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Abstract  
This article proposes a new strategy built on a strengthened Machine Learning (ML) engine to enable 
better metrics and results. It tackles issues with bias, overfitting, low accuracy, and poor generalization 
in the current techniques. The proposed model's mechanics can be summarized to the following: a) 
applications of a chosen set of supervised learning (SL) algorithms on the experimental dataset and 
storage of the determined readings in a logical table (LT) construct, b) creation of a blend of algorithms 
based on in-parallel tuning of the model to enhance classifier learning, c) expansion of a logical 3-D cube, 
and LT, that define the algorithms for ensuring optimum fitting for the e) Limiting the over/under 
learning by employing Local Error (LE) and Global Error (GE) boundaries, and optimizing the internals 
of the model by creating Local Gain (LG) and Global Gain (GG) functions. Additionally, it supports the 
validity of the suggested model, which includes sub-algorithms for a variety of real-world data sets for 
both prescriptive and predictive analytics. We create a special method called "parallel tuning processes" 
for better performance/fitting. Any type of dataset and predicting objective can be used with this model. 
We offer entire mathematical models, algorithms, and all essential frameworks, visualizations, and 
diagrams to facilitate the execution of the given plan. Several simulation results are shown with an in-
depth examination of the data to demonstrate the viability of the suggested system.  
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1. Introduction 

The performance of machine learning depends significantly on the properties of the 
algorithms [1]. Modern algorithms used in machine learning (ML) let systems make more 
accurate decisions and successfully forecast events [2–3]. Under-fitting, over-fitting, bias, 
mistakes, and poorer accuracy are a few of the ML difficulties still to be solved. Numerous 
algorithms have been developed, although they may not be fully capable of solving these 
problems [5-7]. However, given the availability of digital and e-data, notably in the fields of Big 
data and social networking data, ML has advanced significantly in data science [8–9]. Predictive 
analytics in ML uses a variety of models, approaches, and algorithms [10–11]. The focus of the 
study has been combining models and characteristics. 

The suggested solution is used to train the model for the determination of the supporting 
algorithm and then blend it to produce higher prediction accuracy and classifier fitness. The 
following subsections introduce the concept, questions, contributions, and anatomy of the study. 
Our motivation stems from the need to better predictive analytics by combining social 
networking data with professional and academic data. Several cutting-edge algorithms have been 
investigated to better comprehend the suggested solution [15-18]. This work seeks to 
answer/address the following general research questions: 

• Can matching, fitness, and accuracy scores be used to mix and fine-tune algorithms? 
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• Does the combined version perform better than a single algorithmic model when it comes 
to addressing bias, over- or under-fitting, poor generalizability, and low accuracy? 
• Can algorithms be added and removed algorithmically in real-time as the classifier 
processes the provided raw data for ML predictions? 
• Is there a logical space where overfitting and underfitting can be pushed to achieve the 
best fitting? Is it possible to use or program an error to control the model's lower and upper 
bounds in order to prevent bias and overlearning? 
• Can a model (such as a mixed one) learn from its errors (such as incorrect predictions)? 
• Lastly, can a blended model improve from bad predictions? 

1.1 Research contributions 

We observe the potential of data science in the creation of new algorithms as well as 
enhancements to current approaches taking into account the most recent requirements and 
applications in the big data environment. The following is a summary of the paper's 
contributions:  

• To develop a tuning and blended process, the proposed solution can quantify the 
matching, fitness, and accuracy scores. 
• Our suggested method demonstrated that blending may be done based on how well each 
algorithm, as chosen from the pool of options, fits the sort of data model being trained. This 
method guarantees that the model is neither biased nor overfit in comparison to any particular 
algorithm being tested. 
• We trained the suggested classifier so it can learn to either add a good-fit algorithm (one 
with improved metrics) or remove a bad-fit algorithm (one with inferior metrics).  
• We have created enhanced metrics that control the model's performance in one particular 
area. In this manner, the suggested model is simultaneously cross-checked and trained on the 
data. The specifics of eWPM are not the subject of this essay, though. 
• For maximum fitness, we have changed our model to z-space coordinates in 3-D logical 
space to visualize the architecture of our proposed model. 
• We have created a unique method for applying error, a crucial statistic in machine 
learning. The proposed model is taught to use minimal and maximum error bounds when 
administering. As a result, it is possible to maintain acceptable bias and fitness, including 
overlearning. For both GG and LG, the lowest and maximum error bounds are 20% and 80%, 
respectively. 
• We have developed improved metrics, which regulate the dimension of the performance 
of the model. This way, the proposed model is cross-checked in parallel while it learns from 
the data (during training). However, the detailed discussions of eWPM are outside of the scope 
of this article. 

