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Abstract 
The research focuses on methods of assessing and providing cybersecurity methods for unmanned 
aerial vehicles (UAVs) considering AI-powered means. This article analyzes the primary threats and 
attacks against UAVs and AI in UAV systems, identifying key vulnerabilities and limitations of AI 
usage. Based on this analysis, a classification of countermeasures at both regulatory and technical 
levels has been developed, taking into account the AI aspect in UAVs for both attack and defense 
purposes. Examples of profiling AI quality models for UAV systems are presented as a means of AI 
standardization. Сase study describes building a quality model and results of IMECA analysis to 
assess AI-based on-board systems and protection means for UAVs applied in intelligent mobile 
systems for humanitarian demining. 
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1. Introduction 

1.1. Motivation 

The use of modern UAVs encompasses various applications that can be divided into civil, 
military, and commercial sectors. In the civil sector, UAVs have found their place for [1, 2] 
disaster management, in agriculture, healthcare, for building inspections etc. In the military 
domain, UAVs play a critical role, becoming effective means to achieve objectives. In the 
Russian-Ukrainian conflict, The integration of all types of UAVs can be observed at tactical, 
operational, and strategic levels considering russian-Ukrainian war [3]. UAV functions 
include [4] reconnaissance, observation, and target engagement. Commercial use of drones is 
represented in the form of capturing photos and videos of events, concerts, sports, in the 
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entertainment industry, cinematography. Besides legal drone usage, there are countless 
possibilities for criminal and terrorist use [5], including smuggling, propaganda, and attacks. 

According to [6], the size of the global UAV market was estimated at approximately $26.8 
billion in 2022, about $30 billion in 2023, and  

more than $50 billion by 2032. Despite this impressive growth, it's essential to remember 
that there are both advantages and disadvantages to UAV usage [7]. One of the main concerns 
is security. Security is a fundamental aspect that includes measures to protect against data 
leaks, ensure flight safety, avoid collisions, etc. Additionally, addressing ethical and legal 
issues related to drone use, such as privacy and airspace access, is crucial. Governments and 
regulatory bodies are developing relevant standards, safety policies, and legislation to ensure 
security and safety. 

In the development of UAV technologies, researchers and engineers have concluded that 
adding Artificial Intelligence (AI) systems can significantly improve the autonomy and 
functionality of these devices. AI allows UAVs to make decisions based on data analysis from 
sensors and cameras, optimize flight routes, respond to changes in the environment, and 
perform tasks without operator intervention. However, adding AI to UAVs also introduces 
vulnerabilities and risks. According to Web of Science indicators analysis for the past 5 years, 
significant attention is given to researching the cybersecurity of AI, ensuring the protection of 
UAV assets, but considerably fewer studies focus specifically on UAV safety with AI means 
(Figure 1). 

Figure 1: Number of publications on the UAV/AI/Cybersecurity related keywords. 

1.2 Objectives and approach 

UAVs have become a new field of research and development due to their versatile 
applications and accessibility. As the use of UAVs increases, concerns about their security and 



safety grow. Within the scope of this research, review articles have been examined across 
various directions: the security and safety of UAVs, the integration of AI in UAVs, and the 
security and safety of AI. The current work is specifically focused on reviewing sources aimed 
at analyzing the functions of AI in UAVs, the security and safety of AI technology itself, and 
existing threats and vulnerabilities to UAV components. 

The aim of the research is to analyze possible threats, attacks, interventions, and justify the 
selection of countermeasures to enhance the cybersecurity of UAV systems considering their 
vulnerabilities and the use of AI to amplify the power of attacks and protection. The 
objectives are the following: 

• to identify the main barriers to the implementation of AI in UAV systems considering 
the safety risks of UAV application, technical limitations, and the cybersecurity of 
UAV systems equipped with AI models taking into account the specific vulnerabilities 
of technologies and AI components; 

• to propose and classify countermeasures considering the aspect of AI; analyze 
countermeasures at the regulatory and technical levels and provide partial 
assessments of their impact on the overall risks of cybersecurity and safety; 

• to analyze an example of implementing an AI system in UAVs and define 
requirements from the perspective of using it as a module for performing standard 
tasks and applying it as a countermeasure to ensure the safety of UAVs. 

Approach to research is based on the several principles and previous results [8, 9], in 
particular: 

• Extended set of scenarios for using AI for powering attacks and protection, which 
were previously considered in [8] for UAV systems; 

• Applying the Security Informed Safety methodology and IMECA technique [9] for 
UAV systems taking into account the features of using AI means; 

• Using AI quality models to justify the requirements for AI in UAVs [9] as a function 
that performs a specific task and AI as a means of protecting UAV assets. 

