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Abstract 
This paper presents a novel approach for detecting malicious network traffic by leveraging artificial 
neural networks, well-suited for deep packet inspection-based intrusion detection systems. Through 
comprehensive experimentation with diverse benign network traffic data, encompassing images, 
dynamic link library files, logs, music files, word processing documents, alongside malicious shell code 
files sourced from the exploit and vulnerability repository exploitdb, our proposed artificial neural 
network architecture demonstrates exceptional accuracy in distinguishing benign from malicious 
network traffic. The introduced neural network consistently achieves an average accuracy rate of 99%, 
an average area under the receiver operator characteristic curve (AUC-ROC) of 0.99, and an average 
false positive rate of fewer than 2% across multiple 10-fold cross-validation iterations. These findings 
underscore the robustness, precision, and accuracy of our classification technique. Furthermore, this 
innovative approach to detecting malicious network traffic holds substantial potential for enhancing 
intrusion detection systems in both conventional network traffic analysis and cyber-physical systems 
analysis, such as smart grids. Additionally, we introduce a novel intrusion detection system (IDS) that 
combines a multilayer perceptron (MLP) network with artificial bee colony (ABC) and fuzzy clustering 
algorithms. The MLP network identifies normal and abnormal network traffic packets, while the ABC 
algorithm optimizes linkage weights and biases during MLP training. Validation of our approach 
employs the CloudSim simulator and the NSL-KDD dataset, with evaluation metrics comprising mean 
absolute error (MAE), root mean square error (RMSE), and the kappa statistic. The results obtained 
from our experiments demonstrate the superior performance of our proposed method when 
compared to state-of-the-art approaches in the field. 
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1. Introduction 

In today's rapidly evolving computing landscape, network intrusion detection systems (NIDS) 
occupy a pivotal role in safeguarding modern computing infrastructures. These systems are 
indispensable for monitoring and identifying unwarranted and malicious network traffic, which 
encompasses a spectrum of threats, including unauthorized system access and the 
vulnerabilities stemming from improperly configured systems. The prevailing methodology 
adopted by most commercial NIDS relies on signature-based detection mechanisms, where 
predefined rules are deployed to discern undesirable network traffic patterns by scrutinizing 
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the behavioral patterns exhibited by the traffic. While this signature-based approach delivers 
commendable efficacy against known threats, its limitations become evident when confronting 
unknown attack vectors or when previously recognized attacks undergo modifications to elude 
these predefined rules [1-3]. Furthermore, the realm of signature-based detection within NIDS 
grapples incessantly with a recurring challenge in real-world scenarios, which is the issue of 
false positives. This challenge is particularly pronounced when dealing with the detection of 
malicious shellcode—an impactful threat vector that empowers attackers to attain 
unauthorized command-line access to both traditional computer systems and cyber-physical 
systems, such as smart grid infrastructures. Discerning between the patterns of shellcode and 
benign network traffic can be an intricate endeavor, often culminating in the frequent 
occurrence of false positives [4-7]. 

To emphasize this challenge, let's explore the scenario of a network security consultant 
collaborating with a multinational financial institution in US. In this capacity, they were tasked 
with utilizing network intrusion detection tools, specifically Sguil and Snort, from which Snort is 
primarily responsible for detecting and alerting on network intrusions, while Sguil is used to 
manage and analyze the alerts generated by Snort and other security data to facilitate the 
incident response process. These tools are commonly used together in network security 
operations sourced from the Debian-based Linux distribution Security Onion. During their 
tenure, they observed that the signatures engineered to detect shellcode frequently triggered 
false positives by erroneously flagging non-shellcode binaries, including dynamic link libraries 
(DLLs), and even innocent image files in JPG format. The prevalence of these false positives 
reached a threshold where the signatures had to be deactivated, rendering them ineffectual. 
Incidences of false positives, especially concerning shellcode and signature-based systems, are 
widespread, with even Microsoft dedicating extensive discourse to this issue in their patent 
addressing methods to detect malicious shellcode with reduced false positives in memory [8-9]. 
It is noteworthy that shellcode often serves as the payload in system penetration tools, offering 
attackers augmented access and leverage [10]. 