1.2 Research problem 

Knowing which algorithm or model is ideal for the problem(s) or data to be used is the main 
obstacle data scientists, researchers, and analysts face. There are a lot of ambiguities and 
unknowns. Depending on the variables and/or features of the dataset, each method may respond 
differently. For different classifiers, evaluation of a model or method is essential. The selection of 
a classifier type based on fresh or unexplored data becomes extremely difficult. Scientists and 
researchers have adopted the normal practice of evaluating some of the classifiers that the 
algorithm generates. We view this as a research challenge to determine if an improved model and 
algorithms can be provided for such predictive modeling using improved blending and tuning. 
These algorithms are specially constructed with built-in parallel processing. 

1.3 Mechanics of parent research 



This research manifests itself in the following sub-components:  
• Enhanced Algorithm Blend and Tuning (eABT): Based on the fitness scores and increased 
accuracy of several SL algorithms, it builds the enhanced machine learning engine (iMLE) 
model. Based on what is commonly known as Ensembling, Bagging, and Boosting, it applies 
the existing ML and predictive modeling techniques (e.g., Logistic Regression, Linear 
Regression, Multiple Regression, Bayesian, Decision trees, SVM, and Classification) to 
determine the ideal blend until the improved metrics are measured. This plan makes use of 
the approaches' capability for parallel processing. Errors and incorrect predictions made 
during a test are fed back to the algorithm in this phase so that it can continue to learn from 
them (artificial intelligence). 
• Enhanced Feature Engineering and Selection (eFES): It improves feature engineering 
(such as feature creation and trans-formation) and feature selection in order to extract more 
data (predictor variables that were previously unknown) and the best set of 
features/attributes for the relationship between "predictor-target" variables. It ensures that 
features with the highest fitness scores are included, while those with the lowest are removed. 
Each feature is automatically validated by the eFES model.  
• Third, Enhanced Weighted Performance Metric: This component creates a novel metric 
based on accepted metrics, while the prior two components make sure the model is neither 
overfit nor underfit. With the help of this metric, ML-based blended models can be trained 
while maintaining the integrity of their overall performance metrics. Improved Cross 
Confirmation and Split (iCCS): To improve on current validation techniques like cross-
validation, this block of the model looks at and applies a special approach for train-test data 
splitting. In comparison to the other three (iMLE) components, this one is currently in its 
infancy. 
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Figure 1: The higher notion of an improved machine-learning engine 

1.4 Research methodology 

The foundation of our proposed paradigm will be built on extensive study, familiarity, and 
evaluation. As a result, we put these methods into practice using already-existing libraries and 
reported the outcomes. For a variety of research issues and datasets, we reviewed the literature 
and recorded their conclusions. As may be seen in the results in the following sections, we 
compared some of the outcomes with our suggested model. Future research is still needed for 
several of the methods, including Random Forest (DT type), Dimensionality Reduction (PCA), and 
Boosting techniques. Furthermore, this article does not cover unsupervised or semi-supervised 
learning. The goal of this work is to understand the current status of these algorithms in machine 
learning so that we can advance it with the work we conduct, as described in this paper. In 
conclusion, because of the nature of the problem and the datasets that the algorithms are 



designed for, a genuine comparison can be difficult. In other words, in some circumstances, one 
may perform better than the other and the opposite outcomes may be seen. The scope of this 
article does not include a comprehensive examination or comparison of each through 
experimentation. the general comparison of several of the algorithms/techniques under 
consideration. The Support vector machine (SVMs), K-Nearest Neighbor (KNN), Logistic 
Regression, Multiple Linear Regression (MLR), Decision tree (DR), and Graph-based boosting 
(GB) algorithms were tested in 10 experiments (using 1000+ data samples) for different datasets. 
The final results are shown in Figure 2 [20]. Implemented and contrasted with current methods 
is the iMLE. We employed CART and ID3 for DT, and it was shown that iMLE was effective with 
bigger amounts of data. It is crucial to note that we discovered through our own research and 
analysis of the literature that the results of different algorithms are not always reliable. This 
observation served as one of the driving forces behind our decision to conduct this research in 
order to stabilize the results and develop a modified version of these algorithms that might be 
applicable to a wide range of problems and datasets. 

