
Using Fully Homomorphic Encryption in IoT 

Zhanerke E. Temirbekova1,2, Gulzat Turken1 and Manuel M. Barata3
 

1Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty, A15E3B9, Kazakhstan 
2International Information Technology University, Manas St. 34/1, Almaty, A15M0F0, Kazakhstan  
3Instituto Superior de Engenharia de Lisboa, Lizbon, Portugal 

Abstract  
to protect the confidentiality of basic data. Recent advances in homomorphic encryption have made it 
possible to protect confidential and personal data in Internet of Things applications using schemes 
based on homomorphic encryption. However, being relatively young in this field of cryptography, 
standards and guidelines for the use of fully homomorphic encryption schemes are still evolving. The 
article analyzes the existing libraries in the field of homomorphic encryption. As a result of the analysis, 
the necessity of carrying out the operation of homomorphic encryption and division, as well as the 
relevance of developing the implementation of the library of homomorphic encryption of integers, is 
revealed. The method of homomorphic division is proposed, which allows performing the operation of 
separating homomorphic encrypted data. To ensure the secure storage and exchange of data between 
IoT constructs, a complete homomorphic encryption libraries architecture has been created and 
implemented, allowing all arithmetic operations to be performed on the data encrypted in various 
AtmelAVR microcontrollers. 

Keywords  1 
IoT system, homomorphic encryption, microcontroller, library, security 

1. Introduction 

IoT (Internet of things) devices are widely used in all sectors, from the health sector to 
manufacturing [1]. The main purpose of IoT technologies is to allow internet – connected devices 
to communicate with each other, exchange data, store data and perform calculations according to 
user requirements. 

Although IoT devices are projected to reach 83 billion by 2024, the security of these devices is 
a major concern, with the risk of any IoT-enabled device stealing the functionality, as well as user 
data, if appropriate security measures are not taken [2]. According to a 2022 report by Palo Alto 
Networks [3], 98% of all IoT device traffic is unencrypted, indicating that personal and 
confidential data on the network is not stored in secret, and allows attackers to spy on 
unencrypted network traffic, collect personal or confidential information, and then use that data 
by the attacker for their personal purposes. According to SAM Seamless Network, more than 1.5 
billion IoT devices were attacked in 2021, including about 900 million phishing attacks [4]. 
IoT devices are not by themselves an analogue of computers, they cannot perform any resource-
intensive task from start to finish, they perform only some part of it, and the rest of the parts are 
completed by other IoT devices [5]. IoT work in a specific group or cluster, they jointly solve some 
problem. To protect the information transmitted between the IoT cluster of devices, they must be 
encrypted and we must be able to perform operations such as those with encrypted data in an 
unencrypted state so as not to compromise the overall result of the work. 

We can create this capability through homomorphic encryption, which can be implemented in 
AtmelAVR microcontrollers (DFRobot Beetle BLUE, Atmega 328, Atmega 32u4, Atmega 2560) 
that control IoT devices in medicine, consumer electronics, and manufacturing. 

 
DTESI 2023: Proceedings of the 8th International Conference on Digital Technologies in Education, Science and 
Industry, December 06–07, 2023, Almaty, Kazakhstan 

 temyrbekovazhanerke2@gmail.com (Zh. Temirbekova); turken.gulzat@gmail.com (G. Turken); 
manuel.barata@isel.pt (M. Barata) 

 0000-0003-3909-0210 (Zh. Temirbekova); 0000-0003-4981-514X (G. Turken); 0000-0002-8335-4052 (M. Barata) 

 
© 2023 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



One of the new directions of modern cryptosystems is homomorphic cryptography. Its 
distinctive feature is that this type of cryptography allows you to process encrypted data without 
a prior secret key, so that the result of operations with encrypted data is equal to the result of 
operations with open data after decryption [6]. This solves one of the problems of cryptography 
– the generation, storage and distribution of common session keys. This increases the level of data 
security – the server receives encrypted data, processes them and returns the encrypted result, 
while open data and encryption keys do not leave the secure segment during network interaction. 

In recent years, there has been a lot of work on FHE (Full homomorphic encryption) for IoT 
devices in the world. S.R. Sujoy, P. Goyuri, N. Deepika (2021) show in their work that fully 
homomorphic encryption algorithms can be applied to IoT applications and devices, as well as 
aimed at ensuring higher computing speed while maintaining data confidentiality [7]. 

D. Goran, M. Milan, V. Pavle [8] in their work «Evaluating the implementation of homomorphic 
encryption in an IoT device» evaluated the features of the homomorphic encryption mechanisms 
of BFV and BGV and measured computational performance. The Raspberry Pi 4 evaluates the 
encryption schemes on the IoT platform based on the B model, showing that homomorphic 
encryption operations can be used in embedded devices and is primarily aimed at improving 
privacy and providing high bandwidth and low latency to speed up applications. 