The structure of the paper is as follows: Section 2 analyzes specific security and safety  
issues for UAVs and systematizes attacks on the vulnerabilities of UAV system components; 
Section 3 examines the challenges related to the implementation of AI in UAVs, the 
application options for AI in UAVs, and provides an analysis of AI vulnerabilities and attacks 
on AI in UAVs; Section 4 presents a taxonomy of possible countermeasures at the regulatory 
and technical levels; Section 5 describes a case study of building a quality model to assess AI-
based on-board systems and protection means for UAVs applied for paramilitary demining; 
the final Section summarizes and describes directions for future research. 

2. Attacks on UAVs 

The main security problems in UAV systems involve attacks on drone operators, Ground 
Control System (GCS), drone components, communication, and cloud services [1, 10-14] 
presented in Figure 2.  



Drone operators are responsible for controlling flight, navigation, executing imaging tasks, 
or remotely exploring areas, and ensuring flight safety. Threats/attacks on drone operators 
include unauthorized access, social engineering, privilege escalation, unrestricted 
administrative capabilities, accidental errors, and insider attacks. 

The GCS performs mission planning, communication with the platform, and control 
functions for payload through communication systems and data transmission lines for 
interfacing with the airborne platform and its onboard systems. Possible breaches of the GCS 
include accidental virus infections: sometimes viruses or malicious programs may accidentally 
be loaded onto the control system, leading to compromising the security of the drone and 
information.  

Components of UAVs can be separately targeted by attacks such as: 

• Backdoor Attack: A malicious attack aimed at introducing harmful software into the 
UAV control system; 

• Flooding Attack: An attack where the adversary sends a large number of packets to 
deplete the resources of the UAV and reduce the network bandwidth; 

• Selfish Node Attack: This type of attack in the context of a UAV network involves one 
drone engaging in malicious actions, consuming more resources than necessary to 
optimize its own performance, to the detriment of other drones in the network; 

• GPS Spoofing: An attack in which the adversary creates interference in the GPS 
satellite link sensor, generating fake GPS signals with high intensity compared to the 
original; 

• Telemetry Spoofing: A type of cyberattacks in which attackers attempt to create and 
insert fake telemetry data into the stream of real telemetry data collected from devices 
or systems interacting with a cloud server or other networked systems. 

Communication ensures the transmission and exchange of information among all system 
components. In the context of UAVs, this includes communication between the GCS and 
UAVs, UAV and UAV, UAV and Cloud Services. Communication between UAVs and the GCS 
(D2GS) is often publicly accessible and sometimes unprotected or relies on single-factor 
authentication, which can be easily compromised. Attacks on D2GS communication include: 

• Single Point of Failure (SPOF): A type of cyberattacks aimed at one or several critical 
components or services in the network that serve as a single vulnerability point for 
disrupting or causing unavailability of other components of the system; 

• Eavesdropping: Attacks where the attacker listens to unencrypted messages through a 
communication channel, or in the case of an encrypted channel, the eavesdropper 
aims to intercept and decrypt confidential information later; 

• Jamming: Can be created for intentional or unintentional reasons. Jamming attack is a 
type of security threat in wireless communication where the attacker deliberately 
transmits interference (jamming signals) on the same frequency as the target 
communication channel, disrupting the normal functioning of the wireless channel; 

• Man in the Middle (MITM): An attack where, unlike eavesdropping, the attacker 
actively manipulates the message after intercepting it; 



• Replay: A type of attack where the attacker intercepts encrypted messages and then 
replays these messages to another UAV, masquerading as a legitimate sender. 

Attacks on communication between UAVs in Drone-to-Drone (D2D) communication 
include both standard D2GS attacks (Eavesdropping, Jamming, MITM, Replay) and others: 

• Sybil Attack: A type of cyberattacks where the perpetrator creates numerous fictitious 
nodes (in this case, UAVs) used to represent specially crafted false entities in the 
network. The goal of such an attack is to gain control over the network or inflict a 
destructive influence on its functioning, maximizing the number of false nodes; 

• Impersonation: A threat in which a malicious UAV presents forged data and claims to 
have been a legitimate part of the network, attempting to gain unauthorized access to 
the system or resources. 