1.1 Contributions of the paper 

This paper makes significant contributions to addressing the aforementioned challenges: 
• Innovative non-signature-based detection: Our research pioneers a novel approach for 
detecting malicious shellcode that breaks free from the constraints of conventional 
signature-based methods. Instead, we harness the power of artificial neural networks 
(ANNs) to achieve this goal. 
• Exceptional detection accuracy: The results we present in this paper underscore the 
exceptional capability of our innovative classification approach to accurately detect 
shellcode while minimizing false positives. Our approach substantially improves the 
precision of shellcode detection. 
• Thorough validation and evaluation: We rigorously validate our approach through 
repeated 10-fold cross-validation, a robust method for assessing its performance. 
Furthermore, we comprehensively evaluate the efficacy of our approach in generating false 
positive alerts, using an extensive dataset comprising typical network traffic file contents. 
Remarkably, our approach yields a false positive rate of less than 2%. 
• Integration of ANNs with ABC and fuzzy clustering: The paper proposes the integration 
of ANNs with ABC and fuzzy clustering algorithms, suggesting that this combination can 
improve the performance of IDS. 
• Role of fuzzy clustering: Fuzzy clustering is employed to generate homogeneous subsets 
of training data, with the aim of accelerating training by segmenting the dataset into uniform 
subsets. 
• Role of ABC: ABC algorithm is used to expedite the determination of optimal values for 
linkage weights and biases within ANNs. 



• Innovative hybrid method: The paper pioneers a novel approach that harmonizes ANNs, 
ABC, and fuzzy clustering to enhance intrusion detection within cloud computing 
environments. This suggests a novel integration of these techniques for improving the 
efficiency of intrusion detection systems in the context of cloud computing. 
• Error mitigation: The research effectively mitigates instances of misclassification, 
reducing mean absolute error (MAE) and root mean squared error (RMSE) within cloud-
based IDS. This indicates a focus on improving the accuracy of intrusion detection and 
reducing errors in classification. 
• Enhanced kappa statistic: The proposed approach elevates the efficacy of the kappa 
statistic, presenting an efficient cloud-based IDS technique proficient in precise instance 
classification. This implies an improvement in the evaluation metrics used to assess the 
performance of intrusion detection systems. 
The cloud computing offers cost-effective, Internet-based access to IT resources, spanning 

operating systems, storage, and network infrastructure, hardware, and software applications 
[11-12]. Users pay based on resource consumption, aligning with a utility-based model. This 
paradigm introduces services like SaaS, IaaS, PaaS, and EaaS [13-14]. In web applications, 
particularly in online retail and auctions, network security is critical. Intrusion detection 
systems (IDS) serve as frontline defenses, detecting anomalies and recognized attack patterns. 
Cloud-based intrusion detection presents challenges, leading to diverse algorithm deployments 
rooted in evolutionary and meta-heuristic methods [15]. 

 

1.2 Paper organization 

 
The paper systematically explores an AI-based intrusion detection system employing 

artificial neural networks and artificial bee colony optimization. It commences with an 
introduction in section 1 outlining the significance, challenges, contributions, and paper 
structure. Section 2 covers background and related work, focusing on intrusion detection 
systems and artificial neural networks. Section 3 details the methodology, emphasizing non-
signature-based detection and rigorous validation. In section 4, we represent experimental 
setups results and evaluations. The research concludes in Section 5, summarizing contributions 
and suggesting potential future directions. 

2. Background and related work 

This section delves into the literature addressing intrusion detection systems, artificial neural 
networks, and artificial bee colony optimization. The discussed publications, selected based on 
criteria including publication dates between 2019 and 2023, inclusion in review and research 
papers exclusively in reputable journals, and keywords 'IDS' and 'ANN' for cloud security, were 
sourced from reputable platforms such as ScienceDirect, Wiley Online Library, and Google 
Scholar. 

