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Abstract  
This paper introduces an algorithm developed for the intelligent control of a swarm of reconnaissance 
robots tasked with terrain monitoring. At its core, the algorithm harnesses fuzzy logic to significantly 
enhance decision-making in terms of optimal direction selection and velocity adjustments. These 
features are vital for the effective exploration and monitoring of diverse terrains. The algorithm is 
designed to achieve several key objectives: maintaining a specific formation, avoiding obstacles with 
precision, and optimizing power usage for extended operations. A distinctive aspect of this approach is 
the incorporation of a leader-follower dynamic, directed by a virtual leader, which allows for adaptable 
and cohesive movement coordination within the swarm. Moreover, the algorithm integrates strategies 
for energy conservation, including the selective deactivation of Lidars, thus striking a balance between 
efficient obstacle detection and power management. This innovative algorithm stands as a significant 
advancement in the realm of reconnaissance robotics, showcasing the transformative impact of fuzzy 
logic in refining movement coordination and enhancing the operational efficiency of robots engaged in 
terrain monitoring tasks. 
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1. Introduction 

The advancement of robotics has been pivotal in revolutionizing both industrial processes [1] 
and day-to-day activities [2], penetrating areas where human involvement is difficult or 
impracticable, such as combat [4], deep-sea [5], and space exploration [6]. 

Throughout its evolution, robotics has seen an array of methodologies aimed at augmenting 
the efficacy of robots. For instance, work [7] has developed optimal control models for 
automobile transport, while others have considered the challenges of IoT communications in 5G 
networks [8]. With the dawn of new 6G/IoE technology [9] and the proposal of lightweight 
cryptography systems for IoT devices using DNA [10], the field continues to expand. Additionally, 
the exploration into the advantages and limitations of educational portals with blockchain 
technology elements in higher education institutions has been noted [11].  

Group robotics, where multiple robots are deployed for intricate tasks, stands out in this 
landscape. This approach has been a central focus of research for a considerable time, allowing 
multiple simple robots to solve a single complex problem. 

Swarm robotics, a subset of group robotics, which emerged approximately three decades ago 
[12], has garnered considerable focus. This paradigm, inspired by the behavior of social creatures 
like ants [13] and bees [14], encompasses not only conventional-sized robots but also more 
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innovative domains like nanorobots, which are on par with molecular dimensions [15], and aerial 
entities like drones [16]. 

A primary challenge within swarm robotics lies in developing algorithms that permit 
autonomous robots to collaborate efficiently. This entails overcoming hurdles like collision 
avoidance, with extensive research dedicated to addressing these challenges [17, 18]. 

Incorporating fuzzy logic into robotics, especially within the swarm robotics context, offers a 
promising avenue forward [19]. Fuzzy logic's ability to process ambiguous and uncertain data 
makes it apt for intricate decision-making scenarios in robotics, facilitating more intuitive 
reasoning in unpredictable environments. Moreover, formation control stands as an area where 
fuzzy logic can be pivotal, aiming at directing a group of robots to adopt specific patterns and 
move cohesively. 

Furthermore, energy conservation is paramount in robotic swarms, especially during 
prolonged terrain monitoring missions [20]. The algorithm proposed in this paper acknowledges 
this need, meticulously modulating the power consumption of individual robots, thereby 
enhancing their operational longevity and efficiency. 

Conclusively, this paper introduces an innovative algorithm for the coordinated movement of 
reconnaissance robots for terrain monitoring tasks. Grounded in the principles of fuzzy logic and 
energy efficiency, this algorithm signifies a marked advancement in the domain of swarm 
robotics, enriching the broader discourse on the integration of fuzzy logic and energy-saving 
measures in robotics, underscoring their value in refining algorithm development and control 
strategies for complex, real-world endeavours. 

2. Problem formulation and background 

In the realm of autonomous robotics, one significant challenge is developing an intelligent control 
system for a swarm of reconnaissance robots designated for terrain monitoring tasks. This 
complex problem encompasses several key aspects that are crucial for the successful deployment 
and operation of the robotic swarm. 

The foremost issue is the coordination and control of multiple autonomous agents. Each robot 
within the swarm possesses unique capabilities and operates under specific constraints. The 
control mechanism needs to ensure that all robots function cohesively, understanding their 
individual roles and responding appropriately to environmental stimuli and the actions of their 
peers. 