Attacks on communication between the cloud and UAVs include: 

• Black Hole Attack: A variant of a denial-of-service attack, where a malicious node 
pretends to have the fastest path to the cloud server, causing other nodes to route their 
data through it. The attacker then drops or ignores incoming packets, disrupting the 
connection between the UAVs and the cloud server; 

• Grey Hole Attack: A type of malicious network attack where the attacker gains access 
to a network device and selectively controls the transmission or blocking of traffic on 
specific network links for a defined period; 

• Deauthentication Attack: An attack initiated by a malicious actor who sends a certain 
number of deauthentication frames to the UAV and/or cloud system with the aim of 
disconnecting the UAV from the system; 

• Data Tampering during Transmission: Falsification of data during transmission. This 
data could include session keys, operational information, or sensor readings from the 
UAV; 

• Eavesdropping. 

Attacks on cloud services and storage encompass a wide range. Key threats include data 
tampering and denial of service. To increase the payload capacity of UAVs, some commercial 
UAVs store data in cloud databases. Any unauthorized alteration of this data can expose 
personal information or impact the network's operation.  

Therefore, despite the development of cybersecurity measures, UAV systems remain 
vulnerable to a broad spectrum of attacks and require improvements in regulations and 
standardization of cybersecurity requirements. 



Figure 2: Attacks on UAV System Components. 

3. Risk analysis of vulnerabilities, and attacks on AI solutions of 
UAV systems 

3.1 Challenges of applying AI in UAV systems 

The integration of AI in UAVs can enhance their efficiency and productivity. Machine 
learning algorithms enable UAVs to make real-time decisions and find optimal solutions that 
meet mission requirements. However, the integration of AI in UAVs poses certain challenges 
and security concerns, making it difficult to achieve complete automation of UAVs.  

The Bletchley Declaration [15], signed by representatives of twenty-eight governments 
during the AI Security Summit, emphasizes the need for regulation and ethics in AI 
development. This declaration unites countries for collaborative research and the 
establishment of new rules governing the use of AI. The main identified issues include: 

• Transparency of AI tools and models may be insufficient even for experts, which can 
lead to unforeseen results. Decisions made by AI may contain inaccuracies and 
embedded biases, potentially resulting in discrimination; 

• The increasing use of AI-generated media negatively impacts social and political 
spheres, requiring careful consideration; 

• The collection of personal data by AI systems raises concerns and emphasizes the need 
for privacy protection; 

• Concerns about the uncontrolled or malicious use of AI. 

AI can achieve excellent performance in ideal conditions, which are challenging to 
replicate in many real-world situations. AI typically operates in well-maintained data 
processing centers with a large number of computational resources and power. Currently, 
most high-performance AI models developed for vision and language tasks rely on these huge 



resources. However, these resources are highly limited in many real-world systems, including 
drones, satellites, or ground transportation. This poses the challenge of "embedded artificial 
intelligence": running AI directly on a device or system without additional support from 
server-side computing. There are cases where running models on-board is optimal or 
necessary, providing several advantages. However, limitations in embedded computing can 
introduce significant constraints [16] or completely hinder the use of certain models in some 
systems. This creates a gap between the most efficient AI systems and those deployed in the 
real world, affecting the performance and reliability of many sought-after applications. 
Limitations of on-board AI systems depend on:   

• Model Size: Models with a large number of parameters require more computation and 
memory to operate; 

• Model Architecture: The connection of parameters in a neural network affects model 
computations, memory requirements, and speed; 

• Input Data: Programs that require high-resolution input data or large input data 
volumes may demand an excessive amount of computation and memory; 

• Decision-making Speed: The speed of making decisions should match the data input 
and initiate conclusions for a specific task according to requirements; 

• Preprocessing of Input Data: Preprocessing input data according to the model and 
program requires significant computation; 

• Number of Applied Models: Programs that use multiple AI models require the shared 
utilization of limited resources on the device. 

There are also device-dependent and environmental-dependent limitations, such as: 

• Computation: The device must be capable of performing a sufficient number of 
calculations per second to run AI models and other processes within an acceptable 
timeframe; 

• Memory: Models require working memory for temporary storage and retrieval of 
information on the device. Memory can affect model speed, energy consumption, and 
overall functionality; 

• Storage: Insufficient onboard memory may limit the choice of AI models; 
• Power: Every computation or data movement requires energy. High-performance 

hardware operating on large models may surpass embedded power sources; 
• Size and Weight: While processors are small, they typically require additional 

components that may exceed size and weight constraints of many systems; 
• Auxiliary computations needed to run non-AI-related functions increase the resources 

required on the device; 
• Environmental Characteristics: Environments with extreme temperatures, humidity, 

or radiation may lead to malfunctioning of computational equipment. Equipment 
designed for such conditions usually has lower performance, limiting AI models; 

• Accessibility: Models may be constrained by hardware that is outdated or inaccessible, 
making it physically impossible to access, support, or replace it. 