In a study by Varun and Ashokkumar [16], a deep neural network with game theory for cloud 
security (GT-CSDNN) was developed. This innovative approach incorporates both defender and 
attacker strategies using game theory principles. The deep neural network leverages this game 
theory framework to classify normal data and detect attacks effectively. The GT-CSDNN's 
performance was assessed using the CICIDS—2017 dataset. The collected data underwent 
normalization, and an improved whale algorithm (IWA) was employed to identify optimal 
points for attacks and normal data. Shyla et al [17] proposed a novel intrusion detection system 
(IDS) based on the integration of leader-oriented K-means clustering (LKM) and an optimal 
fuzzy logic (FL) system. Initially, input data was clustered using LKM, and these cluster datasets 
were then processed by the FL system (FLS). Abnormal and normal data were scrutinized by 
the FLS, and FLS training was facilitated through the grey wolf optimizer (GWO) to optimize 



rules. Mishra et al. [18] introduced a VM Introspection (VMI)-related security model for fine-
grained monitoring of virtual machines (VMs) to identify well-known attacks and their 
variations. VMGuard utilizes the software breakpoint injection approach to trap program 
execution. Employing text mining techniques, VMGuard combines the 'Bag of n-grams (BonG)' 
method with term frequency-inverse document frequency (TF-IDF) for feature selection and 
extraction from attack and normal traces. The random forest (RF) method is then used to 
generate generic behavior profiles for different intrusion categories. 

Aoudni et al. [19] presented HMM_TDL, a deep learning approach designed to prevent and 
detect attacks in the cloud environment. This method operates in three states, incorporating a 
hidden markov model (HMM) for attack detection, and it sends hyper-alerts to the database for 
immediate assault prevention. In an anomaly-based NIDS was developed to analyze and 
monitor network traffic targeting a cloud platform, the study focused on providing network 
administrators with insights into such traffic to enable the blocking and dropping of intrusive 
network connections. Binary particle swarm optimization (BPSO) was employed to select the 
most relevant network features, while standard PSO (SPSO) fine-tuned support vector machine 
(SVM) control parameters. Velliangiri and Premalatha [20] evaluated a radial basis function 
neural network (RBF-NN) detector for detecting distributed denial of service (DDoS) attacks. 
This study aimed to simplify network configuration, which can often be overly complex or 
inadequate, by utilizing the bat algorithm (BA) for automated RBF-NN configuration. 
Sathiyadhas and Soosai [21] introduced an effective dragonfly-improved invasive weed 
optimizer-based shepard CNN (DIIWO-based ShCNN) for intrusion detection and attack 
mitigation in cloud environments. Additionally, they proposed a sailfish dolphin optimizer-
based deep RNN (SFDO-based deep RNN) for anomaly identification within the cloud 
framework, leveraging the combined SFDO technique formed by sailfish optimizer (SFO) and 
the dolphin echolocation (DE) technique. They also discussed the utility of the ChicWhale 
technique for virtual machine (VM) migration and cloud data management. 

Geetha and Deepa [22] proposed a fisher kernel-based PCA combined with a grey wolf 
optimizer-based weight-dropped bi-directional LSTM (FKPCA-GWO WDBiLSTM) for IDS. This 
involves fisher kernel for dimensionality reduction and WDBiLSTM network for preserving 
long-term dependencies. Another approach [23] introduced a DL technique using CNN and RNN 
for IDS in cloud security, effectively preventing unauthorized traffic from accessing the cloud 
server, the IDS plays a vital role in identifying malicious attempts to compromise system 
operations, categorized into host-based (HIDS) and network-based (NIDS) systems. The HIDS 
operates on individual devices, while NIDS identifies compromises during network transit. NIDS 
includes signature-based and anomaly-based systems, with an emerging trend integrating IDS 
alerts with SIEM systems for a comprehensive security perspective [24]. The ANNs, inspired by 
biological neurons, process inputs through artificial neurons in hidden layers, adapting weights 
and biases via learning rules like gradient descent and backpropagation [25]. This self-adaptive 
capability allows ANNs to capture complex relationships without prior knowledge, making them 
valuable for diverse classification tasks [26]. In applications such as concealed weapons 
detection, Internet traffic prediction, and signature verification, ANNs' "black-box" adaptability 
proves advantageous [27]. ANNs excel in handling high-dimensional datasets, overcoming 
challenges of traditional techniques like decision trees [28]. In computer security, ANNs analyze 
software design flaws, detect viruses, and identify network attacks [29]. Despite their wide 
application, exploration of ANNs in shellcode detection remains limited. 

