
Deep Blockchain to Enable Scalable Web Applications
Yajna Pandith1,*

1Bengaluru, Karnataka, India

Abstract
The work delves into the exploration of deep blockchain architecture involving the introduction of higher-layer blockchains,
which summarize their blocks through anchor transactions integrated into the blocks of lower-layer blockchains. The
architecture is structured as follows: (I) Layer 1 - MainNet: This layer serves as the repository for registered Layer 3
blockchain roots and Layer 2 Block Merkle roots. (II) Layer 2 - Plasma Cash chain: This layer facilitates the storage of
Plasma tokens, which can be redeemed for bandwidth, along with Layer 3 Block hashes. (III) Layer 3 - Multiple blockchains:
These blockchains leverage the storage and bandwidth capabilities provided by Layer 2, enabling seamless packaging of
NoSQL/SQL transactions and similar database operations. Sparse Merkle Trees is employed extensively, demonstrating
their efficacy in delivering provable data storage through the use of Deep Merkle Proofs. Our objective is to present results
highlighting re-markable throughput and low latency for Layer 3 blockchains built upon economically secure Layer 2 Plasma
Cash blockchains. Collectively, these advancements lay a solid foundation for the development of scalable web applications.
Our research paves the way for innovative solutions in various industries that can scale modern web applications successfully,
ensuring unwavering data integrity, enhanced security, and optimized efficiency.

Keywords
deep blockchain, data storage, web applications

1. Introduction
Layer 1 blockchains such as Ethereum and Bitcoin, on
their own, cannot support the latency and throughput
needs for modern web applications [1]. Attempting to
support higher throughput or lower latency with naive
solutions (e.g. larger blocks, lower security consensus
algorithms, etc.) sacrifices the core benefits of layer 1
blockchains [2]. It is unnecessary to make these sacri-
fices in the name of scalability for blockchains: when
one blockchain is capable of storing and retrieving state,
then another blockchain’s summary state variables may
be stored there. This can be done in layers, where Layer
i+1 blockchain’s state is stored in Layer i blockchains and
each blockchain uses a well-motivated consensus engine
to achieve Byzantine fault tolerance [3]. Using this lay-
ered approach, the key elements of a deep blockchain ar-
chitecture can be specified. The blockchain paradigm [4]
that forms the backbone of all decentralized consensus-
based transaction systems to date is as follows. A valid
state transition for a blockchain of Layer 𝑖 is one which
comes about through a transaction 𝑇 𝑖

𝑗 :

𝜎𝑖
𝑡+1 = Υ𝑖(𝜎𝑖

𝑡, 𝑇
𝑖
𝑗) (1)

where Υ𝑖 is the Layer 𝑖 blockchain state transition func-
tion, while 𝜎𝑖

𝑡 enables components to retain arbitrary
state between transactions. Transactions are organized

BISEC’2023: 14th International Conference on Business Information
Security, November 24, 2023, Niš, Serbia
*Corresponding author.
$ yajnanpandith@gmail.com (Y. Pandith)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

into blocks, which are interlinked through a parent hash
within each block to reference the preceding block. To-
gether, these blocks serve as a ledger, with block hashes
employed to spot the ultimate state:

𝜎𝑖
𝑡+1 ≡ Π𝑖(𝜎𝑖

𝑡, 𝐵
𝑖
𝑗) (2)

𝐵𝑖
𝑗 ≡ (. . . , (𝑇 𝑖

𝑗0 , 𝑇
𝑖
𝑗1 , . . .)) (3)

Π𝑖(𝜎𝑖
𝑡, 𝐵

𝑖
𝑗) ≡ Ω𝑖(𝐵𝑖

𝑗 ,Υ
𝑖(Υ𝑖(𝜎𝑖

𝑡, 𝑇
𝑖
𝑗0), 𝑇

𝑖
𝑗1 , . . .)) (4)

where Ω𝑖 is the block finalization state transition func-
tion for layer 𝑖, 𝐵𝑖

𝑗 is the 𝑗th block of layer 𝑖 (which
collates transactions and other components), and Π𝑖 is
the block-level state transition function for layer 𝑖.

In a deep blockchain system, a blockchain layer 𝑖 is
said to be connected to layer 𝑖+ 1 if:

1. there exists a transaction mapping function Λ𝑖+1

mapping blocks at layer 𝑖+ 1 into transactions
𝑇 𝑖
𝑘 at layer 𝑖 for all layer 𝑖+ 1 blocks 𝐵𝑖+1

𝑗

𝑇 𝑖
𝑘 ≡ Λ𝑖+1(𝐵𝑖+1

𝑗) (5)

2. there exists a mapping function Ξ𝑖(𝑘) retrieving
from blockchain layer 𝑖 a mapping 𝑓(𝐵𝑖+1

𝑘) of
the blocks state of layer 𝑖+ 1 for all blocks 𝐵𝑖+1

𝑘

Ξ𝑖(𝑘) ≡ 𝑓(𝐵𝑖+1
𝑘) (6)

A natural choice for transaction mapping Λ𝑖+1(𝐵𝑖+1
𝑗)

may be to include a block hash 𝑏𝑖+1
𝑘 of the block 𝐵𝑖+1

𝑘

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yajnanpandith@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Deep Blockchains: In the deep blockchain archi-
tecture explored here, each layer 𝑖+ 1 is connected to layer 𝑖
with transactions submitted to layer 𝑖 for every block at layer
𝑖+ 1. Typically, block hashes and Merkle roots are submitted
in transactions as key attributes of the block.

as a transaction 𝑇 𝑖
𝑘 [5], and for the lower layer to pro-

vide the block hash back (see Figure 1 (left)). This paper,
demonstrates a deep blockchain system for provable stor-
age, situating a “Plasma Cash” design [6] in a Layer 2
Blockchain and NoSQL/SQL/File Storage for any number
of Layer 3 Blockchains (see Figure 2).

Historically, the low-throughput high-latency of Layer
1 blockchains resulted in immediate pressure to drive ac-
tivities off-chain [7], but only a few “off-chain” attempts
can be considered deep blockchains because they lack
the connected blockchains. Layer 𝑖+ 1 and layer 𝑖 may
be explicitly connected in a deep blockchain system for
many different reasons:

1. Higher throughput services at layer 𝑖+1 may be
paid for using the value held in layer 𝑖 currency

2. Storing a limited set of information in layer 𝑖+ 1
in layer 𝑖 may support the security and prove-
nance of layer 𝑖

3. Proof of fraud at layer 𝑖+ 1 can be used for eco-
nomic consequences at layer 𝑖

The nascent label “Layer 2” encompasses many newly
developing notions ranging from state channels to almost
any approach that may help Layer 1 scale (e.g. bigger
blocks), but the term “deep blockchain” is not used for all
Layer 2 notions but specifically for any situation where
one or more blockchains are connected in the above way.

2. Layer 2: Plasma Cash
Blockchain

Seminal insights on multi-layer blockchains were put
forth by [8], which have inspired many “Plasma” de-
signs, and specifically motivated our implementation of
what has been termed “Plasma Cash” for tracking stor-
age and bandwidth balances. The Layer 2 Plasma Cash
blockchain is connected to Layer 1 using the following
trust primitives:

• User Deposit: When Alice wishes to use the
services enabled by the Layer 2 blockchain, Al-
ice deposits some Layer 1 currency 𝜆𝑑𝑒𝑝 (.01
ETH or 1 WLK) in a Layer 1 contract function
(createBlockchain); the deposit event results
in Alice owning a Layer 2 token 𝜏 through a Layer
2 Deposit transaction included in a Layer 2 block.

• User Transfer: When Alice wishes to transfer
her Layer 2 token 𝜏 to another user Bob or the
Plasma operator Paul, Alice signs a Layer 2 token
transfer transaction specifying the recipient and
the previous block. This Layer 2 transaction is
included on the Layer 2 blockchain by Paul.