 

 
Figure 2: Comparison of known algorithms using the accuracy-fitness relationship 

1.5 Paper structure 

The remainder of the paper is organized as follows: 
Section 2 presents the proposed enhanced algorithm blend and Turing. Section 3 provides 

experimental results and discussion. Section 4 concludes the entire paper and provides future 
work. 

2. Enhanced algorithm blend and Turing 

The most recent developments in ML research have demonstrated a tremendous potential for 
parallel algorithm evaluation [21]. We make use of a research opportunity to advance the state of 
the art in machine learning, as we mentioned in earlier parts. The theorems, internal equations, 
and algorithms that collectively form the suggested model are presented in the following sections. 

2.1 Theory and mathematical model 

The constructs, theorems, and algorithms that form the foundation of the eABT model and 

framework are developed in this section. The eABT model is made up of three main parts: the 
logical table, the internals (three theorems), and the final framework.  

2.1.1 eABT-logical table 



This article does not cover all of the eABT Logical Table (LT)'s modular details; see the 
appendix for further information. We provide a succinct introduction to this eMLEE module's 
discussion on eABT. LT runs in memory and receives dynamic updates. It monitors the 
algorithms. As the ML process develops to get the ultimate optimum fitting after it has taken into 
account all of the algorithms from the pool, A(x, y, z) = {A1, A2, …, An}. This facilitates the best 
blending and tweaking. This logical table contains data based on three dimensions, where 'x' 
denotes over-fitness, 'y' denotes under-fitness, and 'z' denotes optimum fitness. 

2.1.2 eABT-internals 

It covers the matching factors that are given below: 
Theorem 1: Algorithm Pre-processing - (Algo.Eval ({A_({1,,,.n)}) 
Proof: There must exist a matching factor (M.F) for optimum fitness between two algorithms 

being evaluated, so let ∇d(A_1, A_2) be the Euclidean distance between two algorithms, such that 
Op.F{0:1} ≥ 0.5, as optimum Fitness scores and 0.2<err|Err{0:1} < 0.8, are bounds of LE (err) in GE 
(Err). Let S(x. y, z) determine the suitability scores for the fitness of the given algorithm in 3-D space, 
with the pointers being x = over-fitness, y = under-fitness, and z = optimum fitness. Let ψ(n) be the 
classifier function, that the model learns to be able to classify the optimum blend of algorithms for 
a given dataset and problem. 

Algorithm evaluation deals with applying various algorithms one by one to observe the 
outcomes (i.e. measures) and then prepare the model for risk estimation and algorithm blending. 
This construct also compares the two algorithms at the same time and then groups them based 
on Euclidean distance for similarity scores in terms of fitness. This sub-model finally produces 
the set of algorithms for the best fit for a given dataset. The end goal is to engineer the master 
function ψ(n). 

Let us define that standard distance function, 
 

𝛻𝑑(𝐴1, 𝐴2) =  √(∑(𝐻𝑖(𝑝𝑖) − (𝐻𝑖(𝑝𝑖))
2
)

𝑀

𝑖=1

) (1) 

 

Where S' is the strategy function for all dimensions, and p is the training problem set (dataset 
vector) in the distribution of time τ. (D, T) being the arguments for the distance function in ∅. 
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∅(𝐷, 𝑡) =  
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𝑡

(𝐷 + 1)
   𝑒 ∈ 𝑁,    𝑇̅  ≥ 𝑇  
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Let us assume a raw dataset to be DS(sig, noi), ‘sig’ shows the signal and ‘noi’ shows the noisy 
component of the dataset, and a class classifier function Ć, with loss function as L(x, y, z) | (0:1), 
for which we iterate in n-sample blocks such that Loss function remain in the defined boundary 
as estimated, for which the feature sets exist in Function 𝐹 = {𝑓1, 𝑓2, 𝑓3, …… . . , 𝑓𝑛} with optimum 
score > 0.5 as determined in the theorem. The classifier in the distribution D, for n blocks of data 
sample, for the upper bounds of the generalization error, is given by: 

 



  Ć(𝑥, 𝑦, 𝑧) = 𝐿(𝑥) ≤ 𝐿(𝑦) ≤ 𝐿(𝑧) + 
1

𝑛
 ∑(𝑈.𝐷𝑒𝑠 − 𝐿. 𝐷𝑒𝑠)𝑘
𝑛

𝑘=1
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− log (

𝑝
2
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2𝜑
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  (4) 

