
Knowledge Graph Completion with Probabilistic
Logic Programming⋆

Elisabetta Gentili1,∗

1Department of Engineering, University of Ferrara, Via Saragat, 1, 44124, Ferrara, Italy

Abstract
Knowledge Graphs have gained popularity in the last decade, given their ability to represent huge
structured knowledge bases. However, they are often incomplete and thus Knowledge Graph Completion
(KGC) is currently a hot topic. In this paper we present our idea of performing KGC by learning liftable
probabilistic logic programs via regularization, using LIFTCOVER+, with the aim of obtaining more
accurate results while learning a smaller set of rules.

Keywords
Knowledge Graphs Completion, Probabilistic Inductive Logic Programming, Regularization

1. Background

Even though the term Knowledge Graph (KG) has been used from 1973 [1], there is still no
universally accepted formal definition for it [2]. Nevertheless, we can say that KGs are graph-
based representations of knowledge in terms of relationships between entities. More practically,
following the Resource Description Framework (RDF) data model [3], a KG is a set of triples
⟨𝑠, 𝑝, 𝑜⟩ where s is the subject, p is the predicate, and o is the object. An example of such a triple
is ⟨𝑒𝑑, 𝑠𝑝𝑒𝑎𝑘𝑠, 𝑑𝑢𝑡𝑐ℎ⟩. Figure 1 [4] shows an example of a KG.
Data can be naturally and effectively represented with graphs in many real-world domains,

such as computer networks, social networks, healthcare (diseases, molecules), transportation,
and so on. For this reason, KGs are employed for different tasks like query answering, recom-
mender systems, chatbots and voice assistants.

KGs have become popular over the last decade thanks to the introduction of Google’s Knowl-
edge Graph in 2012 [5], used to automatically generate knowledge panels. Knowledge panels
are boxes containing information coming from various sources on the web, and are meant to
give the user an overview of the researched topic. Aside from Google’s, other popular examples
of KGs, both proprietary and open, are Amazon Product graph, Facebook Graph API, IBM
Watson, Microsoft Satori, Wikimedia’s Wikidata [6], YAGO [7], and FreeBase [8].

AIxIA’23: 22nd International Conference of the Italian Association for Artificial Intelligence - Doctoral Consortium,
November 06–09, 2023, Rome, Italy
⋆
Doctoral project supervised by Evelina Lamma (Department of Engineering, University of Ferrara) and Fabrizio
Riguzzi (Department of Mathematics and Computer Science, University of Ferrara).

∗Corresponding author.
Envelope-Open elisabetta.gentili1@unife.it (E. Gentili)
Orcid 009-0006-6901-0540 (E. Gentili)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:elisabetta.gentili1@unife.it
https://orcid.org/009-0006-6901-0540
https://creativecommons.org/licenses/by/4.0

lisa

ed

netherlands

dutchamsterdam

bobmale

born

lives

married

born

lives

speaks

gender

lang

gender

speaks

Figure 1: An example of Knowledge Graph, from [4].

Since KGs cannot contain all the possible knowledge in the domain, they are usually incom-
plete and sparse, thus it is often necessary to infer missing information (entities or relationships).
This task is referred to as Knowledge Graph Completion (KGC). According to what is missing,
KGC can be divided into specific tasks [9], such as link prediction, entity prediction, or relation
prediction.

KGC is a very active field of research and many algorithms have been proposed to solve the
problem. They can be divided into traditional and representation learning-based methods [9].
Rule-based reasoning methods and probabilistic graphical models, such as Markov Logic Net-
works, are examples of techniques that fall under the first category. On the other hand, KGC
methods based on embeddings or neural network models are an example of technique belonging
to the second category.

2. Methodology

Our goal is to perform KGC with a Probabilistic Logic Programming (PLP) algorithm [10], to
learn logical rules representing paths in large KGs, which will allow the ranking of candidates
in terms of probabilities. PLP combines logic-based languages and uncertainty [11]. In the last
years PLP under the distribution semantics [12] in particular has gained high popularity thanks
to its expressiveness, especially in domains where uncertainty plays a relevant role [13, 14, 15].
Logic Programs with Annotated Disjunctions (LPADs) [16] are a PLP language under the
distribution semantics. In LPADs, heads of clauses are disjunctions in which each atom is
annotated with a probability. Liftable Probabilistic Logic Programs [17] have been proposed
to perform lifted inference [18] in an efficient way by taking into consideration populations
of individuals instead of considering each individual separately. LIFTCOVER+ [19] performs
structure and parameter learning of liftable probabilistic logic programs, and it is an improved
version of LIFTCOVER [17] that adds regularization and gradient descent for parameter learning,
to improve the quality of the solutions and prevent overfitting.
The triples of a KG can be represented by First-Order Logic (FOL) atoms. For example,

the triple ⟨𝑒𝑑, 𝑠𝑝𝑒𝑎𝑘𝑠, 𝑑𝑢𝑡𝑐ℎ⟩ can be represented by the atom 𝑠𝑝𝑒𝑎𝑘𝑠(𝑒𝑑, 𝑑𝑢𝑡𝑐ℎ). Therefore, we

consider a KG 𝔾 as a set of ground atoms or facts:

𝔾 = {𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 , 𝑜𝑏𝑗𝑒𝑐𝑡) | 𝑟 𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∈ ℝ, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 , 𝑜𝑏𝑗𝑒𝑐𝑡 ∈ ℂ}

where ℂ is a set of constants (entities) and ℝ is a set of binary predicates (relations).
Following the approach of AnyBURL [4], we want to learn chain rules of increasing length of

the form:
ℎ(𝑋0, 𝑋1) ← 𝑏1(𝑋1, 𝑋2), … , 𝑏𝑛(𝑋𝑛, 𝑋𝑛+1).

Here ℎ(…) is the head of the rule, while the 𝑏𝑖(…) form the body. Upper-case letters are variables.
AnyBURL is an anytime algorithm designed to learn rules from knowledge graphs by follow-

ing the bottom-up paradigm. With n referring to the number of body atoms and starting from
𝑛 = 2, AnyBURL iteratively samples random paths of length n, and learns rules of length 𝑛 − 1,
until a certain saturation is reached. For each rule, the confidence is computed as the number
of head and body groundings that are true divided by the number of body groundings that are
true. Considering the KG in Figure 1 from [4], in order to explain the fact 𝑠𝑝𝑒𝑎𝑘𝑠(𝑒𝑑, 𝑑𝑢𝑡𝑐ℎ),
AnyBURL finds all the paths starting from ed or netherlands, and their corresponding bottom
rule. An example of bottom rule to be generalized is the following:

𝑠𝑝𝑒𝑎𝑘𝑠(𝑒𝑑, 𝑑𝑢𝑡𝑐ℎ) ← 𝑙𝑖𝑣𝑒𝑠(𝑒𝑑, 𝑛𝑒𝑡ℎ𝑒𝑟 𝑙𝑎𝑛𝑑𝑠), 𝑙𝑎𝑛𝑔(𝑑𝑢𝑡𝑐ℎ, 𝑛𝑒𝑡ℎ𝑒𝑟 𝑙𝑎𝑛𝑑𝑠).

Then, starting from these bottom rules, AnyBURL extracts generalized rules.
Given a ground path rule of the form ℎ(𝑐0, 𝑐1) ← 𝑏1(𝑐1, 𝑐2), … , 𝑏𝑛(𝑐𝑛, 𝑐𝑛+1), extracted rules can

be of one of three types:

1. rules that generalize acyclic ground path rules, i.e., rules where 𝑐0 ≠ 𝑐𝑛+1:

ℎ(𝑐0, 𝑋) ← 𝑏1(𝑋 , 𝐴2), … , 𝑏𝑛(𝐴𝑛, 𝐴𝑛+1);

2. rules that generalize cyclic ground path rules, i.e., rules where 𝑐0 = 𝑐𝑛+1:

ℎ(𝑌 , 𝑋) ← 𝑏1(𝑋 , 𝐴2), … , 𝑏𝑛(𝐴𝑛, 𝑌);

3. rules that generalize both acyclic and cyclic ground path rules:

ℎ(𝑐0, 𝑋) ← 𝑏1(𝑋 , 𝐴2), … , 𝑏𝑛(𝐴𝑛, 𝑐𝑛+1);

where 𝑋, 𝑌 are variables that appear in the head, while 𝐴𝑖 can appear only in the body.
A rule is stored only if a certain quality criteria is met (e.g., the confidence above a specified

threshold). Then, n is increased by 1 and the loop is repeated. Given a completion task 𝑟(𝑎, ?),
the learnt rules are then used to find an entity c such that 𝑟(𝑎, 𝑐) ∉ 𝔾 is true, with 𝑟 ∈ ℝ and
𝑎, 𝑐 ∈ ℂ. The candidate values for c are ordered according to the maximum confidence of
all the rules that generated them. In case of a tie for some candidates, the second rule that
generated them is considered, and so on. The following generalized rules can be obtained from
the above-mentioned bottom rule:

𝑠𝑝𝑒𝑎𝑘𝑠(𝑒𝑑, 𝑌) ← 𝑙𝑖𝑣𝑒𝑠(𝑒𝑑, 𝐴2), 𝑙𝑎𝑛𝑔(𝐴2, 𝑌)