3.2 AI functions in UAV systems 

To automate UAVs, various learning algorithms are employed, including Supervised and 
Unsupervised Learning, Reinforcement Learning, and Federated Learning. AI models in UAVs 
can operate at different levels and perform tasks such as (Figure 3): 

• The task of optimal deployment involves strategically placing aerial base stations to 
reduce energy consumption by drones and alleviate the load on GCS, or creating a 
structured radio map [17, 18], especially in regions with complex terrain. The primary 
goal is to ensure effective network coverage in such conditions. To address this task, a 
structured radio map can be constructed, which is a detailed representation of radio 
signal propagation characteristics in the respective area; 

• The task of enhancing communication efficiency [17] between UAVs and base 
stations. When a UAV transmits data and communicates with a base station, it may be 
affected by the wind, leading to drift or signal loss. To address this issue, methods 
supporting Recurrent Neural Networks (RNN) can be employed. They predict the 
future position and tilt angles of UAVs relative to the base station based on previous 
position and tilt angle data; 

• The task of predicting path loss between UAVs. Signal loss is a phenomenon that 
occurs in wireless communication systems, describing the signal or energy loss as it 
traverses space with specific obstacles. When a radio signal is emitted from the 
transmitter and propagates through the air, it undergoes various influences, leading to 
signal attenuation at the receiver located at a certain distance from the transmitter. 
Algorithms such as "K Nearest Neighbours" (KNN) and "Random Forest" are used for 
predicting signal loss. Parameters such as signal propagation distance, transmitter 
height, receiver height, and elevation angle can be utilised for signal loss prediction; 

• The task of monitoring and detecting anomalies [17, 18] in UAVs and their sensors 
that may occur during operation. Since UAVs are highly sensitive to any malfunctions 
or anomalies, it is crucial to have a system that can timely detect and respond to such 
events. Various methods for detecting anomalies in the operation of UAVs are 
proposed: 

− Using deep learning based on images from bird's-eye view and GPS data to 
detect unusual events in the drone's field of view; 

− Utilizing an anomaly detection algorithm to identify and isolate UAVs with 
malfunctions. This involves analyzing data from external sensors, such as 
humidity and wind speed; 

− Some methods include installing sensors on the motor to measure 
vibrations, analyzing vibration signals to determine the motor's condition 
and predict time to failure. Other systems use temperature sensors to 
identify motor overheating and the capability for automatic UAV landing 
in case of exceeding critical temperature. 

• Tasks for solving computer vision problems for UAVs include: 

− Detection of safe emergency landing sites for drones 



− Real-time detection of other UAVs based on the analysis of sound data 
received from the drone and images 

− Detection and classification of specific objects 

• The route planning task involves using RL to plan the route for UAVs in unknown or 
unpredictable environments. To navigate the drone in an entirely new environment, 
the model utilizes data about the initial state, environment, and target state. Drone 
sensors collect information about the surrounding environment, and the model uses 
this data to analyze possible routes. Computer vision tools and other sensors help the 
drone determine the most suitable route to reach its goal, enabling navigation, 
trajectory adjustments, and continuous learning during flight to adapt to 
environmental changes and improve navigation; 

• Collision avoidance is crucial for the safe operation of UAVs. Drones may encounter 
obstacles in their path, such as terrain and air traffic. Various methods have been 
developed to avoid such collisions, including the use of GPS, obstacle detection and 
avoidance sensors (LiDAR, sonar, radar), and computer vision; 

• Planning and resource management pose significant challenges due to resource 
constraints. The application of reinforcement learning allows for optimal decision-
making in event planning and resource allocation [17]; 

• The content caching task involves utilizing data collected on board UAVs for training 
models. This enables devices to autonomously select which content to cache for 
further processing without the need for constant communication with the central 
network [17, 19]; 

• The optimization task for power distribution and planning in the UAV network relies 
on a comprehensive analysis of diverse data, including geographical information, 
sensor data, device status, task requirements, and network condition [17-18, 20]. 
Optimizing network resource utilization takes into account signal quality data, data 
transmission delays, and resource usage, contributing to making effective decisions in 
resource management and task execution in a timely and efficient manner. To achieve 
optimal efficiency, federated learning algorithms are employed on local data from each 
UAV. 