Among the representatives of the Russian scientific community, the works of the following 
scientists can be especially noted: I.B. Saenko, V.A. Desnitsky (Moscow), I.V. Kotenko (Sverlosk), 
P.D. Zegzhda (St. Petersburg). 

Taking into the analyzes made, there is a need for methods, algorithms that effectively ensure 
the security of IoT applications and devices and determine whether the topic under consideration 
is an urgent problem. 

The homomorphism property is used in many cryptographic systems, in particular in secure 
voting systems, in all kinds of collision-resistant hash functions, in the creation of closed 
information of search engines, and in cloud computing. The Homomorphism property guarantees 
the confidentiality of the processed data. 

Currently, active research is being conducted in the field of homomorphic encryption. The 
following can be noted as the main directions of its development: 

First, to create a symmetric full homomorphic encryption, you can use invariant matrix 
polynomials. Russian cryptographic scientist F.B. Burtyka works in this area, who proposed to 
carry out encryption in three rounds: in the first step, open texts are obtained that are elements 
of the ring, in the second step they are encoded into matrices using a secret vector, in the third 
step these matrices are displayed in matrix polynomials using a secret invariant matrix 
polynomial. Then, reverse encryption is implemented in both rounds [9, 10]. 

Secondly, the development of symmetric fully homomorphic linear cryptosystems based on 
the problem of factorization of numbers. Among the Russian scientists working in this direction, 
one can name A.V. Trepacheva [11], P.K. Babenka [12]. The cryptographic stability of these 
systems is justified by the use of complexity in solving the problem of factorization of large 
numbers. 

Thirdly, the development of marginal systems of homomorphic encryption and information 
protection in cloud computing. Research in this direction is carried out by N.P. Varnovsky, 
S.A. Martishin, M.V. Khrapchenko, A.V. Shakurov. In conclusion, a system was obtained that does 
not require an additional public key and replaces the not very efficient and problematic re-
encryption procedure (bootstrapping) performed on cryptographically dedicated servers [13]. 

2. Fully homomorphic encryption (FHE) 

FHE – based data protection is a new type of security that allows you to calculate encrypted data 
without first re-encrypting it. However, the practical FHE solution is not available for 
implementation today. The most popular asymmetric and symmetric homomorphic encryption 
algorithms for analyzing process time, taking into account the effective and security component: 
Benalo [14], El Gamal [15], RSA [16], Paillier [17], Gentry's bit homomorphic encryption [18], A. 



Abramov's homomorphic encryption in the field of polynomials with rational coefficients [19] 
and homomorphic encryption in the field of polynomials with a variable S.F. Krendelev [20] was 
studied. The homomorphic features and disadvantages and similarities of each of the algorithms 
were studied. In addition, comparisons were made with the calculation of encryption, reverse 
encryption times for each of the algorithms. The work carried out testing of homomorphic 
encryption algorithms on the microcontroller AtmelAVR (DFRobot Beetle BLUE, Atmega 328, 
Atmega 32u4, Atmega 2560, ESP 32). Testing to compare the performance of the encryption and 
reverse encryption operation calculated the average run time for 8 iterations. The work carried 
out testing of homomorphic encryption algorithms on the microcontroller AtmelAVR (DFRobot 
Beetle BLUE, Atmega 328, Atmega 32u4, Atmega 2560, ESP 32). The experimental result is shown 
in Table 1. 

 
Table 1  
Comparison by file size 40 MB 

Cryptosystem Benaloh El-Gamal RSA Paillier Gentry Abramov Krendel
ev 

Key generation 
(ms) 

23,67 10,808 12,25 23,31 8,51 25,03 20,12 

Encryption time 
(ms) 

6772,98 4983,26 2133,65 1672,12 13108,1
7 

1048,69 751,84 

Decryption time 
(ms) 

2736,36 3412,96 1391,59 1336,23 4098,52 530,52 403,96 

Data memory 
usage (bytes) 

204 202 206 201 216 178 175 

Use of program 
memory (bytes) 

1689 1382 1802 1567 2976 992 867 

Current strength 
(W) 

1,15 1,03 1,21 1,12 2,24 0,63 0,57 

Voltage (Volts) 2,584 2,508 2,607 2,520 2,897 2,361 2,336 
Power (W) 1,15 1,03 1,21 1,12 2,24 0,63 0,57 

HE categories PHE PHE PHE PHE FHE FHE FHE 
Homomorphic 

signs 
Add Multiplica

tions 
Multipli
cations 

Add Add, 
multiplic

ations 

Add, 
multiplica

tions 

Add, 
multiplic

ations 
Similarities Homomorphism 

 
Based on comparisons, it was found that homomorphic encryption in the field of polynomials 

with a variable proposed by S.F. Krendelev is effective in terms of time in the AtmelAVR (DFRobot 
Beetle BLUE, Atmega 328, Atmega 32u4, Atmega 2560, ESP 32) microcontroller, in terms of the 
measure of memory use in the microcontroller, and in terms of current strength and voltage use. 
Due to the need for full homomorphic encryption algorithms for secure storage and transmission 
of data on IoT devices. It was found that the homomorphic encryption algorithm in the field of 
polynomials with a variable proposed by S.F. Krendelev requires all arithmetic operations. 