𝑠𝑝𝑒𝑎𝑘𝑠(𝑒𝑑, 𝑑𝑢𝑡𝑐ℎ) ← 𝑙𝑖𝑣𝑒𝑠(𝑒𝑑, 𝐴2), 𝑙𝑎𝑛𝑔(𝐴2, 𝑑𝑢𝑡𝑐ℎ)
𝑠𝑝𝑒𝑎𝑘𝑠(𝑒𝑑, 𝑌) ← 𝑙𝑖𝑣𝑒𝑠(𝑒𝑑, 𝐴2), 𝑙𝑎𝑛𝑔(𝐴2, 𝑌)

where upper-case letters are variables.
In our approach, we learn rules with the AnyBURL algorithm but we attach to each rule a

probability instead of a confidence andwe tune the probabilities of the set of rules with parameter
learning. We use LIFTCOVER+ that uses regularization: we try to bring the parameters close to
0 as much as possible and we remove the rules with a probability below a threshold, because
they have a small influence on the final result. By doing so, the ranking should be more accurate
and the number of rules learnt smaller. Furthermore, being a rule-based approach, the resulting
candidate ranking is explained by the rules, and thus easily understandable.

3. Related work

Aside from AnyBURL [20, 4], several other approaches have been proposed for KGC.
AMIE [21] and its improved version AMIE++ [22] are top-down rule learning systems tailored

to support the Open World Assumption, that is, a scenario in which absent data cannot be
used as counterexamples. AMIE++ was developed to work with larger knowledge bases. The
authors of [23] proposed a neural model for Existential Positive First-Order logical queries
represented via box embeddings. In [24], the authors developed an approach for mining
relational nonmonotonic rules from KGs under the Open World Assumption, that combines
rule learning and nonmonotonic reasoning. DRUM [25] is an approach used for mining first-
order logical rules from KGs by performing inductive link prediction and thus able to manage
previously unseen entities. The authors of [26] proposed a rule learning approach to learn
typed rules using type information to guide the rule search.

4. Conclusions

In this paper, we presented our approach for performing KGC with PLP. The approach is based
on the AnyBURL algorithm, however, it differs from it in the ranking method. In fact, we use
probabilities instead of confidence values. Furthermore, the algorithmwe employ, LIFTCOVER+,
uses regularization to prune rules with negligible probabilities. In this way we should be able
to obtain a more accurate ranking and a smaller set of learnt rules.

Acknowledgments

This article was produced while attending the PhD programme in Engineering Science at
the University of Ferrara, Cycle XXXVIII, with the support of a scholarship financed by the
Ministerial Decree no. 351 of 9th April 2022, based on the NRRP - funded by the European Union
- NextGenerationEU - Mission 4 “Education and Research”, Component 1 “Enhancement of the
offer of educational services: from nurseries to universities” - Investment 4.1 “Extension of the
number of research doctorates and innovative doctorates for public administration and cultural
heritage”. This work has been partially supported by the Spoke 1 “FutureHPC & Big-Data” of the

Italian Research Center on High-Performance Computing, Big Data and Quantum Computing
(ICSC) funded by MUR Missione 4 - Next Generation EU (NGEU), by TAILOR, a project funded
by EU Horizon 2020 research and innovation programme under GA No. 952215, and by the
National Group of Computing Science (GNCS-INDAM).

References

[1] E. W. Schneider, Course modularization applied: The interface system and its implications
for sequence control and data analysis., 1973.

[2] L. Ehrlinger, W. Wöß, Towards a definition of knowledge graphs., SEMANTiCS (Posters,
Demos, SuCCESS) 48 (2016) 2.

[3] O. Lassila, R. R. Swick, Resource description framework (rdf) model and syntax specification,
1999.

[4] C. Meilicke, M. W. Chekol, D. Ruffinelli, H. Stuckenschmidt, Anytime bottom-up rule
learning for knowledge graph completion., in: IJCAI, 2019, pp. 3137–3143.

[5] A. Singhal, et al., Introducing the knowledge graph: things, not strings, Official Google
blog 5 (2012) 3.

[6] T. Bayer, The Wikidata revolution is here: enabling structured data on Wikipedia, 2013.
[7] F. M. Suchanek, G. Kasneci, G. Weikum, Yago: A large ontology from wikipedia and

wordnet, Journal of Web Semantics 6 (2008) 203–217.
[8] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created

graph database for structuring human knowledge, in: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, 2008, pp. 1247–1250.

[9] Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, Z. Duan, Knowledge graph completion: A
review, IEEE Access 8 (2020) 192435–192456.