3.3 Vulnerabilities and attacks on AI systems in UAVs 

Attacks on AI technology encompass a broad spectrum of threats that can impact the security 
and reliability of information systems. These attacks include various methods, algorithms, and 
strategies aimed at exploiting and utilizing weaknesses in AI systems, creating potential 
threats to the confidentiality, integrity, and availability of data. 
Attacks on AI technology can be conditionally divided into adversarial attacks, poisoning 
attacks, and model extraction attacks [8,21]. The goal of adversarial attacks is to deviate with 
maximum confidence, causing misclassification in the model with minimal perturbation of 
input data by altering input data. The goal of model extraction is to create a copy that will 
perform well on the original task (intellectual property theft) or that contains the same errors 
as the original model. The goal of poisoning attacks is to maximize the classification error of 
the entire dataset or a specific example by introducing poisoning samples into the training 



data. This leads to an increase in the attack surface for both AI and UAVs. The application of 
AI-based methods for controlling and managing UAVs can be beneficial in terms of 
performance but raises concerns about the security of these methods and their vulnerability to 
adversarial attacks. Attacks on AI in UAVs are already being developed. 

 
Figure 3: AI functions in UAVs and placement options for AI systems in UAVs with 
corresponding usage challenges. 

This provokes an increase in the attack surface for both AI and UAVs. The application of 
AI-based methods for controlling and managing UAVs can be beneficial in terms of 
productivity but raises concerns about the security of these methods and their vulnerability to 
adversarial attacks. Adversarial attacks on AI in UAVs are currently under development.  

Attacks on visual object tracking in UAVs are discussed in [22]. Such attacks generate 
adversarial examples that can lead to the loss of the tracked object for tracking systems. The 
Ad2Attack attack method proposes a new approach in which adversarial examples are 
generated during the regeneration of visual data in the object search process. This method 
allows determining how well the object is tracked in the current frame compared to the initial 
one by assessing the similarity between them. However, due to the vulnerability of deep 
neural networks (DNN) to adversarial attacks, Siamese trackers can be easily attacked by 
minor changes in the input image, resulting in incorrect position determination, posing a 
significant threat to UAV tracking tasks.   



Authors [23] explore the attack of injecting adversarial perturbations into the bridge 
inspection process using UAVs. The attack operates by injecting adversarial examples into the 
bridge inspection process. These adversarial examples are generated by interfering with the 
data received by the UAV model during inspection. These artifacts are created by an 
adversarial model used to detect vulnerabilities in the UAV model. In this process, the 
adversarial model replicates the UAV model being attacked to identify possible vulnerabilities 
and alters them to cause incorrect results during inspection. The result of such attacks may 
involve neglecting certain risky areas of the bridge during inspection, leading to potential 
issues and safety threats. 

Paper [24] examines the threats of adversarial attacks on UAVs operating in public spaces 
and the use of AI, particularly DL, to control these devices, taking into account the 
vulnerability of these methods to attacks. The authors propose a method based on deep 
learning solutions to create an effective detector that protects these methods and UAVs from 
attacks. 

4. Countermeasures for providing UAV cybersecurity 

To mitigate the impacts of attacks or reduce the likelihood of their success, it is important to 
implement countermeasures. Based on the analysis of threats in UAVs and AI, it is proposed 
to divide the threats into two types: A powered and traditional, and to implement 
countermeasures for neutralizing these threats at levels of government regulation and 
technical application. The resulting systematization of countermeasures for the identified 
threats, along with a description of security breaches and their impact on safety 
(countermeasures that can be powered by AI are marked with **) is provided in Figure. 4. 

4.1 AI-powered threats, attacks and countermeasures 

AI can be maliciously used, thereby increasing the risks of attacks. Threats enhanced by AI 
can include AI-generated Telemetry/GPS Spoofing, Adversarial attacks against AI modules in 
UAVs, and the use of Autonomous UAVs. 

It has been found that for AI-generated Telemetry/GPS Spoofing to create false data points, 
an attacker can use various techniques such as statistical modeling, machine learning, or 
signal processing. The spoofing algorithm can be trained on a dataset of telemetry and 
corresponding false data points using supervised or unsupervised learning. Training data can 
be created through simulation or by collecting real telemetry data from the UAV-cloud 
system. To assess the effectiveness of the spoofing algorithm, an attacker can use metrics such 
as success rate, attack efficiency, and computational complexity. In a centralized architecture, 
there is a high likelihood of GPS spoofing and telemetry spoofing attacks impacting if the 
central server is compromised, so a successful attack can have serious consequences [14]. 

At the regulatory level, it is proposed to implement technological standards and 
requirements for aviation systems that use AI, which take into account security measures 
against spoofing attacks. This will create a basis for developing effective detection and 
prevention methods for such attacks, increasing the overall level of security of aviation 
systems. 



Figure 4: Systematization of threats and countermeasures in UAVs. 