In 2011, S.F. Krendelev proposed his fully homomorphic cryptosystem, the work of which is 
based on homomorphism in the field of polynomials with variables. Each a ∈ Zn number a(x) = a0 
+ a1x + ... + akxk is related to the polynomial, where k and ai are randomly selected. For two 
polynomial images of numbers a0 and b0 in terms of structure, the free term of their sum a(x) + 
b(x) and the product a(x)*b(x) is a(0) + b(0) and a(0 )*b(0). 

Then φ:Zn[x] → Zn[y], x = c0 + c1y + ... + ctyt = φ(y) is a homomorphism that preserves addition 
and multiplication. The implementation of S.F. Krendelev is more profitable than Gentry. In 
addition, it has a number of disadvantages: 

1. An infinite increase in the degrees of polynomials can lead to inefficiency in the calculation; 



2. Although all operations are actually performed on empty terms, it is necessary to store in 
memory and perform calculations on polynomials of a large degree; 
3. In the system of S. F. Krendelev, the operations of division and subtraction on encrypted 
data were not performed.  
In the article, division and subtraction operations were added to the system proposed by S.F. 

Krendelev to encrypted data. 
Implementation of the division operation into encrypted data in the system of S.F. Krendelev: 

Definition 1. Z – some kind of field. A polynomial in a single variable in the field Z is the formal 
sum of the form: 

 

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎1𝑥 + 𝑎0,                   (1) 

 
where, 𝑎𝑖 ∈ 𝑍, 𝑖 ∈ {0,1, … , 𝑛} 𝑛 ∈ 𝑁. 
Any element of the field 𝑍 is considered a polynomial of zero degree, a polynomial of arbitrary 

degree with zero coefficients – a zero polynomial, a unit polynomial of the field 𝑍 – and they are 
denoted by 𝜗(𝑥) and 𝐸(𝑥), respectively.  

In the set of all polynomials in one variable in the Z field, you can define the operations of 
addition and multiplication of polynomials according to the following rules. Suppose 𝑓(𝑥) – 2 is a 
polynomial and 

 
𝑔(𝑥) = 𝑏𝑛𝑥𝑛 + 𝑏𝑛−1𝑥𝑛−1 + 𝑏1𝑥 + 𝑏0,                  (2) 

 
where 𝑏𝑖 ∈ 𝑍, 𝑗 ∈ {0,1, … , 𝑚} 𝑚 ∈ 𝑁 is a type of the polynomial. 
Now let's look at the problem of creating a homomorphism from a Z ring in A Z[x] ring.  
Definition 1. (Ring homomorphism). let f: А-> В, where A and B are the rings of addition, 

multiplication, zero and one ring homomorphism if the following conditions implement [21]: 
 

𝑓(𝑎+𝐴𝑏) = 𝑓(𝑎)+𝐵𝑓(𝑏)           (3) 
 

𝑓(𝑎−𝐴𝑏) = 𝑓(𝑎)−𝐵𝑓(𝑏)             4) 
 

( ) ( ) ( )bfafbaf BA =            (5) 

 
(𝑎/𝐴𝑏) = 𝑓(𝑎)/𝐵𝑓(𝑏)        (6) 

 

( ) BAf 00 =                (7) 

 

( ) BAf 11 =               (8) 

 
Let Z be given a ring of integers, a ring of polynomials Z[x], and P(x) compiled according to the 

1 – algorithm. Then P(x), P:Z→Z[x] homomorphism. 
Encryption and reverse encryption algorithm 

Key generation. 0x  if the secret key of a given cipher is, say, 𝑧1, 𝑧2 ∈ 𝑍, 𝑧1 > 𝑧2, let's show that 

the (6) property is executed, i.e.: 
 

𝑃(𝑧1/𝑧𝑧2) = 𝑃(𝑧1)/𝑧[𝑥]𝑃(𝑧2) 

𝑃(𝑧1) = 𝑞𝑛𝑓1(𝑥) − 𝑞𝑛𝑓1 (
𝑝

𝑞
) + 𝑧1 = 𝑞𝑛𝑎0 + 𝑞𝑛𝑎1𝑥 + 𝑞𝑛𝑎2𝑥2 + ⋯ − 𝑞𝑛𝑎0 − 

−𝑞𝑛−1𝑎1𝑝 − 𝑞𝑛−2𝑎2𝑝2 − ⋯ + 𝑧1 = 𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ 𝑧1 
𝑃(𝑧1)

𝑃(𝑧1)
=

𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧1

𝑏1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑏2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧2
 



𝑃 (
𝑧1

𝑧2
) = 𝑐1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑐2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ +

𝑧1

𝑧2
 

 

For 
𝑃(𝑧1)

𝑃(𝑧1)
= 𝑃 (

𝑧1

𝑧2
) you can select 𝑐𝑖 as 𝑐0 = ∀. 