• Layer 2 Block Connection: The operators of the
Layer 2 blockchain mints new Layer 2 blocks
𝐵2

𝑗 with a collation of Layer 2 transactions 𝑇 2
𝑘

(with a consensus protocol such as Quorum RAFT
and POA in permissioned networks or Ethereum
Casper for permissionless networks) from the
User Deposit and User Transfer transactions.
Each Layer 2 block 𝐵2

𝑘 has its Merkle Root 𝑏2𝑘
submitted to Layer 1 with a transaction 𝑇 2

𝑘 =
submitBlock(𝑏2𝑘, 𝑘) recorded in a Layer 1 block
𝐵1

𝑙 . The recipient Bob of a token transfer must
receive the full history of all transactions from
Alice and verify it against these Merkle Roots 𝑏2𝑘
stored in Layer 1, all the way to the original de-
posit. If any transaction in the history cannot be
verified by Bob, Bob cannot accept Alice’s token
as payment.

• User Exit: When Alice wishes to withdraw her
token 𝜏 for Layer 1 cryptocurrency, she calls
startExit function with the last 2 transactions1

which can be verified against and Merkle proofs
that must match the stored Merkle roots to be
a valid exit; if no one challenges the exit, Alice
receives the outstanding token balance within a
short time period when exits are finalized.

• User Challenges: If the operator Bob or another
user Charlie notices that Alice’s exit attempt is
invalid, it submits a Merkle proof and rewarded
when a valid challenge indicates a invalid exit.

1As to why two, two is indicative, but not conclusive concerning
Alice’s ownership, therefore a user challenge process is required.

Remarkably, users of the Layer 2 blockchain can conduct
their business securely even when the Layer 2 operator
has 100% control over the Layer 2 blockchain! Any sign
of malicious operator Paul and the Layer 2 users can exit,
and all Layer 2 token values remain secure. How can
practitioners reconcile instincts to pursue this objective:

Blockchain 1.0 Objective: Maximize decentralization.

with an obviously centralized operator? The answer is
to pursue a more nuanced objective of

Blockchain 2.0 Objective: Maximize the cost of
successful attacks.

With the Plasma Cash construct, the Blockchain 2.0
Objective is achieved with:

1. Layer 1 Smart Contracts supporting a Layer 2
Connection to Layer 1 storage that collectively
make the cost of attacking the Layer 2 blockchain
the same as the cost of attacking the Layer 1
blockchain – for Ethereum and Bitcoin Layer 1
blockchains, this is the famous “51% attack”, for
others it might be whatever is required to control
the state of that Layer 1 Blockchain.

2. Layer 1 Cryptocurrency being used for value
transfer of services between users of the Layer
2 Blockchain and the Layer 2 operator mediated
through deposits, token transfers and exits medi-
ated by Layer 1 constructs

With the Layer 2 Block Connection and trust primitives
in place, Layer 2 can operate at much higher throughput
than Layer 1 because of its reduced consensus, but con-
tinuing to inherit Layer 1’s cost of attack and achieving
the more fundamental objective. Therefore practitioners
of deep blockchain engineering must develop different
instincts, incorporating different software trust primi-
tives between different constructed layers to achieve the
same objective depending on the structure of between
layers and the value unlocked in each.

3. Deep Blockchains for Provable
Data Storage

The specific deep blockchain system that has developed
extends the Blockchain 2.0 Objective up one more layer
by incorporating trust primitives (Block transactions,
Sparse Merkle Trees) in provable NoSQL, SQL and Stor-
age services, shown in Figure 2: Layer 3 NoSQL, SQL and
Storage blockchains rest on the storage and bandwidth
services of Layer 2, which supervene on the decentral-
ized computation and payment services of Layer 1. Our
work follows Ethereum SWARM’s foundational work on
storage and bandwidth [9] which outlines the following
ideas that is situated in multiple layers:

Figure 2: Deep Blockchain for Storage: Users of
NoSQL/SQL/Storage Layer 3 blocks createBlockchains on
Layer 1, and use Layer 2 Plasma Cash to operate their
blockchain. Layer 3 blocks are submitted to the Layer 2
Blockchain with block transactions and chunks are insured.
Plasma Tokens are used for bandwidth. Cloudstore combines
major computing platforms with Ethereum SWARM for both
resilience and speed.

• A chunk of bytes 𝑣 is stored in Cloudstore using
256-bit hash 𝑘 = 𝐻(𝑣) as the key to retrieve 𝑣.
Nodes that request a chunk by key 𝑘 can verify
correctness of the value 𝑣 returned from Cloud-
store simply by checking if 𝑘 = 𝐻(𝑣).

• Insurers of chunks can earn Layer 1 currency
with valid Merkle proofs; Failure to provide valid
proofs result in severe insurance payouts

• Bandwidth consumed by a node, when hitting the
nodes threshold must result in signed payments

Layer 1 blockchains were initially developed without the
concern for storage models being competitive with cloud
computing platforms or even a passing concern for band-
width; the birth of Bitcoin and Ethereum Layer 1 focused
on birthing trustless payments and trustless computa-
tion mediated by a peer-to-peer network, rather than
about nodes providing decentralized storage [10]. In con-
trast, decentralized storage networks, as manifested in
Ethereum SWARM and many other systems, promises to
have a large peer-to-peer network of nodes sharing the re-
sponsibility to keep a portion of the world’s data and com-
pensated proportionately for the commodity storage and
bandwidth they provide. In these networks, a distributed
hash table (typically, with Kademlia routing layers) is
used for logarithmic look ups of chunks, but in practice,
𝑂(𝑙𝑜𝑔2(𝑛)) retrieval times are just not competitive with
modern UI expectations or typical developer expecta-
tions. Nevertheless, decentralized storage networks have
a critical role to play in providing censorship-resistance.
Rather than layer 3 rest solely on a decentralized stor-

age network (which is slow but resilient and censorship-
resistant), layer 3 can rest on both decentralized storage
networks and mature modern cloud computing platforms.
Again, the Blockchain 1.0 Objective must be displaced in
favor of the Blockchain 2.0 Objective: in this sense, more
storage variety increases the cost of attack.

Putting the elements together in a deep blockchain
system for provable storage:

• Layer 1 blockchain: When a developer
wishes to have a Layer 3 blockchain for
NoSQL/SQL/Storage, they send Layer 1 currency
into createBlockchain(blockchainName
string) on MainNet; this can be refunded
with a dropBlockchain(blockchainName
string) operation (taking place of startExit).
When storage is used in blockchainName
through the activities of Layer 3 blockchains (as
recorded by the Layer 2 blockchain below), this
balance goes down. Balances can added to and
withdrawn by the owner of the blockchain.

• Layer 2 Plasma Cash Blockchain: The storage and
retrieval of chunks in Cloudstore are exposed to
Layer 3 blockchains with the following 2 APIs
(see Appendix A):

– storeChunk(𝑘, 𝑣, 𝜏, 𝜔) - stores a key-
value pair mapping (𝑘, 𝑣) in Cloudstore,
backed by Layer 2 token 𝜏 (signed with 𝜔)
received from the Layer 1 transaction.