At the technical level, it is advisable to implement anomaly detection systems in telemetry 
data, which include the analysis of statistical parameters such as mean value and standard 
deviation, to assess the normality of data arrival followed by anomaly detection. The next step 
after detecting anomalies is to apply systems with automatic reaction activation, such as 
adjusting UAV control algorithms, blocking the source of spoofed signals, or activating 
additional systems to ensure UAV security. The proposed approach can be AI-based and will 
allow for effective evaluation of protection considering metrics such as performance speed 
and accuracy of attack detection. 

As indicated in Section 4, there are potential threats from attacks on AI modules in UAVs, 
which can be either deliberate or accidental errors, leading to serious consequences. At the 
regulatory level, it makes sense to introduce standards and regulations regarding the use of AI 
in UAVs to ensure the reliability of these technologies [5]. Additionally, it is important to 
establish strict restrictions, especially regarding the illegal use of UAVs and their dangerous 
use near critical infrastructures such as airports or military installations. Furthermore, an 
improved surveillance system, particularly for drone supplies, considering their purchase 
history, can also help prevent the unwanted use of these technologies. 

At the technical level, the implementation of specific technical measures is proposed to 
increase the resilience of AI systems in UAVs, such as: 



• Applying Adversarial Training techniques to train AI modules on input data that may 
contain potentially attacking influences, with the goal of increasing resilience to 
adversarial attacks; 

• Implementing systems of partial human control, where a human must participate in 
the management process and make decisions to provide an additional level of control 
and safety in situations that may be difficult for fully autonomous systems; 

• Developing resilient AI modules and using strict methods of AI module verification, 
which include analysis and code verification, to ensure their correctness and absence 
of vulnerabilities before implementation in real-world conditions; 

• Using monitoring and tracking systems for continuous observation of the AI modules' 
operation, detecting anomalies, and rapidly responding to possible deviations in their 
functioning. 

The use of Autonomous UAVs poses a threat. The most obvious threat from the use of AI-
powered UAVs arises from their potentially insufficient controllability and exceptional 
efficiency. 

At the regulatory level, the introduction of safety standards for both UAVs and AI systems 
is being considered, along with the use of forensic methods to investigate incidents, 
improving surveillance systems to detect possible threats, and introducing effective 
regulations to govern the use of AI in these systems. 

At the technical level, for protection, the implementation of strict verification of UAV 
software and hardware, the development of reliable AI modules, the creation of systems for 
partial human control for quicker response to unforeseen situations, and the use of advanced 
monitoring and tracking systems for continuous detection and tracking of UAV actions are 
proposed, with the aim of effective control and response to potential threats. 

4.2 Standard threats, attacks and countermeasures 

Despite the development of technologies, standard threats such as DoS/DDoS, Flooding, 
Replay Attack, Black/Gray Hole Attack, Jamming, MITM, Eavesdropping, still remain 
relevant.  At the regulatory level, the solution proposed involves the implementation of 
security standards for UAVs and the use of forensic analysis methods to detect incidents and 
determine their causes. In the context of UAV security, forensic analysis is used to detect, 
investigate, and disclose crimes or incidents related to unmanned systems. This includes the 
application of forensic methods to digital data, specifically the collection, analysis, and 
interpretation of digital traces that may indicate unauthorized or anomalous activity [5]. 
Additionally, the development of incident response strategies helps improve the response to 
potential threats and the rapid detection and elimination of security issues in UAV systems. 

Technical countermeasures against jamming attacks may include [12] the traditional 
approach of Uncoordinated Frequency Hopping (UFH), which allows two nodes to create and 
exchange a secret key using coordinated frequency hopping, complicating attackers' 
identification of the used frequencies. Another approach is Intrusion Detection Systems (IDS), 
automated with AI [5, 12], which use RL methods such as Adaptive Federated Reinforcement 
Learning (AFRL) for effective detection and protection against various types of jamming 
attacks. AFRL uses models without Q-learning and is capable of adapting to various scenarios, 



training local models on UAV nodes, allowing effective counteraction against constant, 
random, and reactive jamming attacks [12]. 

Technical countermeasures against DoS/DDoS and Flooding attacks also use IDS. These 
systems are based on various approaches such as rules, signatures, and anomalies for 
detecting malicious interference. In rule-based IDS, clear norms and limitations are defined by 
which deviations from the system's normal behavior are identified. Signature-based IDS 
compare activity against known attack signatures for their detection. This method is effective 
for detecting known threats but not new attacks. Anomaly-based IDS, which use ML/DL, 
analyze changes in system behavior in real time and detect unusual or deviant actions. 
Combining different IDS methods is an effective approach to ensure comprehensive system 
protection against various types of attacks, complementing each other and detecting both 
known and new threats.23. 