𝑐𝑖 =
𝑎𝑖𝑧2−𝑏𝑖𝑧1

𝑧2∗𝑃[𝑥](𝑧2)
, 𝑖 = 1, 𝑛         

𝑎𝑖𝑧2−𝑏𝑖𝑧1

𝑧2∗𝑃[𝑥=𝑝/𝑞]𝑧2

 

𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧1

𝑏1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑏2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧2
= 

𝑎1𝑧2 − 𝑏1𝑧1

𝑧2 ∗ 𝑏1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑏2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧2
∗ 𝑞𝑛−1(𝑞𝑥 − 𝑝)

+
𝑎2𝑧2 − 𝑏2𝑧1

𝑧2 ∗ 𝑏1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑏2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧2
∗ 𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯

+
𝑧1

𝑧2
 

𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧1 =
𝑎1𝑧2 − 𝑏1𝑧1

𝑧2
∗ 𝑞𝑛−1(𝑞𝑥 − 𝑝) + 

+
𝑎1𝑧2 − 𝑏1𝑧1

𝑧2
∗ 𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ +

𝑧1

𝑧2
∗ 𝑏2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧2 

𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧1

= 𝑞𝑛−1(𝑞𝑥 − 𝑝) [
𝑎1𝑧2 − 𝑏1𝑧1

𝑧2
+

𝑧1

𝑧2
∗ 𝑏1]

+ 𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) [
𝑎1𝑧2 − 𝑏1𝑧1

𝑧2
+

𝑧1

𝑧2
∗ 𝑏2] + ⋯ + 𝑧1 

𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧1

= 𝑎1𝑞𝑛−1(𝑞𝑥 − 𝑝) + 𝑎2𝑞𝑛−2(𝑞2𝑥2 − 𝑝2) + ⋯ + 𝑧1 
 

Since 
𝑃(𝑧1)

𝑃(𝑧1)
= 𝑃 (

𝑧1

𝑧2
) the image of 𝑃 is a homomorphism.  

Proof. let 𝑧1, 𝑧2 ∈ 𝑍 show that the property (4) is executed, i.e.: 𝑃(𝑧1−𝑧𝑧2) = 𝑃(𝑧1)−𝑧[𝑥]𝑃(𝑧2), 

𝑃(𝑧1)−𝑧[𝑥]𝑃(𝑧2) = (𝑞𝑛𝑓1(𝑥) − 𝑞𝑛𝑓1 (
𝑝

𝑞
) + 𝑧1) − (𝑞𝑛𝑓2(𝑥) − 𝑞𝑛𝑓2 (

𝑝

𝑞
) + 𝑧2 == 𝑞𝑛𝑎0 +

𝑞𝑛𝑎1𝑥 + ⋯ + 𝑞𝑛𝑎𝑛𝑥𝑛 − 𝑞𝑛𝑎0 − 𝑞𝑛−1𝑝𝑎1 − ⋯ − 𝑝𝑛𝑎𝑛 + 𝑧1 − 𝑞𝑛𝑏0 − 𝑞𝑛𝑏1𝑥 − ⋯ − 𝑞𝑛𝑏𝑛𝑥𝑛 +
𝑞𝑛𝑏0 + 𝑞𝑛−1𝑝𝑏1 + ⋯ + 𝑝𝑛𝑏𝑛−𝑧2  = (𝑎1 − 𝑏1)(𝑞𝑛𝑥 − 𝑞𝑛−1𝑝) + (𝑎2 − 𝑏2)(𝑞𝑛𝑥2 − 𝑞𝑛−2𝑝2) + ⋯ +
(𝑎𝑛 − 𝑏𝑛)(𝑞𝑛𝑥𝑛 − 𝑝𝑛) + 𝑧1 − 𝑧2. 

 
Let's show that one part is equal to the other: 

𝑃(𝑧1−𝑧𝑧2) = (𝑞𝑛𝑓1(𝑥) − 𝑞𝑛𝑓1 (
𝑝

𝑞
) + 𝑧1) − (𝑞𝑛𝑓2(𝑥) − 𝑞𝑛𝑓2 (

𝑝

𝑞
) + 𝑧2 = 𝑞𝑛(𝑎0 − 𝑏0) + 𝑞𝑛(𝑎1 −

𝑏1)𝑥 + 𝑞𝑛(𝑎2 − 𝑏2)𝑥2 − 𝑞𝑛(𝑎0 − 𝑏0) − 𝑞𝑛−1𝑝(𝑎1 − 𝑏1) − 𝑞𝑛−2𝑝2(𝑎2 − 𝑏2) + 𝑧1 − 𝑧2 = (𝑎1 −
𝑏1)(𝑞𝑛𝑥 − 𝑞𝑛−1𝑝) + (𝑎2 − 𝑏2)(𝑞𝑛𝑥2 − 𝑞𝑛−2𝑝2) + ⋯ + (𝑎𝑛 − 𝑏𝑛)(𝑞𝑛𝑥𝑛 − 𝑝𝑛) + 𝑧1 − 𝑧2. 