– retrieveChunk(𝑘, 𝜏, 𝜔) - retrieves a
key-value pair mapping (𝑘, 𝑣) in Cloud-
store, backed by Layer 2 token 𝜏 (again,
signed with 𝜔), and returning the balance
of 𝜏 used so far

The Layer 2 operator will store via Cloudstore
in as many regions and cloud providers as
necessary to insure the chunk as follows: A new
type of Layer 2 block transaction insures a set
of chunks recorded through storeChunk calls.
The cause of these chunks are from any Layer
3 blockchain needing storage and bandwidth,
where bandwidth is used in retrieveChunk
calls. When a Layer 3 blockchain mints Layer 3
blocks, the Layer 3 blocks themselves contain a
Cloudstore key that references a list of chunks
written in the Layer 3 block. The block itself is
stored in Cloudstore with another storeChunk
call, signed by the Layer 3 blockchain owner,
and the block hash 𝑏3𝑘 is submitted by the Layer
3 blockchain to the Layer 2 blockchain via a
submitBlock(𝑏3𝑘, 𝑘) block transaction. This
enables the Layer 2 blockchain to meter the cumu-
lative storage of blockchainName and deduct
from the balance originally deposited in the
createBlockchain(blockchainName string)

operation (approximately every 24 hours), pass-
ing on Cloudstore costs to Layer 3 blockchains.
Notably, Layer 3 blocks themselves are recorded
with storeChunk(𝑘, 𝑣, 𝜏, 𝜔) to store the layer 3
block in Cloudstore and then results in a call to
submitBlock(𝑏3𝑗 , 𝑗):

𝑇 3
𝑗 ≡ submitBlock(𝑏3𝑗 , 𝑗) (7)

Because the block storage is signed and because
the block transactions are signed, Layer 2 oper-
ators collect storage payments with the layer 3
blockchain operator consent, forming a kind of
“state channel” within the deep blockchain. Taken
together, this is the Layer 3 Block Connection, as
seen in Figure 1. The Layer 2 block consists of:

– the transaction root 𝜃2𝑘 that utilizes the
SMT structure to represent just the tokens
𝜏1, 𝜏2, . . . spent in block 𝑘

𝜃2𝑘 ≡ KT((𝜏1, 𝑇
2
𝜏1), (𝜏2, 𝑇

2
𝜏2), ...) (8)

– the token root 𝜏𝑘 for all tokens 𝜏𝑗 , ...

𝜏𝑘 ≡ KT((𝜏1, 𝑇
2
𝜏1), (𝜏2, 𝑇

2
𝜏2), ...) (9)

– array of token transactions 𝑇 2
𝑘

– array of block transactions 𝑇
2
𝑘 from all

Layer 3 blockchain operators using Layer
2 services

– an account root, using an SMT to store an
accounts “balance” and a list of tokens held
by that account.

• Layer 3 blockchains: Any number of Layer 3
blockchains that utilize storage and bandwidth
can be layered on top of the Layer 2 blockchain,
regularly submitting lists of chunks based on the
structure of the Layer 3 blockchain.

– For NoSQL + File Storage, there is a key
for each row of NoSQL or File, and a value
for the row (a JSON record) or raw file
contents. The root hash changes when any
table is added/removed or when any table
schema is updated, and where each table
has a root hash that changes when any
record of the table is changed; any new
database content results in new chunks,
where the chunk is referenced by the hash
of its content.

– For SQL, there is a root hash for each
database, where the root hash changes
when any table schema is updated, and
where each table has a root hash that
changes when any record of the table is
changed; any new database content results
in new chunks, where the chunk is refer-
enced by the hash of its content.

Both NoSQL and SQL Blockchains is described in
Section 5.

Just as with Layer 1 blockchain nodes, running Layer
2 and Layer 3 blockchains consists of running a node
within the framework of a decentralized system, retriev-
ing and relaying messages about new transactions and
new blocks. Wolk’s blockchain implementations of the
Layer 2 and Layer 3 originated from Ethereum’s go-
ethereum and JPMorgan’s Quorum RAFT code bases,
written in Golang. RAFT is used for both Layer 2 and
Layer 3 implementations due to its simple model of fi-
nality. For each blockchain, Golang package is created
containing each of the interfaces specified in Appendix
A, and adapted Quorum RAFT code to conform to these
interfaces. There is no explicit assumption that permis-
sioned consensus algorithms be used, however. The
choice of RAFT was made purely out of simplicity, its
maturity as a code base, and its capacity for high through-
put – any consensus protocol that achieves finality can
fit within this deep blockchain architecture. For both the
Layer 2 and Layer 3 blockchains, Sparse Merkle Tree is
used to support provable data storage.

4. Sparse Merkle Trees and
Provenance

The Sparse Merkle Tree (SMT) is a persistent data struc-
ture that map fixed 𝑞-bit keys to 256-bit values in an
abstract tree of height 𝑞 with 2𝑞 leaves for any set I:

I = {(k0 ∈ B𝑞,v0 ∈ B256), (k1 ∈ B𝑞,v1 ∈ B256), . . .}
(10)

The function of the SMT is to provide a unique Merkle
root hash that uniquely identifies a given set of key-value
pairs I, a set containing pairs of byte sequences. Each key
stored in the SMT defines a Merkle branch down to one
of 2𝑞 leaves, and the leaf holds only one possible value for
that key in I. The bits of the 𝑞-bit key define the path to
be traversed, with the most significant bit at height 𝑞− 1
and least significant bit at height 0. Following [11] and
[12], to compute the Merkle root of any SMT in practice
and allow for the ideal computation of Merkle branches
for the 𝑛 Merkle branches, it is useful pre-compute a set
of default hashes 𝑑(ℎ) for all heights h from 0 . . . 𝑞 − 1
levels: (shown in Figure 3)

• At level 0, 𝑑(0) ≡ 𝐻(0)

• At level ℎ, 𝑑(ℎ) ≡ 𝐻(𝑑(ℎ− 1), 𝑑(ℎ− 1))

Logarithmic insertion, deletion and retrieval operations
on the SMT are defined with elemental operations:

• insert(𝑘, 𝑣) - inserts the key by traversing
chunks using the bytes of 𝑘

• delete(𝑘) - deletes the key by inserting the null
value for 𝑘 into the SMT

• get(𝑘) - gets the value from the SMT through
node / chunk traversal

Typically, block proposals with SMTs as a core data struc-
ture involve bulk combinations of the above, with many
inserts and deletes mutating the content of many chunks,
and the Merkle root only being computed as a final step.

Sparse Merkle Trees are best suited for a core primitive
over more familiar Binary Merkle Trees (BMTs) because:

• when an id (a tokenID, a document key in NoSQL,
a URL in File storage, a table root in SQL) is
mapped to a value, you can guarantee that the id
has exactly one position in the tree, which you
don’t get with BMTs.

• when an id is NOT present in the SMT, you can
also prove it with the same mechanism. This
approach proves beneficial in situations where
Bloom filters produce erroneous matches.

• A Merkle proof for the id mapped to a specific
value is straightforward, and because of sparse-
ness the number of bytes required is much less
than the depth of the tree

The key concept behind SMTs is the efficient representa-
tion of included IDs using 𝑛 hashes at 𝑛 out of 2𝑞 leaves.
Each ID, represented as a 𝑞-bit number, is associated with
either a null value or its corresponding hash at a leaf node.
Instead of using a Merkle proof consisting of 64 32-byte
hashes from the leaf to the root, a compact represen-
tation can be achieved using proofBits, a 𝑞-bit value
(e.g., uint64). Each bit in proofBits indicates whether
the sisters on the path to the root use default hashes
(0) or non-default hashes stored in proofBytes. The
proofBytes array exclusively consists of non-default
hashes, while the value stored at the leaf level is the
32-byte RLP hash.

For the Layer 2 Block Connection, a call to
checkMembership(bytes32 leaf, bytes32 root,
uint64 tokenID, uint64 proofBits, bytes
proofBytes helper function in Ethereum MainNet can
take proofBits and proofBytes and prove that a exit
or challenge is valid if it matches the Merkle roots pro-
vided by the Plasma operator in a call to

submitBlock(bytes32 root)

Similarly, when a user receives a token from another
user, they must obtain the tokenID, along with 𝑡 raw
transaction bytes and 𝑡 Merkle proofs. Each Merkle proof
corresponds to a specific block and verifies the token
spend. It’s important to note that a non-spend can also
be proven, where the leaf is represented by 𝐻(0).