 

Where φ the pattern identified as signals (removing noises) with the probability of 1 – p. Here 
we construct a simple rule to estimate the loss function in signal data(S) and noisy data(N) that 
impacts the classifier design such that: 

 

𝐿(𝐷𝑆(𝑆(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧) = {
0, (𝑁(𝑥, 𝑦, 𝑧) ≥ 0.5 ≥ 𝑆(𝑥, 𝑦, 𝑧)) 

1, (𝑆(𝑥, 𝑦, 𝑧) ≥ 0.5 ≥ 𝑁(𝑥, 𝑦, 𝑧))
 (5) 

 

Thus, for each algorithm in the pool, the Optimum Fitness simply becomes: 
 

𝑂𝑝. 𝐹{0: 1} =   ‖(Ć(𝑥, 𝑦, 𝑧) −  𝐿(𝐷𝑆(𝑆(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧) ‖
2
× 𝑙𝑜𝑔

(𝑒𝑟𝑟)2

(𝑒𝑟𝑟 + 𝐸𝑟𝑟)
 (6) 

 

Table 1 
Quantized comparison of typical differences 

Op. F(x) Op. F(x, y) Op. F(x, y, z) 

0.00028723 0.00238712 0.03489120 
0.234356 0.93 0.87 
0.659023 +0.73 +0.78 

 

As stated earlier, our model is based on 3-D space for x, y, z dimensions that algorithm uses to 
optimize the fitness of the blend to the given data. It must be noted that such approach is taken 
so the model gets very generalizable by design for any given data with any type of features. Thus, 
we manipulate matrix (real-valued) space to engineer the blend, thus, using Frobenius norm 
form: 

 

‖𝑀‖(𝑥, 𝑦, 𝑧) =  √∑∑∑𝑀𝑥,𝑦,𝑧
2

𝑍

𝑧=1

𝑌

𝑦=1

𝑋

𝑥=1

 (7) 

 

The matrix manipulation for each dimension to evaluate the blend can be built as: 
 

𝜓(𝑛) =  𝐸𝑥𝑡𝑟𝑎𝑐𝑡
(𝑥,𝑦,𝑧 ∈𝑍)

( ‖𝑀‖(𝑥, 𝑦, 𝑧) ) + log∑ 𝛾𝑧+1
𝑍

𝑘=1
 . 𝑂𝑝. 𝐹{0: 1} (8) 

 

The illustration in Fig. 3 supports the mechanics of the theorem stated above. As we observe 
the visualization of three functions, err|Err, Op.F and Cost (C) being rotated based on distance 
function, as shown . Thus, Blender Filter Switch (logical) connect the value to the Suitability and 
Evaluation Score 3-D logical construct. The value of ψ(n) in each dimension swing between 0 and 
1, based on Op.F response from Tuning Synthesizer block. 
 



 
Figure 3: Illustration of Internals of the eABT (Theorem 1 - Algorithm Pre-processing) 

 

Theorem 2: Risk Estimation, Local Errors, and Metrics Evaluation – 𝐴𝑙𝑔𝑜. 𝑅𝑖𝑠𝑘𝑒𝑚𝑝[𝑓] 

AGE(Err) is in bound of all LE err(n), for which each occurrence of the error at any point in x and 
y space, exists inside all theoretical values of Err, such that 𝑒𝑟𝑟(𝐴) ∈ 𝐸𝑟𝑟(𝐴 + 1), 𝑤ℎ𝑒𝑟𝑒 0.8 < 𝑒 <
0.2. Let there be a maximum risk function (Φ) with mean square error as MSE on the set of features 
as 𝐹 =  {𝑓1, 𝑓2, 𝑓3, . . . . . . , 𝑓𝑛},  and unknown means as {𝑚1,𝑚2,𝑚3, . . . . . . , 𝑚𝑛}. 

 
Construction – We implement the maximum and minimum error bounds logical limit to ensure 

the optimum fitness (i.e. avoiding overfitting and underfitting) in-terms of the errors to be 
controlled by upper and lower bounds. We first force error to be at low threshold and then to be 
high threshold. Once the algorithm has learned the max(e:0.8) and min(e:0.2) bounds, it then 
learns to stay in between, and accuracy is maintained. 