 
It is also clear that the representation of P compares 1 to 1 and 0 to 0, corresponding to the 

properties (3) and (4). Therefore, the representation of P is a homomorphism. 

Key generation. 
q

p
x =0  here NqZp  , -  any numbers.  

Algorithm 2 (encryption). The encryption algorithm  xZZEnc →:  is displayed as follows. 

1) Zz — let be the number to be encrypted, 𝑧1 > 𝑧2, 𝑧2 ≠ 0; 

2) We construct a polynomial so that the coefficients Zaaa n ,..., 10  are chosen at random 
n

nxaxaaxf +++= ...)( 10
;  



3) ( ) n

n
p

q
a

p

q
aa

q

p
fxf )(...)(100 +++=








=  calculated. From this 

n

nnnn appaqaq
q

p
fq +++=







 − ...1

1

0  it is obtained that, where Z
q

p
fqn 








; 

4) Then the encryption polynomial for z will look like this: 

( ) ( ) ( )  xZzxfqxfqxg nn

z +−=  

Algorithm 3 (decryption). Let's look at the reverse encryption algorithm   ZxZDec →:  this 

is reverse to the 2 algorithm. 

1) Polynomial  xZg
z


''
' - encrypted data Qx 0 - is a secret key. 

2) For decrypted 0x  at the point 
''

'z
g  is calculated.  

3) Then ( ) Zxgz
z

= 0

'''
' - decrypted data. 

According to theorem 1, for Zzz 21, the encryption is homomorphic if the following 

properties are met: 
 

( ) ( )( )2121 zEnczEncDeczz +=+     (9) 

 

( ) ( )( )2121 ** zEnczEncDeczz =      (10) 

 
In the work of S.F. Krendelev homomorphic encryption for the addition and multiplication 

operation was considered, in this work the method of full homomorphic encryption, which 
performs subtraction and division operations, is proposed. 

Example of system operation: 

𝐾𝑒𝑦:  𝑥0 =
11

7
. 

𝐸𝑛𝑐: 𝑍 → 𝑍[𝑥]. 
1) 𝑧1 =7, 𝑧2 = 5; 
2) 𝑓1(𝑥) = 2 + 4𝑥 − 6𝑥2 + 3𝑥3,  𝑓2(𝑥) = 5 − 8𝑥 + 6𝑥2 + 9𝑥3;     

3) 𝑞𝑛𝑓1 (
𝑝

𝑞
) = 73 ∗ 2 + 72 ∗ 11 ∗ 4 − 6 ∗ 7 ∗ 112 + 3 ∗ 113 = 175 ; 

𝑞𝑛𝑓2 (
𝑝

𝑞
) = 73 ∗ 5 − 8 ∗ 72 ∗ 11 + 6 ∗ 7 ∗ 112 + 113 ∗ 9 = 14464   ; 

4) Encryptable polynomial for 𝑧1and 𝑧2: 
𝑔𝑧1

=1029𝑥3 − 2058𝑥2 + 1372𝑥 − 1060,  𝑔𝑧2
=3087𝑥3 + 2058𝑥2 − 2744𝑥 − 12744; 

Subtraction and division Homomorphism of the system: 
𝑔𝑧1

− 𝑔𝑧2
= −2058𝑥3 − 4116𝑥2 + 4116𝑥 + 11684; 

𝑔𝑧1

𝑔𝑧2

=
1

3
+

−2744𝑥2+2286
2

3
𝑥+3188

3087𝑥3+2058𝑥2−2744𝑥−12744
; 

𝐷𝑒𝑐: 𝑍[𝑥] → 𝑍. 

𝑔𝑧1
𝑥0 − 𝑔𝑧2

𝑥0=−2058 (
11

7
)

3
− 4116 (

11

7
)

2
+ 4116 ∗

11

7
+ 11684=2; 

𝑔𝑧1𝑥0

𝑔𝑧2𝑥0
=

1

3
+

−2744(
11

7
)

2
+2286

2

3
∗

11

7
+3188

3087(
11

7
)

3
+2058(

11

7
)

2
−2744∗

11

7
−12744

= 1,4. 

 



 
 

Figure 1: Pseudo-code of the proposed subtraction and division operations 

3. Development a library for fully homomorphic encryption 

Building a library for full homomorphic encryption in a ring of polynomials with an advanced 
variable  

In the Arduino IDE integrated development environment, in C++, a static library was created 
for full homomorphic encryption in a ring of polynomials with a homomorphic modified variable 
in a ring of polynomials with a variable for different microcontrollers. 