Additionally, the swarm must navigate through diverse terrains while maintaining a specified 
formation. This formation is critical for maximizing coverage and data collection efficiency. 
Maintaining formation isn't just about geometric positioning; it also involves dynamic 
adjustments in response to environmental changes and unforeseen obstacles. 

Obstacle avoidance is another significant aspect of this problem. The robots must be able to 
identify obstacles in their path and adjust their movements accordingly, without compromising 
the mission objectives or the formation integrity. This requires sophisticated sensing and 
decision-making capabilities embedded within each unit of the swarm. 

Energy conservation is a crucial factor in the design of the control system. Operating a swarm 
of robots can be energy-intensive, especially when considering the power needed for movement, 
sensing, and communication. An intelligent control system must optimize energy usage, ensuring 
the longevity of the mission and minimizing the frequency of recharging or refuelling intervals. 

Finally, the system must be capable of handling real-time data processing and decision-
making. With the swarm being deployed in dynamic environments, the control mechanism needs 
to rapidly process sensory data, make informed decisions, and adjust the behaviour of the robots 
accordingly. This requires a robust and flexible algorithm capable of adapting to changing 
conditions and optimizing the swarm’s performance. 

In conclusion, the control of a swarm of reconnaissance robots for terrain monitoring involves 
addressing challenges in coordination, formation maintenance, obstacle avoidance, energy 
conservation, and real-time decision-making. The solution to this problem would significantly 



enhance the capabilities and efficiency of robotic swarms in various monitoring and exploration 
applications. 

2.1. Efficient power management through selective rangefinder activation 

Contemporary rangefinders have the capability to identify obstacles from extensive distances, 
with some able to detect objects many times the swarm's overall size. Despite their impressive 
range, these devices consume substantial amounts of power, posing a challenge for prolonged 
missions. 

To mitigate this challenge and conserve energy, an approach is proposed where robots 
intermittently switch off their rangefinders and instead rely on the spatial orientation and 
movements of their adjacent peers. Robots situated centrally or towards the back of the group, 
for example, can effectively navigate by mirroring the actions of those leading the formation. 

The approach described in this paper integrates this concept of intermittent rangefinder 
activation. Rangefinders are activated selectively, predominantly by the robots in front or in 
situations necessitating acute obstacle detection. This judicious use of rangefinders plays a 
pivotal role in reducing energy consumption, thereby boosting the endurance and operational 
effectiveness of the swarm. 

2.2. Leader-follower approach 

The essence of the leader-follower model hinges on the followers consistently maintaining a 
predetermined distance from the leader. In this context, both the leader and the followers are 
conceptualized as points on a plane, and their respective positions enable the calculation of the 
distance between them. This measured distance becomes the targeted spacing that the followers 
aim to uphold (Figure 1). 

 

  
Figure 1: Leader-follower approach 

 
However, designating a physical robot as the leader introduces a potential vulnerability. If the 

leader encounters any malfunction, it could jeopardize the functionality of the entire swarm. To 
circumvent this issue, the concept of a virtual leader is introduced. Unlike a physical leader, the 
virtual leader's position is typically centralized within the swarm, providing a reference point for 
the followers. This virtual leader strategy enhances the resilience of the swarm by eliminating 
dependence on a single, potentially fallible, physical leader. It ensures continuity of operation 
even in the face of individual robot failures, thereby bolstering the stability and robustness of the 
swarm's coordinated movements. 

2.3. Integration of Fuzzy Logic for Enhanced Decision Making  



Fuzzy logic plays a pivotal role in refining the decision-making process within the swarm. By 
incorporating fuzzy logic systems, the swarm's response to environmental variables and internal 
parameters is significantly enhanced. This logic system operates on the principle of degrees of 
truth rather than the conventional binary true or false. This nuanced approach allows for more 
flexible and adaptive responses to a variety of situations. 

In the context of swarm robotics, fuzzy logic is utilized to determine the optimal direction and 
velocity for the robots. This involves processing a multitude of inputs such as proximity to 
obstacles, alignment with the virtual leader, and the positions of neighbouring robots. The fuzzy 
logic system interprets these inputs, which often contain uncertainties and imprecisions, and 
computes the most suitable course of action. 