In the optimal scenario, an SMT representing a sin-
gle key-value mapping (𝑛 = 1) reduces the proof size

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/jpmorganchase/quorum
https://github.com/wolkdb/deepblockchains/smt

Figure 3: Sparse Merkle Tree Illustration: Merkle branches
for 2 64-bit keys 𝑘1 = 001..00 and 𝑘2 = 101.. hold
𝐻(𝑉1) and 𝐻(𝑉2) in a unique SMT root 𝑅 for a 2 key set
I = {(𝐾1, 𝑉1), (𝐾2, 𝑉2)}. Since there are only keys in this
tree, the default hashes 𝑑(ℎ) (outlined in red) appear starting
at level 62, so the branches 𝐾1,𝐾2 (shown in blue circles)
have Sparse Merkle proofs using default hashes from level 0
to level 62, which can be specified in a proofBits parameter.
This makes for very tiny proofs and lower gas costs on Main-
Net.

significantly. Instead of a 64 × 32 byte proof, the en-
tire path from level 0 to level 63 consists of default
hashes, and proofBits is a 64-bit value filled with zeros
(0x0000000000000000). In this case, proofBytes is
empty, and the uint64 value is 0, resulting in the most
compact proof size possible: 8 bytes.

In the following favorable scenario, considering 2
ids (for example, 0x01234... and 0x89abc...), the
proof of spend for each token would include a sin-
gle non-default hash at the topmost level 63, and
proofBits would consist of the value 1 followed by
63 zeros (0x8000000000000000). The resulting proof
size would be 40 bytes.

In typical scenarios, SMTs exhibit high node density
in the upper levels, ranging from level 𝑞 − 1 down to
approximately level 𝑙𝑜𝑔2(𝑛). To illustrate this, consider
a situation where you have 10MM Layer 2 tokens, and
each token undergoes 500 transactions per token per year.
This results in a total of 5B transactions for the 10MM
tokens annually. Assuming a Layer 2 block frequency
of 15s/block, these 5B transactions would be distributed
across 2.1MM blocks per year, with an average of 2,378

transactions per Layer 2 block (500× 10× 106

86400× 365
15

).

When incorporating these 2,378 transactions into an SMT,
given that 𝑙𝑜𝑔2(2378) = 11.2, you will have a densely
populated set of nodes, mostly consisting of non-default
hashes, from levels 63 down to approximately level 53.
Below that, you will have only one tokenID extending
all the way to level 0. The proof size would amount to
32 bytes per level, resulting in a total of 320 bytes for 10
levels.

𝑞 = 64 is decided instead of 𝑞 = 256 because:

• collisions are still unlikely at q=64 ... until it is
around 4B keys

• the proofBits are 24 bytes smaller (uint64 in-
stead of uint256)

• less gas is spent in checkMembership on all 0
bits in proofBits

• smaller 64-element array of default hashes com-
puted instead of 256 hashes

Reducing the frequency of hashing leads to decreased gas
consumption and increased user satisfaction, particularly
in the Level 2 block connection. In this context, it ensures
that collisions between circulating tokenIds can be defini-
tively ruled out during deposit events. Moreover, you can
combine the fixed length proofBits and variable length
proofBytes into a single proof bytes input for exits, i.e.
startExit(uint64 tokenID, bytes txBytes1,
bytes txBytes2, bytes proof1, bytes proof2,
int blk1, int blk2) The analogous challenge inter-
faces will then have fewer argument inputs in the same
way.

The sparseness of the SMT derives from the observa-
tion that keys will extremely rarely share paths at in-
creasingly lower heights and naturally will share paths
at increasingly higher paths. This lends itself to a repre-
sentation where the SMT is chunked by byte k𝑖, where
traversing the SMT from a root chunk (representing a
range of keys from 0 to 264-1) down to an intermediate
chunk with just one leaf involves processing one addi-
tional byte, which each chunk of data storage having
up to 256 child chunks specifying a range of keys each
child posessing a range that is 1

256
smaller. Just as with a

radix tree, the SMT is traversed from root to leaf, with an
additional byte of the key causing a read of a chunk that
represents up to 256 branches and the hashes of all the
branches, utilizing default hashes. Golang "smt" pack-
age is implemented and a "cloud" package to map SMT
operations into Cloudstore.

5. Layer 3 Blockchains
With the foundations of Layer 2 providing storage and
bandwidth paid for with Layer 2 tokens, any number

of Layer 3 blockchains may be constructed. The con-
struction of a NoSQL and SQL blockchain is detailed
here. At a high level, Layer 3 blockchains collate SQL
and NoSQL transactions in Layer 3 blocks submit block
transactions to Layer 2, and Layer 2 collate token and
block transactions with Merkle Roots of token root and
blocks submitted and included in transactions to Layer 1
blockchain. It then becomes possible to aggregate multi-
ple proof of inclusions at the highest layers all the way to
MainNet with Deep Merkle Proofs, which is illustrated
here.

5.1. Layer 3 NoSQL Blockchain and Deep
Merkle Proofs

To support Layer 3 NoSQL transactions in a NoSQL
blockchain, the Layer 3 blockchain has a layer 3 block
structure defined as collating a set of NoSQL records
along with a Layer3KeyRoot of a Sparse Merkle Tree
managing a set of key-value pairs of “documents”.
All NoSQL records are encrypted using counter mode
(CTR) encryption defining operations 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑, 𝜋) and
𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑑, 𝜋) and utilizing a database encryption key 𝜋
known only to the layer 3 blockchain user. Three opera-
tions are defined, each of which map into the SMT data
structure:

• SetKey(𝑘, 𝑣) - stores arbitrary 𝑘, 𝑣,
through a storeChunk(k, v) Layer 2 oper-
ation and a Layer 3 SMT operation on 𝜅
(insert(𝐻(𝑘), 𝐻(𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑣, 𝜋))))

• GetKey(𝑘) - retrieves the value 𝑣 stored in the
SetKey(𝑘, 𝑣) operation, through Layer 3 opera-
tion on 𝜅 get(H(k)) which returns 𝑣ℎ followed
by 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(retrieveChunk(𝑣ℎ), 𝜋)

• DeleteKey(𝑘) - removes 𝑘 from the NoSQL
database, by storing (𝐻(𝑘), 0) in the SMT; subse-
quent calls to GetKey(k) will not return a value.

The minting of a new Layer 3 NoSQL Block con-
sists of taking each of the Layer 3 transactions
(SetKey, DeleteKey), executing storeChunk Layer 2
API calls for its users. Unless two transactions operate
over the same key 𝑘, all transactions can be executed in
parallel. If multiple transactions operate over the same
key, only the last received transaction will have its muta-
tion succeed.

example (shown in Figure 4)

• In Layer 3 Block 302, the user wishes store doc-
ument ID 1 with key 𝐾1 mapped to encrypted
value 𝑉1 and document ID 2 mapped to encrypted
value 𝑉2. The user can submit 2 Layer 3 NoSQL
transactions:

[SetKey(𝐾1 = 0b001...00,

𝑉1 = 0x778899..)]

SetKey(𝐾2, 𝑉2)]

which results in a set of SMT primitive operations:

insert(𝐻(𝐾1), 𝐻(𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑉1, 𝜋))),

insert(𝐻(𝐾2), 𝐻(𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑉2, 𝜋)))

resulting in Layer3KeyRoot = 0x83fc....
The chunks for both documents 𝐻(𝑉1) and
𝐻(𝑉2) along with chunk of the previous block
301 (e.b. storeChunk(0b001.., ...)) are in-
cluded in Layer 3 Block 302 in the ChunkIDs and
insured with a call to

submitBlock(0b101..11, 302)

submitted to the Layer 2 blockchain.
• When the Layer 2 blockchain processes the

block transactions from this new Layer 3 block
(and many other Layer 3 blockchains) to build
Layer 2 Block 2002, it will build a SMT with
insert(concat(blockchainName, 302),
0b001..00 (and other inserts) to generate a
BlockRoot (e.g. 0x4d69..). As is standard,
the new BlockRoot uses the previous blocks
BlockRoot as a starting point. Packaging the
block transactions together with any token trans-
actions (balance updates, transfers, deposits,
etc.), the new layer 2 block 2002 with hash
0xe8db.. will be stored in Cloudstore with a
call to storeChunk(0xe8db...) Txs and sub-
mitted to Layer 1 with a call to

submitBlock(0xe8db..., 2002).