The boost library, which supports large numbers, is used to support performing multiple 
operations on encrypted numbers and reduce computational inaccuracies (value 
approximations) [22]. 

When implementing the modified library, it was faced with the following tasks: 
- ability to edit integers; 
- full homomorphic encryption; 
- support for all mathematical operations, including the arithmetic division operation. 
To support the separation operation, a library architecture was implemented based on the 

homomorphic separation method mentioned above. The library is represented by cryptographic, 
mathematical classes and a class responsible for basic information. The architecture of the 
created library is shown in Figure 2. 

The Secret Key class works with data about the Secret Key used in the cryptographic algorithm. 
This provides the ability to create a new key, generate random and use it. The current library 
implementation uses a random number generator from the standard library with automatic 
randomization relative to the current time to generate keys and polynomial coefficients. A 
pseudo-random number generator from the standard library is recognized as cryptographically 
unreliable because it uses a linear congruent method. In this regard, an interface was introduced 
that allowed the use of random generator inputs. By agreement, it is recommended to use a 
random number generator from the Boost library. It uses non-deterministic random number 
generation and is cryptographically secure. 

Encrypted Data is a module in which the main data type is a homomorphic encrypted number. 
In the encryption class, the possibilities of creating new cipher texts using open texts and secret 
keys (data encryption operation), obtaining open data from encrypted data based on the 
encryption key (data encryption operation) are implemented. 

Homomorphism-performs the basic mathematical operations of subtraction, addition, 
division, multiplication on encrypted data. Encryption and reverse encryption are performed 



using pre-generated keys or by transmitting secret parameters. The class also implements all the 
mathematical operations necessary for polynomials, namely division, multiplication, subtraction 
and addition. 

 

 
Figure 2: Library architecture of complete homomorphic encryption in a ring of polynomials with 
an advanced variable 

 
Decrypted Data encrypts encrypted data using a secret key and reverse Homomorphism.  
Checking for Homomorphism. An array named resBuf is opened to check Homomorphism by 

the addition operation. Its measure is taken in accordance with which the length of the 
polynomial is greater. Next, all elements of the resBuf are taken as 0. Then the index polynomial 
values corresponding to each index are added throughout the cycle. To calculate the sum value, 
open the variable resu=0 and find resu+=resbuff[0]*x0. The same is done for the rest of the 
polynomial.  

The Homomorphism check by subtraction operation is the same as checking the algorithm for 
adding the numbers of the first polynomial to the resBuf array and subtracting the numbers of 
the second polynomial from it. 

Checking Homomorphism by the multiplication operation. The array named Kob will open. Its 
Dimension is [(first polynomial dimension)*(second polynomial dimension)]. Divided into two 
columns, in the first column are the coefficients that precede x, and in the second column are the 
degrees of that X. The Resu array is opened and the same ranks are added to it. 

Checking Homomorphism by the division operation. The Gorner scheme was used to perform 
the division operation into encrypted data. When dividing a polynomial by a polynomial, the 
quotient and the remainder are obtained. The created library can be used in the client program 
in 3 Types: 1. HomomorphicControllerVersion_01.C, that is, the library is stored on the computer 
as a file, connecting the microcontroller to the computer through the Com port and calling the 
necessary functions. 2.Download The created library from GitHub in the form of a zip archive, and 
the user will use it by installing it in the form of a driver. 3.built-in library architecture written in 
microcontroller construction from Figures 3 can be seen. 



 
Figure 3: Library architecture installed on the Atmega 328 microcontroller 

 
One of the most important tasks of the research work is to evaluate the performance of the 

created libraries in various AtmelAVR microcontrollers. The Atmel ATmega328P provides the 
following features: 32K bytes of in-system programmable flash with read-while-write 
capabilities, 1K bytes EEPROM, 2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose 
working registers, three flexible Timer/Counters with compare modes, internal and external 
interrupts, a serial programmable USART, a byte oriented 2-wire serial interface, an SPI serial 
port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable 
watchdog timer with internal oscillator, and five software selectable power saving modes. The 
idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire serial 
interface, SPI port, and interrupt system to continue functioning. The power-down mode saves 
the register contents but freezes the oscillator, disabling all other chip functions until the next 
interrupt or hardware reset. Initially, on the Atmega 328 microcontroller TGSH in a ring of 
polynomials with a modified variable, comparisons were made with different pairs of two-digit 
numbers: key generation, encryption, reverse encryption, (addition, subtraction, multiplication, 
division) times, and the complexity of the algorithm was considered. The result can be seen in 
Table 2. 