This approach is particularly beneficial in terrain monitoring tasks, where the environment 
can be unpredictable and full of uncertainties. The fuzzy logic system enables the swarm to 
navigate effectively through such terrains by making real-time adjustments based on the sensory 
data it receives. 

Moreover, the adoption of fuzzy logic contributes to the overall efficiency of the swarm. It 
allows for smoother coordination and movement, reducing the likelihood of abrupt or erratic 
manoeuvres that could disrupt the formation or lead to increased energy consumption. By 
ensuring more consistent and harmonious movements within the swarm, fuzzy logic not only 
enhances operational effectiveness but also contributes to energy conservation. 

3. Design of algorithm 

The algorithm initiates with the swarm embarking towards the predetermined goal. Within the 
swarm, the robots perpetually adjust their velocity at regular intervals. The motion's velocity 
vector can be conceptualized as a pair (v, w), where 'v' signifies the linear velocity, measured in 
meters per second, and 'w' denotes the rotation angle. 

As per the algorithm outlined in this paper, the linear velocity remains constant throughout; 
it's the direction that undergoes alterations. The initial step involves calculating the virtual 
leader's position using specific formulas. Subsequently, based on the motion's direction, the 
robots equipped with active lidars, termed as observers, are identified. All other robots in the 
swarm deactivate their lidars to optimize power consumption. Typically, activating the lidars of 
only three observer robots suffices the central leading robot, identified as the middle observer, 
and two flank robots, labelled as the left and right observers. When altering direction, the 
rangefinders on the left and right are slightly angled to prevent encountering obstacles. The 
selection of these observer robots is contingent on the swarm's directional orientation. 

To calculate the angular velocity, Fuzzy Logic is employed. This method assesses the proximity 
to any detected obstacle by the operational rangefinders and the target's location. The 
incorporation of Fuzzy Logic facilitates a more nuanced and adaptable calculation of angular 
velocity, enabling the swarm to respond dynamically to varying environmental conditions. 

This section delves into a detailed explanation of each step within the algorithm. 

3.1. Determination of the virtual leader’s position and observer identification 

The virtual leader's coordinates are determined by the arithmetic mean of the group robots' 
coordinates. By recentering the coordinate system to the virtual leader's position and rotating 
the X-axis towards the swarm's direction, the identification of observer robots becomes 
straightforward. 

This new coordinate system is depicted in Figure 2, where (xi, yi) represents the ith robot's 
position, (xL, yL) indicates the virtual leader's position, w is the moving direction, and (x'i, y'i) are 
the ith robot's coordinates in the adjusted system. 



  
Figure 2: Switching coordination 

 
As an illustrative example, Fig. 4 demonstrates the process of observer definition. The central 

rangefinder is activated on the robot that is foremost in the motion direction. In other words, the 
average observer is the robot with the maximum x' value in the new coordinate system. 

The identification of the left and right observers follows a similar rationale. These robots are 
selected based on their maximum distance from the middle, i.e., from the x-axis. The robot with 
the highest y' value activates the rangefinder on the left, while the robot with the lowest y' value 
activates the rangefinder on the right. 

   
Figure 3: Selecting observers. Virtual leader is shown as blue and observers are shown as purple 

3.2. Calculation of the angular velocity using fuzzy logic 

The determination of angular velocity in the swarm of autonomous robots employs a 
sophisticated fuzzy logic system. This system takes into account various inputs to ascertain the 
optimal angular velocity for the swarm.  

The inputs and the output are represented using membership functions, which define the 
degree to which a particular input or output belongs to a fuzzy set. Inputs to the Fuzzy Logic 
Controller are:  

• Range of Lidars: The ranges detected by the lidars of the three observers are crucial 
inputs. These ranges are categorized as close, far, or not detected. 
• Current Angular Velocity: The present state of angular velocity is also an input, which is 
classified into categories like sharp left, left, straight, right, or sharp right. 