3. Proposed methods 

3.1. Artificial neural network design 

In this section, we delve into the design and configuration of the artificial neural network 
utilized in our research. The primary objective was to process the byte-level data from the 



network traffic dataset efficiently. To achieve this, the data was converted into integer values, a 
process represented by the equation: 

 
Integer_Value=Byte_to_Integer(Byte_Data)    (1) 

 
This conversion was performed meticulously, with a keen emphasis on avoiding "magic 

numbers" often present at the start of files, as these could potentially mislead the classifier. 
The numerical results are critical, especially when dealing with the design of obfuscated 

shellcode. The patterns found in shellcode often bear a striking resemblance to those in benign 
network traffic, making precision in classification essential. To prepare the data for the ANN, we 
extracted 1000 bytes of contiguous data, which served as input to the network. To ensure 
consistent input size, zero padding was applied where necessary. The process of extracting 
contiguous data is described by the equation: 

 
Contiguous_Data=Extract_Bytes(Byte_Data,1000)         (2) 

 
While the initial exploration of the data revealed distinct patterns within different file types. 

It is noteworthy that there was considerable variability among files of the same class. In our 
experiments, the ANN was implemented using the MATLAB (R2022a) robotics system tool box 
and neural network toolbox. The optimal structure of the ANN was identified through an 
exhaustive grid search process. The best structure, determined in terms of classification 
accuracy, was identified as a multi-layer perceptron with two hidden layers. Each hidden layer 
consisted of 30 hidden neurons. This optimal configuration of the ANN can be succinctly 
expressed as: 

 
MLP(Input,Hidden_Layers,Output)             (3) 

 
The structure optimization process involved repeated 10-fold cross-validation to rigorously 

evaluate various classifier designs, ensuring robustness. An overview of the final optimized 
classifier design is presented in Figure 1. For the training of the neural network, we employed 
the resilient backpropagation learning strategy, which utilized a default learning rate of 0.01 
and conducted training for a maximum of 1000 epochs. Additionally, the feed-forward neural 
network was utilized to establish the initial values of the weights. 

 

Input Layer Hidden Layer 1 and 2          Output Layer

1000 Nodes 30 Nodes 30 Nodes 30 Nodes

 
Figure 1: Architectural configuration of the artificial neural network 

 



3.2 Integrated Methodology for Intrusion Detection System 

In this section, we outline a comprehensive intrusion detection system methodology that 
leverages the synergies of fuzzy clustering, an ABC algorithm, and MLP network. Our IDS system 
is meticulously designed to efficiently detect intrusions within the intricate landscape of 
network traffic. This methodology is organized into three pivotal phases: training, validation, 
and testing, each contributing significantly to the optimization of our IDS architecture. 