Compared to the multiplication operation with the addition operation, the fact that the 
multiplication operation is performed worse than the addition operation shows that the 
complexity of the algorithm is higher. It was also found that memory operations take up most of 
the processor time. It can be concluded that these schemes may be suitable for use in specific 
software products.  The table shows linear growth, which is a consequence of the increase in the 
amount of memory divided by polynomial coefficients as a result of addition, as well as the 
complication of the addition operation on data of a larger length. However, since the operation of 
adding polynomials 𝑂(𝑛) has algorithmic complexity, this increase can be considered 
Insignificant. When multiplying, there is a quadratic increase and, unlike adding, there is a 
significant decrease in speed. This is because when multiplying polynomials, their coefficients are 



multiplied, which requires more memory allocation than adding coefficients, and the operation 
of multiplying polynomials has a higher algorithmic complexity - O(n2). 

 
Table 2 
Execution time of the created library on the Atmega 328 microcontroller 

2-digit, 
different 

even 
numbers 

Key generation, 
encryption, 

addition, 
decryption, s. 

Key generation, 
encryption, 
subtraction, 

decryption, s. 

Key generation, 
encryption, 

multiplication, 
decryption, s. 

Key generation, 
encryption, 

divide, decryption, 
s. 

100 1,95 1,92 2,52 2,44 
200 2,625 2,605 3,44 3,33 
300 3,736 3,727 4,94 4,77 
400 5,032 5,027 6,68 6,67 
500 6,931 6,947 9,28 9,2 

 

 
a-data encryption by the number of different characters 
 

 
b – decryption by the number of different characters 

 
Figure 4. FH encryption in a ring of polynomials with variables and evaluation of the reverse 
encryption speed on a different microcontroller 

 

4500 9000 13500 18000 22500 27000 31500

Encryption on Atmega 2560 17,47 35,94 54,42 72,88 90,35 110,8 126,28

Encryption on Atmega 328 18,33 36,6 55,6 73,32 91,63 112 127,2

Encryption on Atmega 32U4 19,8 38,6 57,5 74,32 92,65 113 127,3

Encryption on DFRobot Beetle

BLE
18,8 37,6 56,5 73,32 91,65 112 127,36

0

20

40

60

80

100

120

140

Encryption

4500 9000 13500 18000 22500 27000 31500

Decryption on Atmega 2560 13,5 34,95 49,423 68,89 90,34 106,7 121,29

Decryption on Atmega 328 15,9 33,5 52,6 68,8 88,8 108,9 124,5

Decryption on Atmega 32U4 16,6 33,5 52,6 68,8 88,8 108,9 124,5

Decryption on DFRobot Beetle

BLE
16,6 34,5 54,2 70,01 87,3 108,9 124,2

0
20
40
60
80

100
120
140

Decryption



When testing open data on various AtmelAVR microcontrollers, the Atmega 2560 
microcontroller showed good calculations in terms of performance. Mega is designed in such a 
way that before writing a new code, the reboot is carried out not by pressing a button on the 
platform, but by the program itself. One of the ATmega8U2 data flow control lines is connected to 
the ATmega2560 recovery PIN via a 100 NF capacitor. This is network activation, i.e. a low-level 
signal resets the microcontroller. The Arduino program, using this function, loads the code with 
one click of the Download button in the programming environment. Low-level signaling in the 
data flow control network is coordinated with the start of code writing, which reduces bootstrap 
timeout. 

4. Conclusion 

The article investigated the problems of full homomorphic encryption modified in the AtmelAVR 
microcontroller and obtained the following results: 

1. Analysis of data protection methods and devices in the IoT device cluster has been 
developed; 

2. Improved homomorphic encryption library used in AtmelAVR microcontroller; 
3. A library architecture has been created on the AtmelAVR microcontroller to ensure the 

security of the IoT device cluster; 
Currently, Data Protection during the exchange of information is one of the most important 

tasks not only for traditional networks, but also for the rapidly developing segment of the Internet 
of things. In order to ensure data security for users of AtmelAVR microcontrollers, the 
homomorphiccontroller_version01 library was implemented in the work. It contains encryption 
library files compiled for different AtmelAVR microcontroller families.  

As part of this work, the problem of homomorphic division of integers is considered, a method 
for implementing homomorphic division is proposed and described, and practical examples of 
using the above method are given. The practical value of the work lies in solving one of the 
problems of homomorphic encryption - the implementation of homomorphic separation makes 
it possible to expand the scope of practical application of homomorphic encryption in such areas 
as cloud computing, solving information protection problems, and machine learning. 

5. References 
 

[1] Syed A.S., Sierra-Sosa D., Kumar A. et al. (2021). IoT in Smart Cities: A Survey of Technologies, 
Practices and Challenges. Smart Cities. Vol.4, Issue 2. P. 429-475.  

[2] Smith S. (2024). IoT Connections to reach 83 billion by 2024 driven by maturing industrial 
use cases. URL: https://www.juniperresearch.com/press/iot-connections-to-reach-83-bn-
by-2024.  