• Finally, a Layer 1 Block (e.g. 10,000,002) will
be proposed by some MainNet miner including
the above Layer 2 submitBlock transaction and
eventually be finalized by the Layer 1 consensus
protocol.

A Deep Merkle Proof is formed through the aggre-
gation of each proof of inclusion across each layer of
blockchain connections in a deep blockchain down to
Layer 1. In our 3 layer deep blockchain with the Layer
3 NoSQL blockchain layered on the Layer 2 Storage /
Plasma Cash blockchain, there is a Layer 2-3 connection
and a Layer 1-2 connection. So a full Deep Merkle Proof
that a NoSQL document 𝐾1, 𝑉1 is included in the deep
blockchain all the way up to MainNet consists of:

1. Layer 3 proof of inclusion of (𝐻(𝐾1), 𝐻(𝑉1)) in
Layer 3 block Layer3KeyRoot – in our example,
this would be that the value 𝐻(𝑉1) hashes up to
SMT root 𝑅302 = 0x83fc...

Figure 4: Deep Merkle Proof illustrated: The hashes key-value pair is recorded in a Layer 3 Sparse Merkle Tree, the root
of which is kept in Layer3KeyRoot in the Layer 3 block. When the Layer 3 operator uses submitBlock to submit a block
transaction to Layer 2, Layer 3 Block hash 302 is included in another SMT maintained by the Layer 2 operator storing all Block
hashes of all Layer 3 blockchains. When the Layer 2 block 2002 is minted, the BlockRoot is set and included in Layer 1 Block
10,000,002. The individual proof of inclusion from the 2 SMTs and the portions of the raw Layer 3 and Layer 2 block form a
Deep Merkle Proof for inclusion a specific record in the deep blockchain, from the highest layer to Layer 1.

2. Layer 2 proof of inclusion of
(𝐻(concat(blockchainName, k))) in
Layer 3 block Layer3KeyRoot – in our ex-
ample, this would be that the Layer 3 block
hash 0b101..11 hashes up to SMT root
𝑅2002 = 0x4d69..

3. Layer 1 proof of inclusion of the Layer 2 block
hash in the blockHash array of the Layer 1
Smart Contract – in our example, this is that
blockHash(2002) = 0xe8db

In our implementation, deep Merkle proofs are provided
in response to GetKey(𝐾,𝑉) to the layer 3 blockchain
users as an optional deep boolean parameter and when
true, returns the full combination of:

• Layer 3 Block, which includes Layer3KeyRoot
• proofBits and proofBytes for the

Layer3KeyRoot, which are shown to match
𝐻(𝐾), 𝐻(𝑉)

• Layer 2 Block, which includes BlockRoot
• proofBits and proofBytes for the
BlockRoot, which are shown to match
the Layer 2 Block Hash

• Layer 1 blockHash record of the Layer 2 block
number

The concept of a deep Merkle Proof is not limited to 3
layer deep blockchains, nor is the concept only applicable
to NoSQL blockchains – the concept applies to multiple
layers of proof of inclusion enabled through the general
layering processes of deep blockchain systems generally.

5.2. Layer 3 SQL Blockchain
To support Layer 3 SQL operations in a SQL blockchain,
the Layer 3 block has a structure defined as hav-
ing as packing a set of encrypted SQL transactions
(insert/update/delete statements) along with a
Layer3KeyRoot of a Sparse Merkle Tree representing
a set of table root hashes.

In our implementation, Quorum RAFT is adopted as
the consensus layer for our layer 3 SQL blockchain (again,
following Appendix A), which collectively follow a con-
sensus protocol where once a leader has been identified,
the leader mints a new Layer 3 block based on:

• An array of SQL transactions that is mapped into
newly created chunks (created via storeChunk
for table root hashes)

• An array of table root hashes, key-value pairs
written to Layer3KeyRoot, based on the execu-
tion of the above SQL Transactions

The minting a layer 3 block consists of the leader com-
piling each SQL transaction into a set of instructions
to executed by a “SQL Virtual Machine” (SVM) based
off of the widely used SQLite’s virtual machine. In this
model, a virtual machine has a program counter that in-
crements or jumps to another line after the execution of
each opcode instruction. For example, a SQL statement
of "Select * from person" received by a node is mapped
into a interpretable set of opcodes like this:

{"n":0,"opcode":"Init","p2":8,"p4"
":"select * from person"}

{"n":1,"opcode":"OpenRead","p2"
:2,"p4":"2"}

{"n":2,"opcode":"Rewind","p2":7}

{"n":3,"opcode":"Column","p3":1}

{"n":4,"opcode":"Column","p2"
:1,"p3":2}

{"n":5,"opcode":"ResultRow","p1"
:1,"p2":2}

{"n":6,"opcode":"Next","p2"
:3,"p5":1}
{"n":7,"opcode":"Halt"}

{"n":8,"opcode":"Transaction","p3"
:3,"p4":"0","p5":1}

{"n":9,"opcode":"Goto","p2":1}

In our SVM Golang implementation, all opcodes are
mapped into Layer 2 storeChunk and receiveChunk
calls, manipulating the following chunk types:

• Database Schema chunk: represents up to 32 ta-
bles belonging to the “blockchainName”. Each
table is identified by name (up to 32 bytes) and
has a table chunk;

• Table chunk: represents up to 32 columns belong-
ing to a specific “table”. Each column is identified
by name (up to 27-bytes) and additional informa-
tion: its column type (integer, string, float, etc.),
whether it is a primary key, and any index infor-
mation; a 32-byte chunk ID points to a potential
index chunk, if the column is indexed A table must
have at least one primary key.

• Index chunk: a B+ tree, composed of intermediate
“X” chunks and data “D” chunks. Each X chunk
has 32-byte pointers to additional X chunks or D
chunks. D chunks form a ordered doubly linked
list, and contain pointers to record chunks.

• Record chunk: a 4K chunk of data that holds a
JSON record for a keyed value.

Our current implementation has a full implementation
of single table operations thus far, but with relational
database operations approachable with the same dynam-
ics:

• When the owner of a Layer 3 blockchain creates
a new database, the owner chunk is updated and
database chunk is created and the owner chunk
is updated with the new database chunk informa-
tion. If this is the first database created by the
owner, the root hash of the owner is set for the
first time. The root hash of the database is set for
the first time.

• When the owner of a Layer 3 blockchain creates
a new table, the database chunk is updated and
table chunk is created and the database chunk
is updated with the new table information. This
also causes the owner chunk to be updated with
the new database chunk information. The root
hash of the table is set for the first time in the
child chain.

• When the owner of a Layer 3 blockchain creates
or updates a table, this creates or changes the
database schema chunk. The database chunk is
then updated with the new schema information,
which in turn causes the owner chunk to be up-
dated with the new database chunk information.

• When an owner creates a new record in a table
with a SQL statement such as

insert into account (id, v)")

values (42, "minnie@ethmail.com")

the index chunks (X chunks and D chunks) are
updated with new primary key information and
a record chunk is created in JSON form

{"id":42, "v":"minnie@ethmail.com"}

Because the index chunk changes, the table chunk
changes. The root hash of the table is set for the
first time in the child chain. When an owner
updates a record in a table with a SQL statement
lie

update account set v =

"minnie@mail.eth" where id = 42

the record has a new chunkID because of the new
JSON content

{"id":42, "v": "minnie@mail.eth"}

and so one or more index chunks are updated
with a new chunkID.

• When an owner drops a database, the owner
chunk is updated globally. Additionally, any ta-
bles associated with the database at the time of
deletion should have their root hashes updated.

