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Abstract
The release of ChatGPT has led to an unprecedented surge in the popularity of generative AI-based Large
Language Models (LLMs) among practitioners. These models have gained traction in business processes
due to their ability to receive instructions in natural language. However, they suffer from hallucinations,
which are generated texts that are factually incorrect. Hallucinations also arise in text classification tasks,
such as customer support ticket classification or intent classification for chatbots. In such scenarios,
the user prompts the model to classify an incoming text into predefined categories. Furthermore, in
real-world scenarios, it is common to encounter texts that do not fit into the predefined categories. It
is unclear if current state-of-the-art LLM can handle such scenarios and how they compare to existing
classifiers focusing on these situations. In this paper, we propose a way to evaluate the classification
performance of LLMs in an Open Set Recognition (OSR) scenario, where unseen classes can occur at
inference time. The simulation consists of an empirical comparison between GPT4 and Gemini Pro, two
state-of-the-art language models, a fine-tuned version of GPT3.5 and established OSR classifiers. The
results would provide insights into how reliable large language models are for classification purposes
and if they can replace existing OSR classifiers that typically require a decent amount of labelled data.
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1. Introduction

Since the release of ChatGPT in November 2022 [1], the adoption of Large Language Models
(LLMs) in businesses has experienced significant growth [2]. Especially the ability to use natural
language to interact with these models has allowed practitioners with little programming
knowledge to harness the power of such systems in their daily operations. However, utilising
LLMs comes at the risk of factually incorrect generated texts, also known as hallucinations [3].
Often, these hallucinations are undesired and, for example in the intent classification used in
chatbot interactions, they might negatively impact customer service quality and potentially
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harm the company’s reputation. This highlights the need of a robust system that is not only
able to classify the customer intent correctly, but also detects out-of-distribution questions
and replies accordingly. The functionality of a system that rejects out-of-distribution data
points and classifies known patterns into existing categories has been widely studied under
the term Open Set Recognition (OSR) [4]. In particular, deep learning based OSR classifiers,
such as the OpenMax [5] or the DOC [6] algorithm, have shown an increased performance on
OSR classification tasks [7]. Similarly, the zero- [8] and few-shot [9] abilities of LLMs have
also been leveraged to solve theses tasks. Due to the fast-paced advancements in the realm
of LLMs, it is unclear from a practitioner’s point of view how well state-of-the-art LLMs with
zero- and few-shot strategies compare to established solutions from OSR and how reliable they
are in a production setting. This ultimately leads to the question of which approach to choose
and how they compare against each other. In this work, we plan to provide insights into the
classification accuracy and the ability to reject unknown instances by conducting an empirical
analysis between these two research areas. We thereby give guidance for practitioners and an
updated benchmark for the current state-of-the-art LLM classification performance.

2. Related Work

Generative Pre-trained Transformer (GPT) models represent a paradigm shift in Natural Lan-
guage Processing (NLP) [10]. While these LLMs are typically pretrained in a self-supervised,
task-independent manner, they are known to be very good at NLP tasks, even without fine-
tuning [11]. To use these models for classification tasks one can either fine-tune the model or
use zero- and few-shot techniques for in-context-learning. Fine-tuning involves adjusting the
weights of a pre-trained model for a particular task and, given a large dataset, supersedes the
classification performance of zero- and few-shot strategies [12]. In contrast, zero- and few-shot
learning methods utilise the capability of Large Language Models (LLMs) to categorise new
data points effectively, even when they have encountered none or only a minimal number of
examples from a specific class. Typically, zero- and few-shot strategies are combined with
prompting strategies, such as ”Chain of Thought” [13] and ”Clue And Reasoning Prompting”
[14], to further enhance the classification performance. Despite these strategies, Kocoń et al. [15]
and Caruccio et al. [16] have demonstrated that the zero- and few-shot capabilities are worse
than supervised machine learning models for classification tasks. In their analysis, however,
they assumed a closed set scenario, which is an unrealistic assumption.

A more realistic scenario than traditional classification is Open Set Recognition [4]. It allows
for unknown classes during inference, and the classifier has an additional option to reject
data points as unknown. If the incoming data point is not rejected as unknown, the classifier
classifies the data point into a known class. Among the first OSR models were adapted Support
Vector Machines [17, 18]. With the rise of neural networks, Bendale and Boult [5] reformulated
the final softmax layer to also estimate the probability of a data point being out-of-distribution.
Similarly, Shu et al. [6] use a one-versus-rest classification layer to reduce the misclassifications
in the open space, while Oza and Patel [19] utilise an autoencoder and its reconstruction loss to
determine if a data point is novel.
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3. Proposed Approach

To compare the performance of LLMs versus Open Set Recognition classifiers, we plan to set up
an empirical evaluation as illustrated in Figure 1.
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Figure 1: Machine learning workflow to compare conversational LLMs with OSR classifiers.

For our experiments, we will use four different text classification datasets. These datasets
include the 20 Newsgroups dataset [20], the Yahoo! Answers dataset [21], the CLINC150 dataset
[22] and the BANKING77 dataset [23]. While the first dataset consists of news articles and the
second questions-answer pairs of certain categories, the last two represent intent classification
tasks. All datasets have at least ten different classes or categories, based on which we will
simulate an open set scenario. We follow the data splitting procedure of Geng et al. [7] to select
the known and unknown classes for the open set simulation and repeat each simulation ten
times to derive statistically meaningful results. Furthermore, we plan to exclude 0, 10, 20 and
30 % of all available classes from training and evaluate the classification for each scenario on
the f1 score. The f1 score is a commonly used metric in classification problems, measuring the
harmonic mean between precision and recall. However, in OSR scenarios, the unknown classes
are typically not considered as an additional class when calculating the f1 score [7]. That is why
we additionally distinguish between the f1 score classification performance on the known and
unknown classes, providing further insights into the applicability of LLMs for open scenarios.
In terms of conversational LLMs, we plan to use two state-of-the-art models, GPT4 [24] from
OpenAI and Gemini Pro [25] from Google, with zero-shot and few-shot prompt configurations.
When using a zero-shot configuration, we provide the LLM with only the category name and
description, while in a few-shot setting, we also include examples of each category. Currently, it
is not possible to create a custom, fine-tuned model from both of these two models. Instead, we
will use OpenAI’s GPT3.5 model and fine-tune it with resources from OpenAI to also investigate
the improvements made through fine-tuning. We then compare the results to the classification
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performance of the OpenMax [5] and DOC [6] classifiers. To speed up the training process
of both OSR classifiers, we first transform the incoming texts into meaningful embeddings
using the most advanced text embedding provided by OpenAI [26] and then train a shallow
neural network on the retrieved embeddings. The shallow neural network integrates either the
OpenMax or the DOC architecture.

4. Conclusion

Generative AI models for text generation, like ChatGPT, have proven useful in various tasks.
In particular, they can classify an incoming text into predefined categories. In this paper, we
propose a study design that compares the classification performance of state-of-the-art LLMs
with existing classifiers for Open Set Recognition. The results of this study provide insights into
the reliability of conversational LLMs and whether they are a viable alternative to traditional
classification systems.
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