 

𝑚𝑎𝑥(𝑒: 0.8)  =  
1

𝐸
 ∑{(

𝑁𝑒

𝑖=1

𝑅𝑀𝑆𝐸𝑖)  − (100 +  0.2)/𝐸} 

 

(9) 

𝑚𝑖𝑛(𝑒: 0.2)  =  
1

𝐸
 ∑{(

𝑁𝑒

𝑖=1

𝑅𝑀𝑆𝐸𝑖)  − (100 +  0.8)/𝐸} (10) 

 

Let us define our optimum error (dynamically governed by algorithm tuning and blending 
process), as 

 

𝐸𝑜𝑝𝑡  (𝑚𝑎𝑥,𝑚𝑖𝑛 |𝑒(𝑥,𝑦,𝑧)  =  (
∫𝜕(𝑥, 𝑦, 𝑧)

(1 − 𝐸)
) × ∑(max(𝑒)𝑗  −  min(𝑒)𝑗)

𝑁𝑡

𝑗 = 1

 ∗  𝑔. 𝑓 (11) 

 

𝑔. 𝑓 is the error gain factor and is produced by eABT algorithm. The errors produced by each 
algorithm, tend to increase when they are blended with each other, and errors of local and global 
functions must stay in the limit defined. For general Machine Learning modeling, there are two 
categories of errors, i) Estimation and ii) Approximation. Collectively, we can call it generalization 
error, in which our goal becomes a search for a special function 𝑓′(𝑥, 𝑦), that tends to minimize 
the risk of learning in the target space (i.e. X, Y, Z), shown as: 

 

𝑅𝑖𝑠𝑘[𝑓′]𝑥,𝑦,𝑧  =  ∫ 𝐿 (𝑦,   𝑓′(𝑥, 𝑦)) 𝑃(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
𝑋 × 𝑌 × 𝑍

 (12) 
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Figure 4: Illustration of minimum and maximum error bounds for risk estimation global function 

 

Fig. 4 shows the concept of correlation of error bounds and risk function. As we propose the 
novel idea of limiting the error between 20% to 80 % for optimum realistic fitness for the real-
world prediction, it shows that the Risk Estimation (emp) stays in bounds of logical cube shown 
on the right. The center point shows the ideal co-variance of function ɀ. Thus, 𝑃(𝑥, 𝑦, 𝑧) will be 
unknown at this stage. We will have to approximate based on well-known mathematical and 
statistical learning theory, known as ‘empirical risk minimization principle’: 

 

𝑅𝑖𝑠𝑘𝑒𝑚𝑝[𝑓′]  =  
1

𝑚
 ∑𝐿 ( 𝑦𝑖
𝑚

𝑖=1

 , 𝑓′ (𝑥𝑖)) (13) 

 
Here, we need to satisfy two conditions, as  
i) lim
𝑚 →∞

𝑅𝑖𝑠𝑘𝑒𝑚𝑝[𝑓′]  = 𝑅𝑖𝑠𝑘[𝑓′]𝑥,𝑦,𝑧 and  

ii) 𝑙𝑖𝑚
𝑚 →∞

 𝑚𝑖𝑛
𝑓 ∈ 𝐻

𝑅𝑖𝑠𝑘𝑒𝑚𝑝[𝑓′]  = 𝑚𝑖𝑛
𝑓 ∈ 𝐻

 𝑅𝑖𝑠𝑘[𝑓]𝑥,𝑦,𝑧.  

These two conditions will be valid when 𝐻 is relatively small. The second condition requires 
minimal should converge and thus we can construct the following bound, that is being held valid 
with probability of 1 – 𝛿 is 𝑅[𝑓]  ≤  𝑅𝑖𝑠𝑘𝑒𝑚𝑝[𝑓′]   + ɀ , where ɀ  is given by: 

 

ɀ  =  √(
ℎ 𝑙𝑛 (

2𝑚
ℎ
 +  1)  − 𝑙𝑛 (

𝛿
4)

𝑚
) (14) 

 

The sub-estimator function is 𝑚𝑘̂ = 𝑐(𝐹𝑘 , 𝜗), where ϑ is positive regularization parameters 
and it is observed that c(f, 0) = F such that, 𝜗 =  0  | 𝑚𝑖̂ = 𝐹𝑘. We deduce that 𝜗 =  ∞, corresponds 
to maximal shrinking, that is {𝑚𝑘̂ = 0, 𝑓𝑜𝑟 𝑘 = 1, , , , , , 𝑛}. Here, we can apply Cross validation 
techniques (CV) and Stein’s unbiased risk estimate (SURE), where popular estimators are (ridge), 
(lasso) and (pretest). For Loss and risk estimation, we utilize the foundation of squared error loss 
function, also known as compound loss, 