• Goal Position Relative to Current Velocity: The relative positioning of the goal with 
respect to the current velocity of the swarm is another significant input. This position could 
be to the left, directly in front, or to the right of the swarm. 
The system uses a set of fuzzy rules that map the inputs to an output. These rules are formed 

based on expert knowledge and the specific dynamics of the swarm. 
The output from this fuzzy logic system is a suggested adjustment to the angular velocity. This 

suggested adjustment is a fuzzy set comprising potential adjustments such as turning left (an 
adjustment of minus 15 degrees), maintaining the current direction (an adjustment of 0 degrees), 
or turning right (an adjustment of plus 15 degrees). 

To convert the fuzzy output into a precise angular velocity adjustment, the centroid 
defuzzification process is employed. The centroid defuzzification is determined using the 
equation: 

 

𝑉𝑎𝑑𝑗𝑢𝑠𝑡 =
∑𝑉𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝜇(𝑉𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦)

∑ 𝜇(𝑉𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦)
 (1) 

 
Where 𝑉𝑎𝑑𝑗𝑢𝑠𝑡 represents the angular velocity adjustment calculated by the defuzzification 

process, 𝑉𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 denotes the possible angular velocity adjustments, namely minus 15, 0, and 

plus 15 degrees, 𝜇(𝑉𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦) signifies the membership degree for each potential adjustment in 

the fuzzy output set. 
In this equation, each potential angular velocity adjustment is multiplied by its corresponding 

membership degree in the fuzzy output set. This product is then summed and divided by the sum 
of all the membership degrees, resulting in the weighted average that gives the precise 
adjustment to be made to the angular velocity. 

The value 𝑉𝑎𝑑𝑗𝑢𝑠𝑡 , obtained from the centroid defuzzification process, is added to the current 

angular velocity (𝑉𝑜𝑙𝑑) of the swarm. This ensures coordinated and efficient movement, as the 
adjustment is based on a thorough analysis of the current conditions and objectives of the swarm, 
encompassing the intricate dynamics of motion and obstacle avoidance. 

 
𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 + 𝑉𝑎𝑑𝑗𝑢𝑠𝑡 (2) 

 
Where 𝑉𝑛𝑒𝑤 represents the new angular velocity to be applied uniformly across all members of 
the swarm. 

4. Experiments  

In order to validate the effectiveness of the proposed algorithm, an experimental study was 
conducted using a custom-built simulator. This simulator was designed using the Python 
programming language and augmented with functionalities from the Pygame module. The 
objective of these experiments was to closely monitor the behaviour of the swarm under various 
conditions and to evaluate the performance of the developed algorithm in a controlled 
environment. 

The experimental setup is visualized in Figure 4, which captures the initial state of the 
simulation. This representation includes. 

• Robots: Nine autonomous robots are depicted as green circles, positioned to commence 
their navigational task. 
• Virtual Leader: The pivotal component of the swarm, the virtual leader, is represented by 
a blue star, guiding the collective movement of the robots. 
• Obstacles: To assess the obstacle avoidance capability of the algorithm, four obstacles are 
introduced in the simulation environment, depicted as black rectangles. 
Goal Position: The target destination for the swarm is indicated by a red circle, serving as the 

focal point for the swarm's movement. 



   
Figure 4: Initial state 

 
In this simulation, the lidars' range was standardized at 20 units. To comprehensively assess 

the algorithm's performance, the linear velocity of the robots was varied between 0 and 10, with 
incremental steps of 0.1. This allowed for a detailed examination of the algorithm's response to 
different speeds. 

The number of steps taken by the swarm to reach the goal side was meticulously recorded. 
The variations in this metric over different velocities are illustrated in Figure 5. 

. 

   
Figure 5: Steps of reaching goal position 

 



A vital aspect of the algorithm's success is its ability to prevent collisions. Therefore, the count 
of robots that collided during the navigation process was carefully observed. The trend in 
collision occurrences across different velocities is depicted in Figure 6. 

. 

   
Figure 6: Count of crashed agents 

 
Through these experiments, the research aimed to not only validate the algorithm's ability to 

guide the swarm to the target but also to ensure safe passage by effectively avoiding obstacles 
and preventing collisions among the robots. The results and discussions derived from these 
experiments are expected to provide valuable insights into the strengths and potential areas for 
improvement in the developed algorithm.  

5. Discussion 

In this section, we examine the emergent behaviors of the agents in relation to their velocity 
parameters, using a series of illustrative figures that map their trajectories. The observed 
patterns provide insights into the optimization strategies that the algorithm adopts under 
different scenarios, highlighting both its strengths and potential limitations. 