Technical countermeasures against Replay Attack include methods of implementing 
Timestamps and Nonce (a unique value) [12]. The use of fresh nonce during system 
initialization guarantees the absence of repeated messages, while Timestamps allow for 
correct time synchronization and the rejection of messages if the Timestamp has expired. For 
protection against Black/Gray Hole Attacks, Intrusion Detection Systems (IDS) based on AI 
can be utilized. For example, an Agent-based Hierarchical Intrusion Detection and Response 
System (HID-RS) [12] uses a centralized GCS node as a trusted element for packet monitoring. 
Each UAV sends a packet with neighboring data to the GCS, including the UAV type and 
information about neighboring and previous nodes. 

For protection against MITM attacks and interceptions at the technical level, it is proposed 
to use lightweight message authentication-encryption algorithms. Functional Encryption (FE), 
Homomorphic Encryption (HE), and the Dual Authentication Watermark Network 
Architecture (DNA-DAW) are methods that can also be used to ensure data confidentiality 
and integrity [7, 9]. However, such approaches may present challenges related to 
computational complexity and efficiency, especially in conditions of limited resources in 
devices. Therefore, it is necessary to ensure a balance between security and performance, as 
well as to address the issues related to the size and weight of algorithms in the context of 
unmanned systems. 

At the regulatory level to control this threat, it is necessary to implement licensing systems 
for UAV owners and strengthen legislation regulating their use. Stricter restrictions and legal 
norms are important parts of strategies to prevent unauthorized UAV use. Surveillance and 
national security efforts are identified as key for timely detection and prevention of potential 
terrorist or criminal actions using UAVs. 

Regarding technical implementations for protection, the use of AI systems for improved 
detection and notification of any approaching UAVs is highlighted, providing a more effective 
approach to alarms and sufficient time for neutralizing the threat remotely. Another approach 
identified is considering the capabilities of specialized automated security measures that do 
not lead to lethal outcomes, to overcome threats from UAVs over areas where their use is 
prohibited, in order to prevent downing and injury. Also important is the development of 
forensic tools for the identification and investigation of illegal UAV use, allowing for the 
establishment of actual responsibility and the application of appropriate security measures. 



5. Case study. Intelligent UAV System for Humanitarian Demining 

5.1 Requirements for AI-Based Components and AI-Powered Protection 
Means for UAV System for Humanitarian Demining 

One example of standardizing requirements for AI involves quality model based defining its 
characteristics [10], which allows assessing the trustworthiness and efficiency of AI platforms 
and improving the security and safety of the UAV systems. 

As a case study, it is proposed to adapt a basic quality model, in which AI is used in 
unmanned systems for paramilitary demining [25], specifically for developing, first, onboard 
computer vision for UAVs, and second, protection of the UAV system assets.  

The adaptation of the quality model for AI-based on board system considering the 
peculiarities of the demining tasks, includes (Figure 5a) the following marked characteristics: 

• Verifiability (VFB) of AI in this case becomes crucial in ensuring accurate and reliable 
identification of explosive objects on the map, adapting to various environmental 
conditions and undergoing verification through a variety of tests aimed at realistic 
simulation of operational conditions; 

• Ethics (ETH) is important for protecting the rights and safety of people during the use 
of demining technologies, as well as for avoiding negative impacts on the 
environment, which is a key aspect in the context of real demining operations; 

• Explainability (EXP) and Transparency (TRP). Current issues regarding ethics, 
morality, privacy, and law due to the lack of "understandable functions" and 
knowledge representation; such absences undermine the ability of humans to control 
or even understand the proposed solutions. Since safety-critical systems must be 
traceable, there is a trend away from the Black-Box concept; 

• Lawfulness (LFL). Since UAVs can be used in critical sectors, AI interacting with the 
system must comply with current legislation and consider rules and norms related to 
air traffic organization; 

• Security (SCR). All components of UAV systems must be safe and secure, including AI 
systems onboard or in the cloud. Since many AI systems rely heavily on input signals 
from the external environment, their deliberate or targeted manipulation can lead to 
errors and corresponding negative unforeseen consequences; 

• Safety, diversity, resilience, and robustness (SFT, DVS, RSL, RBS) entail not only 
preventing risks and damages due to failures but also minimizing potential 
consequences in case of unforeseen situations. AI models must detect and effectively 
respond to unexpected circumstances, also having built-in means for emergency 
shutdown or automatic management in dangerous scenarios, thereby ensuring safety 
and reliability in demining operations; 

• Interactivity (INR) and Human Autonomy (HMA) are critical characteristics. It's 
important that operators can interact with the system and intervene in its operation if 
necessary, while still allowing autonomy for system decisions. Current research in 
human-machine interaction is driven by the increasing volumes of processed 
information and the complexity of automation, and this should improve human-
machine coordination; 



• Trustworthiness (TST) ensures that the system reliably performs its functions of 
recognizing explosive objects and meets safety standards, fostering users' confidence 
in its reliability; 

Accuracy (ACR) is key to avoiding false identifications and ensuring that recognized objects 
correspond to the actual situation. 