 

𝐿𝑜𝑠𝑠𝑛(𝐹, 𝑐(𝑘, 𝜗), 𝐷) =  
1

𝑛
 ∑(𝑐(𝐹𝑘 , 𝜗 )  − 𝑚𝑘)

2

𝑛

𝑘=1

 (15) 

 

Where 𝐷 = {𝑑1, 𝑑2, ……… , 𝑑𝑛} shows the distribution of Features F{x, y, z}. It should be 
observed that Loss is highly dependent on ‘D’ through value of ‘m’. Finally, we can construct the 
regularization parameter for which the algorithm blend will fit the model to maximum relevance, 
such that:          𝜗(𝐷) =  max

𝜗 ∈[0,∞)
𝐵 (𝑐(., 𝜗), 𝜋), thus: 

 



𝐴𝑙𝑔𝑜. 𝑅𝑖𝑠𝑘𝑒𝑚𝑝[𝑓] =  𝑅𝑖𝑠𝑘[𝑓′]𝑥,𝑦,𝑧  × ∏ ɀ𝑛
𝐸𝐷𝐺𝐸(𝐿𝑜𝑠𝑠𝑛)

 (16) 

 

 
 

Figure 5: Illustration of risk estimation function in 3-d space for in-bound LE and GE 

3. Experimental results 

This section presents various experimental results with necessary discussion and information. 
Each figure is accompanied with detailed information and comments to elaborate on the 
experimental analysis of the proposed model. 

3.1 Datasets and tools 

The data from the many domains listed below have all been used. Some datasets come in raw, 
CSV, and SQL light formats and include field descriptions and parameters. To put all of our input 
data into the SQL Server data warehouse, we converted it. Some datasets have been discovered 
to be perfect for making predictions about the stock market, epidemics, and criminal control. 

• Iris species, Credit Card Fraud Detection, http://www.Kaggle.com Flight Delays and 
Cancellations in 2022, Human Resource Analytics, daily stock market predictions news 1.88 
million US wildfires, a dataset of SMS spam, a classification of Twitter users' genders, Retail 
Data Analytics, Wisconsin Brest Cancer Data Set College Scoreboard, US Department of 
Education US Mass Shootings, Adult Census Income, Fatal Police Shootings, Exercise Pattern 
Prediction, Death in the United States, Data from Netflix Prize Diabetes Database for Pima 
Indians, WUZZUF Job Listings, Student Survey, FiveThirtyEight, S&P 600 Stock Data Zika virus 
outbreak, alcohol consumption among students statistics on education, Center for Storm 
Prediction; 
• http://snap.standford.edu – Facebook, Twitter, Wiki and bitcoin data set; 
• Social networking APIs; 
• https://www.reddit.com/r/bigquery/wiki/das; 
• https://docs.microsoft.com/en-us/azure/sql-database/sql-database-public-data-sets; 
• https://docs.google.com/forms/d/1l57Un32YH6SkltntirUeLVpgfn33BfJuFLcYupg43oE/
viewform?edit_requested=true - online questionnaire from students across 12 campuses in 
the world; 
• http://archive.ics.uci.edu/ml/index.php - Iris, Car Evaluation, Heart disease data set, 
Bank Marketing Data; 
• https://aws.amazon.com/datasets/ - Enron Email Data, Japan Census data, 1000 
Genomics Project; 
• https://cloud.google.com/bigquery/public-data/ - We are experimenting it using 
BigQuery in our Sandbox environment and will publish results in the future. 
 

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-public-data-sets


(a) 
(b) 

(c) 

(f) (e) 
(d) 

Figure 6: The significant dispersion of all fitness functions is demonstrated in (a). (b) indicates 
that the identification process has started, and (c) indicates that the variables that contribute to 
over fitting are being eliminated. (d) Demonstrates that the data points are streaming as 
anticipated, and (e) depicts an enhanced version of (d). (f) In the end, it is seen that the x, y 
dimensions have shrunk, and the data has been filtered to fall inside the ideal fitness range using 
the improved and optimized eMLEE algorithm/model. 