[10] D. Azzolini, E. Gentili, F. Riguzzi, Link Prediction in Knowledge Graphs with Probabilistic
Logic Programming: Work in Progress, in: J. Arias, S. Batsakis, W. Faber, G. Gupta,
F. Pacenza, E. Papadakis, L. Robaldo, K. Ruckschloss, E. Salazar, Z. G. Saribatur, I. Tach-
mazidis, F. Weitkamper, A. Wyner (Eds.), Proceedings of the International Conference
on Logic Programming 2023 Workshops co-located with the 39th International Confer-
ence on Logic Programming (ICLP 2023), volume 3437 of CEUR Workshop Proceedings,
CEUR-WS.org, 2023, pp. 1–4.

[11] F. Riguzzi, Foundations of Probabilistic Logic Programming Languages, Semantics, Infer-
ence and Learning, Second Edition, River Publishers, Gistrup, Denmark, 2023.

[12] T. Sato, A statistical learning method for logic programs with distribution semantics, in:
L. Sterling (Ed.), Logic Programming, Proceedings of the Twelfth International Conference
on Logic Programming, Tokyo, Japan, June 13-16, 1995, MIT Press, 1995, pp. 715–729.
doi:10.7551/mitpress/4298.003.0069.

[13] L. De Raedt, A. Kimmig, Probabilistic (logic) programming concepts, Machine Learning
100 (2015) 5–47. doi:10.1007/s10994-015-5494-z.

[14] F. Riguzzi, E. Lamma, M. Alberti, E. Bellodi, R. Zese, G. Cota, Probabilistic logic program-
ming for natural language processing, in: F. Chesani, P. Mello, M. Milano (Eds.), Workshop

http://dx.doi.org/10.7551/mitpress/4298.003.0069
http://dx.doi.org/10.1007/s10994-015-5494-z

on Deep Understanding and Reasoning, URANIA 2016, volume 1802 of CEUR Workshop
Proceedings, Sun SITE Central Europe, 2017, pp. 30–37.

[15] A. Nguembang Fadja, F. Riguzzi, Probabilistic logic programming in action, in: A. Holzinger,
R. Goebel, M. Ferri, V. Palade (Eds.), Towards Integrative Machine Learning and Knowledge
Extraction, volume 10344 of Lecture Notes in Computer Science, Springer, 2017, pp. 89–116.
doi:10.1007/978-3-319-69775-8_5.

[16] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic Programs With Annotated Disjunctions,
in: 20th International Conference on Logic Programming (ICLP 2004), volume 3132 of
Lecture Notes in Computer Science, Springer, 2004, pp. 431–445.

[17] A. Nguembang Fadja, F. Riguzzi, Lifted discriminative learning of probabilistic logic
programs, Machine Learning 108 (2019) 1111–1135.

[18] D. Poole, First-order probabilistic inference, in: G. Gottlob, T. Walsh (Eds.), IJCAI-03,
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003, Morgan Kaufmann Publishers, 2003, pp. 985–991.

[19] E. Gentili, A. Bizzarri, D. Azzolini, R. Zese, F. Riguzzi, Regularization in probabilistic induc-
tive logic programming, in: International Conference on Inductive Logic Programming,
2023. (in press).

[20] C. Meilicke, M. W. Chekol, P. Betz, M. Fink, H. Stuckeschmidt, Anytime bottom-up rule
learning for large-scale knowledge graph completion, The VLDB Journal (2023) 1–31.

[21] L. A. Galárraga, C. Teflioudi, K. Hose, F. Suchanek, Amie: association rule mining un-
der incomplete evidence in ontological knowledge bases, in: Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 413–422.

[22] L. Galárraga, C. Teflioudi, K. Hose, F. M. Suchanek, Fast rule mining in ontological
knowledge bases with AMIE++, The VLDB Journal 24 (2015) 707–730.

[23] H. Ren, W. Hu, J. Leskovec, Query2box: Reasoning over knowledge graphs in vector space
using box embeddings, arXiv preprint arXiv:2002.05969 (2020).

[24] H. D. Tran, D. Stepanova, M. H. Gad-Elrab, F. A. Lisi, G. Weikum, Towards nonmonotonic
relational learning from knowledge graphs, in: Inductive Logic Programming: 26th
International Conference, ILP 2016, London, UK, September 4-6, 2016, Revised Selected
Papers 26, Springer, 2017, pp. 94–107.

[25] A. Sadeghian, M. Armandpour, P. Ding, D. Z. Wang, Drum: End-to-end differentiable rule
mining on knowledge graphs, Advances in Neural Information Processing Systems 32
(2019).

[26] H. Wu, Z. Wang, K. Wang, Y.-D. Shen, Learning typed rules over knowledge graphs, in:
Proceedings of the International Conference on Principles of Knowledge Representation
and Reasoning, volume 19, 2022, pp. 494–503.

http://dx.doi.org/10.1007/978-3-319-69775-8_5

	1 Background
	2 Methodology
	3 Related work
	4 Conclusions