Adaptation of the quality model for UAV systems, where AI represented as a powered 
protection means for UAV system assets is illustrated by Figure 5b where significant 
characteristics marked: 

• VFB is defined by the ability to subject AI to verification and testing through the 
application of various methods in real conditions for protecting UAV systems; 

• ACR of the AI model is key for trustworthy detection and identification of potential 
threats or anomalies in UAV systems; 

• TST provides the creation of reliable protection of UAV systems in conditions of high 
safety requirements. DVS allows the system to adaptively counter various attacks, and 
RSL and RBS ensure resistance to faults and changes in conditions; 

• The use of AI as a means of UAV protection requires compliance with Security  
requirements, ensuring the integrity and confidentiality of the system, providing a 
high level of protection in conditions of constantly increasing cyber threats; 

• EXP, TRP, and Interpretability (INP) aspects become important factors in the context 
of security, because the need for effective interaction and understanding of the 
decisions made is critical for ensuring the safety of UAV protection systems. 

 

Figure 5: Basic quality model for AI a) for demining tasks, b) as a protection mean. 

According to the specified characteristics, an assessment is made and compliance with the 
requirements, in particular, with regard to security and safety, is determined. An integral 
quality metric for AI tools can then be calculated using additive convolution. 



5.2 Risk mitigation assessment 

For quantitative risk assessment, various methods are applied, among which risk-oriented 
approaches, such as IMECA [8], are worth highlighting. Application of IMECA for 
multifunctional UAV fleets has been demonstrated in [26]. 

By analyzing various attacks and appropriative countermeasures, it is possible to 
determine how effective risk reduction will be after the implementation of AI powered 
protection measures at regulation and technical levels. Figure 6 presents information about 
potential threats and means of their protection based on the countermeasures mentioned in 
Figure 4. Column 2 determines whether there might be AI powered threats.  

Column 3 determines whether there might be AI-based protection. The assessment scale 
includes three levels of consequence severity or attack probability: "Low," "Medium," and 
"High," denoted as L, M, and H, respectively. After applying protection means, one or both 
indicators decrease, thereby reducing the level of overall risk. 

 
Figure 6: Change of criticality indicators caused by AI-powered protection and 
countermeasures. 

6. Conclusion and future work 

The main contribution of this study is the classification of protection means considering the 
aspect of AI and an example of implementing standardization of AI components in UAVs 
depending on the specified functions. The implementation of AI in UAVs significantly 
improves their efficiency, while also unveiling new threats and opportunities for malicious 
actors. Within the assessment of effectiveness, safety, and security of UAV systems, AI 
technology must be considered as one of the factors of system unreliability due to the nature 
of the technology itself and viewed as a method to enhance current attacks. The proposed 
systematization consists of regulatory methods aimed primarily at legalizing use, 
standardization, and quality control of UAVs and AI, and the corresponding technical 
implementations of these methods. Additionally, provisional assessments of the impact of 
analyzed attacks on cybersecurity and safety risks are provided. The proposed approach can 
be extended to security-informed safety analysis of critical systems operated in aggressive 
information and physical environments and providing proactive defense against attacks 
strengthened by AI means [27]. 

Future research could be directed towards developing methods for assessing 
countermeasures and analyzing attacks on UAVs equipped with AI systems. An important 
direction is the study of combined attacks, development of attack graphs, as well as 
investigating the impact of parallel and sequential attacks, which could be independent, 



homogeneous, or heterogeneous. The implementation of such approaches could significantly 
contribute to ensuring the resilience and dependability of systems in the context of the 
continuously increasing risk of cyberattacks and modern challenges in the field of unmanned 
mobile technologies and AI. Intelligent robotic-biological system [25] for humanitarian 
demining is a very interesting object of future research and development in context safety-
security-performance tradeoff considering different explosive ordinance, conditions of cyber 
physical environment, and possibilities of dynamical reconfiguring IT-infrastructure. 
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