• When an owner deletes a table, the root hash of
the table is updated, the schema chunk is updated,
and the database chunk is updated with the new
schema chunk info and removing the table name.
The owner chunk is then updated with the new
database chunk info..

When the leader node of a Layer 3 SQL blockchain mints
a Layer 3 block, it must include in its Layer 3 block:

• the SQL transactions – where for each table ref-
erenced in the SQL, the leader must retrieve the
previous root hash of the table in the SMT and
execute the SVM operations for that table against
that SMT’s data.

• the Chunks newly written through the execution
of the SQL transactions, where chunks are only
created, and never “updated”.

• a new Layer3KeyRoot transactions and calls
submitBlock(𝑏3𝑘, 𝑘): for all tables updated from
the SQL transactions, each table has a new root
hash. Using the Layer3KeyRoot, any layer 3
node can respond to a SQL SELECT query by re-
trieving the the previous hash of any table from
the SMT. Using the Layer3KeyRoot, any layer
3 node can respond to a SQL SELECT query by
retrieving the the previous hash of any table from
the SMT

With a newly minted Layer 3 block 𝑘, the Layer 3 SQL
blockchain can submit a layer 2 block transaction 𝑇 3

𝑘 for
the Layer 3 Block 𝑏3𝑘

submitBlock(𝑏3𝑘, 𝑘)

which proceeds just as in the NoSQL blockchain, with
the analogously structured Deep Merkle Proof. Where in
the NoSQL chain, each NoSQL document / row updated
resulted in an updated leaf in the SMT for the newly
updated document, now with the SQL chain, each SQL
statement supports a new table root hash change in an
update leaf in the SMT.

6. Paying for Storage and
Bandwidth

The Layer 3 blockchain users who store NoSQL/SQL/File
data with storeChunk operations give the Layer 2 op-
erator permission to charge for bandwidth and storage
in two different ways:

1. Bandwidth is paid for through (1) users sign-
ing retrieveChunk(𝑘, 𝜏, 𝜔) calls to retrieve
data and obtaining recent balances, where
each call uses up a tiny amount of bandwidth
backed for with a token 𝜏 originated by the
createBlockchain call; (2) users signing a new
updateBalance(𝜏, , 𝜔) request originated by
operator and agreeing to making a payment for
incurred bandwidth usage and the latest token
owner balance. An updateBalance response by
users is mapped into layer2 transaction, where in-
curred bandwidth cost is deducted from token’s
owner balance (𝜏) and added to operator’s al-
lowance 𝛾(𝜏).

2. Storage is paid for through Block Transactions
submitBlock(𝑏3𝑘, 𝑘) signed by the Layer 3
blockchain operator - because chunks are identi-
fied directly inside Layer 3 blocks, a tally of the
number of bytes used in each new layer 3 block
is added to the SMT. The Layer 1 contract then
exposes storageCharge interface to the Layer
2 operator where a recently signed Layer 2 block
transaction (containing a tally of the number of
bytes, signed by the Layer 3 blockchain operator)
is used to deduct the layer 3 operator’s balance
since the last time it was called. This is detailed
below.

In this way Layer 3 Blockchains pay for the services of the
Layer 2 blockchain. The lifecycle of a short lived Layer 3
blockchain is shown in Figure 5, which is expounded in
the next section.

6.1. Layer 2 Plasma Tokens for Bandwidth
Payments

In this section it is explained how Layer 2 Tokens can
form a unidirectional payment channel, where each signed

Figure 5: Samples of a Layer 3 NoSQL Blockchain User in the Deep Blockchain architecture presented here. A Layer 3 user
creates a Layer 3 Blockchain by sending 1 ETH to createBlockchain and receives a Plasma token (1 pETH) which is included
as a deposit in Layer 2 block 2000. The Layer 3 user does 2 SetKey operations included in Layer 3 block 300, which result
in the Layer 3 blockchain signing 2 storeChunk for each key-value pair. The Layer 3 blockchain mints Layer 3 Block 300
and stores it again with 3rd signed storeChunk call, finally calling Layer 2’s submitBlock with the hash of Block 300. The
Layer 2 operator includes this block transaction in Layer 2 Block 2001, stores it in Cloudstore, and submits it the Layer 1
blockchain with a Smart Contract call to submitBlock. Later, multiple (lots and lots) of signed GetKey calls are done by the
Layer 3 User, each executed using retrieveChunk signed calls. At some point, the user hits Σ𝑚𝑎𝑥 = .02𝑝𝐸𝑇𝐻 and uses
updateBalance to agree that its balance is 0.98 pETH, which is included in Layer 2’s token transaction block and submitted
to Layer 1. Finally, the Layer 3 user can drop its blockchain, which will trigger deletion of chunks and initiate a finalizeExit
process that returns the .98 ETH balance to the user.

retrieveChunk call is not a transaction to be included
in a Layer 2 block (and has no nonce to increment) but
simply indicative of "permission to return some data and
decrement my token balance"; where the Layer 2 operator
can check the signature against its record of the current

owner as a condition of looking up the chunk.
The Layer 2 operator must have tally aggregation capa-

bility that can aggregate numerous signed calls together
and compute that token 𝜏 has some new balance (𝜏). In

our implementation simple minute-wise Hadoop job is
used to tally periodic flushes of retrieveChunk oper-
ations grouped by different 𝜏 , keeping as a short-term
output (TTL=3600s) log that each minutewise change
of 𝜏 was caused by specific signed operations; this bal-
ance update log is exposed to the user. When this in-
ternal tally reaches a critical threshold Σ𝑚𝑎𝑥, responses
to retrieveChunk halts and can only resume with a
Layer 2 updateBalance transaction submitted and in-
cluded in the Layer 2 block directly in the SMT root
Layer2TokenRoot. The threshold Σ𝑚𝑎𝑥 in the con-
tract. To minimize disruptions from halting in this way,
it is the responsiblity of the Layer 3 blockchain to peri-
odically submit updateBalance, signing recent token
balances provided in the retrieveChunk.

Moreover, as the token has considerable usage ac-
cumulated, and as users regularly submit sufficient
updateBalance transactions to Layer 2, the value of
the balance may accumulate to a great enough level that
the Layer 2 operator may wish to withdraw the balance
accumulated directly in the Layer 1 contract. To sup-
port this,the SMT state is expanded to include the token
balance and the operator withdrawal amounts.

If users wish to transfer the token to another user of
the layer 2 blockchain by submitting a token transfer op-
eration, the updateBalance must be executed to “close”
the token-based state channel.

Finally, users who wish to withdraw token 𝜏 for Layer
1 currency can do so by calling startExit with the
last 2 transfers and this last updateBalance, which will
redeem the denomination less the tally of what has been
withdrawn by the operator. Others may challenge this
exit, but only with a valid proof of user double spending
𝜏 .