[3] Divy T.S., Akash P., Aishwariya B., et al. (2022). Recent Advancements of Internet of Medical 
Things (IoMT): Challenges and Future Opportunities with Emerging Technologies. ICACRS. 
Vol. 3, Issue 2. P. 278-283. 

[4] Iliar Ch., Shea Sh.. IoT security (internet of things security). URL: 
https://www.techtarget.com/iotagenda/definition/IoT-security-Internet-of-Things-
security. 12.02.2023. 

[5] Dong D.C., Peng H.T. (2020). Secured Data Transmission in IoT using Homomorphic 
Encryption. Computers and Electrical Engineering. Vol. 4, № 3, P. 845-867.  

[6] Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (2012). Fully homomorphic encryption without 
bootstrapping. In Proceedings of the Conference on Innovations in Theoretical Computer 
Science (ITCS), Cambridge: MA USA, P. 309 – 325.  

[7] Goran D., Milan M., Pavle V. (2021). Evaluation of Homomorphic Encryption Implementation 
in IoT Device. Journal of Electrical Systems and Information Technology. Vol. 8, № 3. P. 568-
592. 

https://www.techtarget.com/iotagenda/definition/IoT-security-Internet-of-Things-security.%2012.02.2023
https://www.techtarget.com/iotagenda/definition/IoT-security-Internet-of-Things-security.%2012.02.2023


[8] Sujoy S.R., Goyuri P., Deepika N. (2021). Interoperability in IoT for Smart Systems. SMIT. 
Vol.2, Issue 1. P. 364-402.  

[9] Burtyka F.B. (2014). Symmetric fully homomorphic encryption using irreducible matrix 
polynomials. Izvestiya SFU. Technical sciences. No. 8. P. 107-122. 

[10] Burtyka F.B. (2014). Batch symmetric fully homomorphic encryption based on matrix 
polynomials. Proceedings of the Institute of System Programming of the Russian Academy of 
Sciences. Vol. 26. No. 5. P. 99-116. 

[11] Trepacheva A.V. (2015). Cryptanalysis of symmetric fully homomorphic linear 
cryptosystems based on the number factorization problem. Izvestiya SFU. Technical sciences. 
№ 5 (166). Pp. 89-102. 

[12] Trepacheva A.V., Babenko L. K. (2015). Formal cryptanalysis of completely homomorphic 
systems using the problem of factorization of numbers. Information counteraction to threats 
of terrorism. No. 24. P. 283-286. 

[13] Varnovsky N. P., Martishin S. A., Khrapchenko M. V., Shakurov A.V. (2015). Threshold systems 
of homomorphic encryption and information protection in cloud computing. Programming. 
No. 4. P. 47-51.  

[14] Benaloh B., Lindell Y. (2007). Introduction to Modern Cryptography: Principles and 
Protocols. Chapman & Hall/CRC. P. 385-395. 

[15] Evaluation of the strength of the El Gamal cryptosystem. Technical Sciences in Russia and 
abroad: materials of the IV International Scientific Conference. Moscow: Buki Vedi, 2015. P. 
14-16. 

[16] Naehrig, Michael, Kristin Lauter, and Vinod Vaikuntanathan (2018). Can homomorphic 
encryption be practical? International Journal of Electrical & Computer Engineering. Vol. 8, 
Issue 3. P. 1720-1730. 

[17] Paillier P. (2016). Public-Key Cryptosystems Based on Composite Degree Residuosity 
Classes. Appl. Sci. Vol. 6. P. 162-1-162-17.  

[18] Gentry, Craig (2009). Fully homomorphic encryption using ideal lattices. In Proceedings of 
the forty-first annual ACM symposium on Theory of computing, pp. 169-178.  

[19] Abramov A. (2009). Homomorphic encryption. News of the SFU. Technical sciences. № 5 
(166). P. 89-102.  

[20] A.O. Zhirov, O.V. Zhirova, S.F. Krendelev (2011). Secure cloud computing using homomorphic 
cryptography. Izvestiya MSU. Technical sciences. № 3 (106). P. 45-67. 

[21] Smart N.P., Vercauteren F. (2010). Fully homomorphic encryption with relatively small key 
and ciphertext sizes, public Key Cryptography. PKC Springer Berlin Heidelberg, Vol. 6056, P. 
420-443. 

[22] Temirbekova Zh.E., Pyrkova A.Yu. (20220. Improving teachers’ skills to integrate the 
microcontroller technology in computer engineering education. Education and information 
technology. Vol. 6. P. 656-692. 

[23] Temirbekova Zh.E., Pyrkova A.Yu. (2020). Using FHE in a binary ring Encryption and 
Decryption with BLE Nano kit microcontroller. E3S Web of Conferences 202 (ICENIS 2020), 
P. 687-712. 

 

http://www.liammorris.com/crypto2/10.1.1.112.4035.pdf
http://www.liammorris.com/crypto2/10.1.1.112.4035.pdf