Figure 5 offers a foundational perspective, showcasing the trajectories at a basic operational 
level. Here, the agents navigate through the environment by identifying and avoiding obstacles. 
The plotted paths indicate that the algorithm prioritizes safety and precision, a fundamental 
requirement for any navigational system. 

Progressing to Figure 6, when multiple agents are introduced to the environment, the 
dynamics change noticeably. The trajectories shed light on how individual agents navigate 
collectively, emphasizing the algorithm's effectiveness in managing multiple entities safely. 

Figure 7, with a velocity parameter of v=1.0, presents trajectories that are straightforward. 
Agents are consistent in their approach, even at this basic speed. The overall behavior suggests 
that even at modest speeds, the algorithm is adept at ensuring efficient and safe navigation. 



   
Figure 7: Trajectory of the agents when linear velocity is 1.0 

 
The plot thickens with Figure 8, set at v=8.5. Interestingly, while agents at other velocities, 

ranging from 0.1 to 2.4, typically navigate through the midst of obstacles, at this particular 
velocity, they seem to find a unique path that skirts the obstacles. This deviation from the norm 
is striking and suggests that at specific velocities, the agents might discover unconventional yet 
effective paths. It's a testament to the algorithm's ability to adapt and optimize based on varying 
parameters. 

 

   
Figure 8: Trajectory of the agents when linear velocity is 8.5 

 
In Figure 9, operating at v=1.4, the agents exhibit a notable shift in behavior. Contrary to their 

behavior at other velocities, they manage to navigate around the periphery of the obstacles, 
effectively finding a way out. This particular behavior underscores the algorithm's flexibility, 



indicating that there might exist sweet spots in velocity parameters where agents can unlock 
more efficient paths. 

   
Figure 9: Trajectory of the agents when linear velocity is 1.4 

 
However, Figure 10 introduces a challenge. At v=2.0, for the first time, agents start to crash. 

This observation is pivotal. It denotes that there's a threshold velocity, somewhere close to v=2.0, 
beyond which the agents' safety mechanisms are compromised, leading to collisions. This insight 
is crucial for setting operational boundaries for the algorithm in practical applications.  

 

   
Figure 10: Trajectory of the agents when linear velocity is 2.0 

 



In summary, the varying trajectories across different velocities emphasize the nuanced and 
adaptive nature of the algorithm. While it excels under certain conditions, finding innovative 
paths like in Figures 8 and 9, it also has its limitations, as seen in Figure 10. This analysis serves 
as a roadmap for future improvements, guiding efforts to refine and bolster the algorithm's 
robustness and efficiency. 

6. Conclusion 

In the realm of robotics, where adaptability and efficiency form the cornerstone of successful 
deployments, the algorithm presented in this paper stands as a significant milestone. Leveraging 
the robust capabilities of fuzzy logic, we have showcased a methodological framework for the 
proficient management of reconnaissance robot swarms engaged in terrain monitoring. 

Our algorithm, unique in its design and functionality, excels in maintaining desired formations, 
skillfully avoiding obstacles, and optimizing power consumption. These accomplishments are 
paramount, particularly in dynamic terrains where swift adaptability is a necessity. The 
incorporation of a leader-follower dynamic, underpinned by a virtual leader, ensures seamless 
and adaptable coordination within the swarm, lending credence to the algorithm's robustness. 

Furthermore, our innovative approach to energy conservation, through measures like 
selective Lidar deactivation, paves the way for longer, more efficient missions. Such energy-
saving initiatives not only extend the operational duration of the swarm but also set a precedent 
for future robotic endeavours where resource management is paramount. 

The comprehensive experiments, insightful discussions, and the results delineated in the 
paper unequivocally underscore the transformative potential of our algorithm. Through this 
study, we have illuminated the myriad possibilities that lie at the confluence of fuzzy logic and 
robotics. 

In summary, the innovative algorithm detailed herein marks a pivotal progression in 
reconnaissance robotics. It sets forth a vision for the future where robotic swarms, armed with 
advanced algorithms, venture into terrains with unmatched efficiency, precision, and intelligence, 
pushing the boundaries of what is possible in the realm of robotic exploration. 
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