6.2. Layer 1 Storage Insurance
Because every single write of a Layer 3 blockchain is
included in sequentially ordered layer 3 blocks (each of
which identify a set of Chunk IDs) the layer 3 blockchain
forms an itemized list of signed insurance requests that
form a Layer 1 unidirectional state channel initiated by
the deposit into createBlockchain. Assuming no chal-
lenges exist, if the Layer 2 operator that receives a Layer
3 block identifying a set of chunks can provide a recent

proof of storage then it may deduct from this deposit. On
the other hand, if the layer 3 blockchain has reason to
believe that some chunk is lost, it can submit its claim
to Layer 1 smart contract and demand Merkle proofs
in response. The CRASH patterns of [9] specify this
challenge-response system in detail, which is extended
to our deep blockchain in the following way:

• Insurance Request. Each Layer 3 block 𝐵3
𝑗 (sub-

mitted to the Layer 2 operator in the block trans-
action submitBlock(𝑏3𝑗 , 𝑗) calls) includes (1) a
seed hash 𝛾, where the seed 𝜈 (𝛾 = 𝐻(𝜈)) is
held solely by the layer 3 operator and revealed
when the layer 3 operator wishes to challenge
the Layer 2 operator with storageChallenge
(see below); (2) the hash of an SMT Merkle root
𝐻(Ξ) for all the chunks specified in the layer 3
block using 𝜈; (3) the total collection size in bytes
𝜎𝑡𝑜𝑡𝑎𝑙 in all Layer 3 blocks; (4) a Ω parameter, the
amount of layer 1 currency required to hold 1 GB
per month (e.g. if market conditions for keeping
data in 8 places in Cloudstore is $.25 GB/mo and
Layer 1 currency is $500/𝐸𝑇𝐻 , then Ω would
be 5 × 1014 wei). The Layer 2 operator uses 𝜅
to fetch the list of chunks the Layer 3 operator
wishes to insure, verifies that all chunks in the
list are in fact available, and checks that 𝜎𝑡𝑜𝑡𝑎𝑙

matches the Layer 2 operators own tally closely.
If the chunks are missing, or the tally is not rea-
sonable, the Layer 2 operator may reject the block.
Otherwise, the Layer 2 blockchain will include
the Layer 3 block hash in the BlockRoot of the
next Layer 2 block. In this way, the block trans-
action is taken as a signed request to insure the
entire Layer 3 blockchain’s storage.

• Storage Charges. Under ordinary conditions, the
layer 2 operator can submit the most recent proof
of any signed block transaction to the Layer 1
smart contract function:
storageCharge(blockchainName string,
txbytes bytes, storagecost uint64,
sig bytes) Since txbytes contains 𝜎𝑡𝑜𝑡𝑎𝑙

and Ω, the storageCharge function can
deduct from balance originally deposited
via createBlockchain since the last time
storageCharge was called.

Figure 6: Three-layer deep blockchain model.

• Storage Challenge-Response: CRASH proofs. If
at any time, the Layer 3 blockchain wishes
to challenge Layer 2’s inept storage (due to a
missing block or missing chunk included in the
block), it may do so by demanding a CRASH
proof of a specific layer 3 block, revealing 𝜈
(which must match the 𝛾 in txbytes) by calling:
] storageChallenge(blockchainName
string, blockNumber uint64, seed
bytes32) A valid CRASH-proof response must
be provided by the layer 2 operator within
some time period (e.g. 3 to 7 days) or the
challenger layer 3 user will obtain a payout pro-
portional to 𝜎𝑡𝑜𝑡𝑎𝑙 contained in txbytes.
storageResponse(blockchainName
string, blockNumber uint64,
proofBits uint64, proofBytes bytes)
This payout must come from a registered balance
held in the Layer 1 Smart Contract. The response
must be a valid proof whose root Ξ that matches
𝐻(Ξ) originally supplied for the block. Finally,
to guard against the situation that some layer
3 operator supplies a bogus 𝐻(Ξ) in the block
transaction to claim this payout, the layer 2
operator can supply a small number (e.g. 5) of
Merkle branches resolving to 𝜅. The economic
incentives of this challenge-response system
is refined to balance the layer 2 and layer 3
operators in this challenge-response pattern to
be reasonable relative to Layer 1 Ethereum gas
costs.

With the above mechanism in place, the layer 2 operator
can charge the layer 3 operator when transaction fees are
negligible. In regular conditions, the Layer 3 blockchain

can see its storage fees through storageCharge; when
the balance approaches zero, the Layer 3 blockchain must
deposit additional Layer 1 currency to its blockchain
balance at Layer 1. Finally, a call to dropBlockchain
must permit the layer 2 operator the opportunity to claim
a final storageCharge and close out the bandwidth
balance of 𝜏 before finalizing exits (see Figure 5). Since
there are two sources of demand (storage charge and
bandwidth charges), the layer 2 blockchain must check
that the sum of both sources equal the available balance
for the layer 3 blockchain.

7. Discussion
There have been many approaches scaling blockchain
architecture to support higher throughput and lower la-
tency:

• Changing the security model of Layer 1
blockchains (c.f. NEO, EOS’s approach)

• Incremental improvements to Layer 1 or Layer
0 that don’t change security model (c.f. larger
blocks)

• Having many separate chains, using sharding
• State Channels
• Layer 2 Plasma solutions

This paper focussed on the last approach, and de-
scribed how using the core ideas behind Layer 2 Plasma
Cash can be extended to a deep blockchain system, form-
ing the basis for provable data storage for widely used
NoSQL + SQL developer interfaces. The concept of Deep
Merkle proof for a 3 layer deep blockchain system is
illustrated here and shown its conceptual viability, bor-
rowing state channel concepts for Layer 3 NoSQL and
SQL blockchains to pay for storage and bandwidth.

Deep learning architectures have advanced numerous
high-scale applications in every industry in a way that
is not about one specific deep learning algorithm – and
instead about an approach that could not be achieved
through dogmatic faith in single-layer “neural” networks.
In an analogous way, deep blockchain architectures could
have the potential to enable a wide range of high-scale
applications in a way that might not be achieved through
dogmatic faith in Layer 1 scaling innovations alone.

Blockchain practitioner instincts are to be wary of
centralized consensus protocols and centralized storage.
However, our use of non-local storage can be rational-
ized, not by demanding that every component be dog-
matically decentralized, but by considering how attack
vectors are reduced through judicious use of some not-
so-decentralized components. The attacks on storage are
limited in nature due to:

• verifiability of chunks, where all 𝑘, 𝑣 pairs re-
trieved from non-local storage are verifiable ei-
ther due to (a) 𝑘 being verified to the hash of the
value 𝑣 returned (b) 𝑘 being directly included and
signed by a trusted party. In this sense the attack
vector is limited to the private key

• the use of Ethereum SWARM (currently in POC3)
as a censorship-resistant cloud storage provider.
In the event that the Layer 2 blockchain provider
loses access to its Cloud Storage backend, higher
layer backends can simply request chunks using
the Kademlia-based DHT of Ethereum SWARM.
Generally this censorship-resistance comes at the
cost of higher latency responses.

• cryptoeconomic incentives, wherein if a data
storer can prove (with a Merkle branch) that a
piece of data can no longer be accessed but has
been included on chain through a valid Merkle
branch

It is believed the combination of decentralized stor-
age and cloud computing storage increases the cost of
attack and that the Blockchain 1.0 Objective of Maxi-
mize decentralization must be altered in favor of the more
nuanced Blockchain 2.0 Objective Maximize cost of at-
tack, which ultimately will lead to more secure and re-
liable blockchain systems. One gets the best of both
worlds: from centralized storage one gets low-latency,
high-throughput infrastructure, and from decentralized
storage one gets resilience and censorship resistance.

Concerning the use of a single centralized Layer 2 op-
erator, it is highlighted that in all cases where Layer 1 cur-
rency is deposited (in createBlockchain), because use
of the “Plasma Cash” design pattern, the owner of the to-
kens may withdraw its balance on the Layer 1 blockchain.
This is a surprising result: that checks and balances on to-
ken ownership are possible through the use of the Layer
1 blockchain despite the Plasma operator being in 100%
control; if users discover that the Layer 2 blockchain op-
erators are malicious, they can be certain they can get
the value of their tokens back, and if the data is kept in
resilient Ethereum SWARM (or if they have kept their
data locally), they can move to another Layer 2 operator
using the same protocol.

