation tasks.
In particular, we showed the flexibility of LTN in designing heterogeneous recommendation
objectives.
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