 

Our data warehouse uses Microsoft SQL Server (Business Intelligence, SQL Server Analysis 
Services, and Data Mining). Work is done initially using Microsoft Azure ML tools. The suggested 
model's fundamental construction and supporting algorithms are carried out in the programming 
languages C#, Python, and R. Useful Python libraries like Pandas, Numpy, SciPy, Matplotlib, scikit-
learn, Statsmodels, ScientificPython, Fuel, SKdata, Fuel, MILK, etc. have been used. Also used were 
gbm, KlaR, tree, RWeka, ipred, CORELearn, MICE Package, rpart, PARTY, CARET, and 
randomForest packages for the R programming language. The simulation produces results using 
the GraphPad Prism. 

  

Figure 7 (a): shows the spread of Gain Function 
for about 200-10 experimental run. This result 
of the output shows that algorithm blend 
function was randomly distributed in all axis. 
This further shows that GG was extremely low, 
and fitness of the model was very poor 

Figure 7 (b): shows the evolution of tuning 
process. As it is observed that x, and y 
dimension are fading out and z is out-
running the fitness constraints. However, 
the yellow color in z-axis shows the error 
above 80 % that is still not acceptable for 
model application 

  



  
Figure 7 (c): shows the progress of the blending 
and tuning function with error being reduced 

 

Figure 7 (d): finally shows the error in 
bounds of (20-80 %) rule and z-dimension 
has finally been optimized, as defined in the 
model and algorithm. The value of 1.0 as 
shown are optimistic values, the realistic 
values are observed be-tween 0.6 and 0.85 
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Figure 8 (a): It shows the random distribution 
generation of local and global complex error 
function 

 

Figure 8 (b): This shows the improved 
separation of both function at stage 2 of 
model classifier definition as discussed in 
the algorithms earlier in section 3 
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Figure 8 (c): This shows that model is learning 
(self-teaching) the separation of LE and GE over 
time 

 

Figure 8 (d): This finally shows the 
optimum separation of both functions. It 
must be noted that both function over-laps 
since one is local and one is global 

 



As described in section 2 earlier in this article, the y-axis displays the percentage from 0 to 100 
and the x-axis displays the 200 experimental runs for various random data sets and algorithm 
blends. This helps the model be more universal for a very large set of data and features. The GE 
function is denoted by a circle, and the LE function is denoted by a square. It should be 
emphasized that these results come after accuracy measurements for the model after thousands 
of iterations. The y-axis shows the % from 0 to 100 and x-axis shows the 200-experimental run 
for various random data set and algorithm blend to improve the generalization of the model for 
a very vast set of data and features, as discussed in section 2 earlier in this article. Circle indicate 
the GE function and square indicates the LE function. It must be noted that these findings follow 
accuracy measurement for the model as optimum fit for several thousand iterations. 

4. Conclusion 

The suggested model's most recent developments, including its framework, algorithms, and 
mathematical components, are reported in this study. The following foundational elements have 
been used to produce an improved machine learning methodology: the development of a 
combination of algorithms based on parallel tuning of the model and the classifiers to enhance 
metrics, the implementation of a selected set of supervised learning (SL) algorithms on the 
experimental dataset, and the recording of the measured metrics in a logical table construct. 
Creating a logical 3-D cube that controls the algorithms to ensure the best fitness for the blend 
being engineered, c) developing the final model so it can learn from its errors (wrong predictions) 
and teach itself to choose the correct algorithm and eliminate the incorrect one during the 
training process, d) engineering the blend being engineered to have the best fitness possible, e) 
and finally, validating the suggested model, which includes sub-algorithms for a variety of real-
world data sets for predictive and prescriptive analytics. The blend was seen during several 
hundred studies, according to this article. To fine-tune the model and generate simulated 
outcomes for the study, we divided the results based on a 10, 20, and 30-experimental method. 
In 3D space, the LG and GG functions were developed and optimized. The parallel tuning and 
blending approach described in this paper has better outcomes and has the ability to generalize 
to a different collection of data and challenges, it was discovered. We will test new algorithms, 
particularly in the areas of unsupervised learning. Predicting Educational Relevance For an 
Efficient Classification of Talent (PERFECT) algorithm Engine (PAE) is a model that we are 
creating and refining. Three algorithms – Noise Removal and Structured Data Detection (NR-
SDD), Good Fit Student (GFS), and Good Fit Job Candidate (GFC) – are included in PAE, which is 
based on eMLEE. We will try to apply the most recent iteration of the eABT (i.e., eMLEE) model 
to research, analyze, and validate additional improvements. 
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