This shows a deep blockchain that has a higher cost of
attack than the deep blockchain illustrated in Figure 2, uti-
lizing𝑁2 Layer 2 blockchains (each with their own Cloud-
store) and 𝑁1 Layer 1 blockchains, each receiving the
same Layer 3 submitBlock and Layer 2 submitBlock
transactions respectively:
Because the retrieval of layer 𝑖+ 1 data from layer 𝑖 can
be verified by layer 𝑖+ 1 (checking block data: does the
block hash match the block content? is it signed? does it
have a parent hash? etc.; checking chunks: does the hash
of the chunk data equal the chunk key), each lower layer

node devolves into a dumb storage layer with some fail-
ure or attack probability (𝑝21..𝑝

2
𝑁2

for layer 2 blockchains,
𝑝11..𝑝

1
𝑁1

for layer 1 blockchains) – depending on this
probabilistic model, the cost of attack may be divined.
However, it seems most likely that motivated parties
would attack the centralized control behind each layer
(c.f. via EIP999, mining pools arewedecentralizedyet.com,
governments asking the Cloudstore providers to block
Layer 2 operator’s accounts) – in this sense the probabilis-
tic independence in concentrated efforts to attack layer
1 and 2 would be highly suspect. For this reason, our
true faith relies in Ethereum SWARM’s resource updates
([9]), where chunks may be keyed not by the hash of
their content but with a resource key, which can be used
for the block data without an index mechanism; all re-
source updates are signed so the reader can authenticate.
Ethereum SWARM, because of its use of Kademlia-like
protocol, is not naturally as fast as other components in
Cloudstore, but kicks in when all Layer 2 blockchains
Cloudstore fail or when Layer 1 itself is attacked (via 51%
attacks, or unknown POS failures). If other decentral-
ized storage services provided similar provable storage
as Ethereum SWARM’s resource update, so long as Layer
3 blockchain does not go Byzantine, only one answer can
surface, making for unstoppable layer 3 blockchains.

The Layer 3 NoSQL and SQL blockchains developed
in this paper operated under an assumption that the
NoSQL + SQL transactions should be private data se-
cured by an encryption key known only to the operators
of the Layer 3 blockchain. This protects the Layer 3
blockchain from operators of Layer 2 blockchain and any
Cloudstore. However, the same problem as with standard
databases (MySQL, MongoDB, DynamoDB, etc.) exists
with our current implementation of NoSQL/SQL Layer
3 blockchains: once someone gets access to a Layer 3
blockchain node holding the database encryption key or
private key, the entire database is compromised. There-
fore, provenance and immutability of the NoSQL/SQL
database state changes, as manifested in Deep Merkle
Proofs, differentiate a Layer 3 blockchain from standard
databases. The small latency incurred with permissioned
protocols (RAFT, POA) and negligible cost should be
welcomed when provenance and immutability are of
paramount concern.

Many other Layer 3 blockchains can be constructed
using the Layer 2 storage and bandwidth infrastructure:
a chain that represents the evolving state of ERC721 to-
kens, a chain that represents a cryptocurrency exchange
where your money can never be stolen, and so forth. The
state of the Layer 3 blockchain is not stored locally but
instead kept in Cloudstore with storage and bandwidth
costs properly accounted for using the Layer 2 tokens,
themselves based on Layer 1. Layer 3 and Layer 2 nodes
are therefore “light nodes” in that they can quickly catch
up to the latest state by asking the layer 2 and layer 1

blockchains for the most recent finalized block. This
is not possible to do for the Layer 1 blockchain, how-
ever. However, it is possible, and interesting to adapt a
Layer 1 blockchain of Ethereum and make it a Layer 3
blockchain. Computation (Ethereum gas costs) can con-
sume Layer 2 token balances in state channels along with
bandwidth, contract storage can use SMTs mapped to
Cloudstore (instead of Patricia Merkle Tries kept in local
store) submitted in blocks to the Layer 2 blockchain, and
the consensus machinery can be put in a modern sharded
Proof-of-Stake framework to achieve high-throughput
low-latency ambitions of Ethereum 2.0, with all layer 3
nodes. The expectation would be that a Layer 3 Ethereum
blockchain would have massively lower costs due to ra-
tional models of storage and bandwidth. Other deep
blockchain systems can be developed with different com-
putational primitives than the EVM, such as Amazon’s
Lambda or Apache Hadoop.

It is believed that there can be many deep blockchain
systems developed with higher layers resting on many
Layer 1 blockchains, even to the point where multiple
Layer 1 systems are dropped and many more added to pro-
vide more or less Layer 2 security. The same can be said
for any layer to benefit higher layers. If the blockchain
at layer 𝑖 changes its consensus algorithm from Quorum
RAFT to pBFT or Casper Proof-of-Stake, the layer 𝑖+ 1
benefits; higher layer blockchains are supervenient on
Layer 1, so innovations on Layer 1 are inherited by all
deep blockchain systems. It is hoped that many deep
blockchain systems can explore high throughput low la-
tency scale through some of the design patterns explored
here.

References
[1] M. Gracy, B. R. Jeyavadhanam, A systematic review

of blockchain-based system: Transaction through-
put latency and challenges, in: 2021 Interna-
tional Conference on Computational Intelligence
and Computing Applications (ICCICA), IEEE, 2021,
pp. 1–6.

[2] Y. Meshcheryakov, A. Melman, O. Evsutin, V. Mo-
rozov, Y. Koucheryavy, On performance of
pbft blockchain consensus algorithm for iot-
applications with constrained devices, IEEE Access
9 (2021) 80559–80570.

[3] J. Yoo, Y. Jung, D. Shin, M. Bae, E. Jee, Formal
modeling and verification of a federated byzantine
agreement algorithm for blockchain platforms, in:
2019 IEEE International Workshop on Blockchain
Oriented Software Engineering (IWBOSE), IEEE,
2019, pp. 11–21.

[4] G. Wood, et al., Ethereum: A secure decentralised
generalised transaction ledger, https://karl.tech/
plasma-cash-simple-spec/, 2014.

[5] U. Rahardja, A. N. Hidayanto, N. Lutfiani, D. A.
Febiani, Q. Aini, Immutability of distributed hash
model on blockchain node storage, Sci. J. Informat-
ics 8 (2021) 137–143.

[6] K. Floersch, Plasma cash simple spec, https://karl.
tech/plasma-cash-simple-spec, 2018.

[7] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi,
A. Margheri, V. Sassone, Blockchain-based database
to ensure data integrity in cloud computing envi-
ronments (2017).

[8] J. Poon, V. Buterin, Plasma: Scalable autonomous
smart contracts, http://plasma.io/plasma.pdf, 2017.

[9] V. Trón, A. Fischer, D. A. Nagy, Swarm: a decen-
tralised peer-to-peer network for messaging and
storage (2018). Forthcoming.

[10] S. K. Panda, A. A. Elngar, V. E. Balas, M. Kayed,
Bitcoin and blockchain: history and current appli-
cations, CRC Press, 2020.

[11] B. Laurie, E. Kaspe, Revocation transparency, https:
//www.links.org/files/RevocationTransparency.
pdf, 2017.

[12] R. Dahlberg, T. Pulls, R. Peeters, Efficient sparse
merkle trees: Caching strategies and secure (non-)
membership proofs, in: Secure IT Systems: 21st
Nordic Conference, NordSec 2016, Oulu, Finland,
November 2-4, 2016. Proceedings 21, Springer, 2016,
pp. 199–215.

https://karl.tech/plasma-cash-simple-spec/
https://karl.tech/plasma-cash-simple-spec/
https://karl. tech/plasma-cash-simple-spec
https://karl. tech/plasma-cash-simple-spec
http://plasma.io/plasma.pdf
https://www.links.org/files/RevocationTransparency.pdf
https://www.links.org/files/RevocationTransparency.pdf
https://www.links.org/files/RevocationTransparency.pdf

	1 Introduction
	2 Layer 2: Plasma Cash Blockchain
	3 Deep Blockchains for Provable Data Storage
	4 Sparse Merkle Trees and Provenance
	5 Layer 3 Blockchains
	5.1 Layer 3 NoSQL Blockchain and Deep Merkle Proofs
	5.2 Layer 3 SQL Blockchain

	6 Paying for Storage and Bandwidth
	6.1 Layer 2 Plasma Tokens for Bandwidth Payments
	6.2 Layer 1 Storage Insurance

	7 Discussion