Our journey begins with the training phase, where we embark on the task of extracting and 
fine-tuning fuzzy rules. These rules are instrumental in achieving precise intrusion detection. 
We do so by harnessing the potential of the training dataset, with the ultimate aim of attaining 
exceptional accuracy when applied to the test dataset. The validation phase assumes paramount 
importance as it acts as a litmus test for the system's overall performance. During this phase, we 
meticulously scrutinize the validation dataset, continuously monitoring error rates. The training 
process concludes when we observe a consistent upward trend in errors, signifying the need for 
further refinement. In the testing phase, we put our trained model to the ultimate test, 
deploying it for intrusion detection by processing the test data. The dataset is systematically 
divided into three distinct subsets: training (TR), validation (VA), and testing (TE). At the core of 
our methodology lies the concept of clustering based on similarity measures, a pivotal step in 
unveiling the natural groupings or clusters within multidimensional data. The fundamental goal 
of fuzzy clustering is to categorize the dataset into clusters based on key attributes, specifically 
emphasizing homogeneity within clusters and heterogeneity between clusters. This strategic 
approach ensures that data residing within separate clusters exhibit maximum dissimilarity, 
enhancing our system's ability to distinguish between benign and malicious traffic. 

The Fuzzy C-Means (FCM) clustering algorithm plays a central role in our methodology for 
partitioning the dataset into clusters. The FCM equation is represented as follows: 

The steps for k-means clustering, a vital component of FCM, encompass selecting the desired 
number of clusters (k), initializing starting values, classifying data points, recalculating 
centroids, and ascertaining convergence. 
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This equation forms the basis of our FCM clustering process, allowing us to effectively group 

network traffic data into clusters that optimize our subsequent IDS elements. 
MLP-based IDS model: Subsequent to clustering, the training set (TR) is subdivided into k 

subsets (TRk). Our IDS model relies on a multilayer perceptron augmented with a 
backpropagation algorithm. The BP learning rule employs the steepest descent method to fine-
tune network weights and threshold values, minimizing the error sum of squares. 

 

F(x) =
1

1+𝑒−𝑥
          (5) 

 
The ABC algorithm assumes a pivotal role in optimizing node weights by quantitatively fine-

tuning linkage weights and biases. This algorithm emulates the intelligent foraging behavior of 
honeybee swarms, comprising employed bees, onlookers, and scouts. Employed bees discover 
food sources by observing hive dances, onlooker bees identify sources, and scout bees explore 
new sources. The optimization process ensures that the nectar quantity of a food source 
corresponds to the quality (fitness) of the associated solution. It plays a crucial role in 
determining the output of each neuron within the MLP.  

 

Δ 𝑤𝑖𝑗  (n) = ηδ𝑥𝑖  (n)                                                   (6) 

 



Where: Δ 𝑤𝑖𝑗 (n) denotes the change in the weight connecting neuron, i to neuron and j at 

iteration, η is the learning rate, δj (n) represents the error signal at neuron j at iteration, 𝑥𝑖is the 
input to neuron i. This equation guides the weight adjustment process during network training. 
The ABC algorithm continues to iteratively refine the linkage weights and biases of the MLP 
network until the output model achieves an acceptable error rate during the testing phase using 
the TE dataset. The optimization process can be summarized as follows: 

 

𝑓𝑖𝑗
𝑡+1= 𝑓𝑖𝑗

𝑡  + ϕ⋅  (𝑓𝑖𝑗
𝑡  −𝑓𝑘𝑗

𝑡 ). rand ( )                                            (7) 

 
Where 𝑓𝑖𝑗

𝑡+1the updated position of the employed bee is, 𝑓𝑖𝑗
𝑡   is the current position of the 

employed bee. 𝑓𝑘𝑗
𝑡  is the position of the food source indicated by the onlooker bee, ϕ is a scaling 

factor  and rand ( ) generates a random number between 0 and 1. This iterative process ensures 
the optimal configuration of the IDS model for effective intrusion detection. 

4. Experimental setup and results 

This section provides experimental configuration and results. 

4.1. Simulation framework and hardware 

In this section, we detail the experimental setup employed to evaluate and validate our 
proposed IDS using CloudSim version 5.0. The setup encompasses the simulation environment, 
dataset selection, and relevant considerations. To rigorously assess the performance of our IDS, 
we harnessed the capabilities of CloudSim version 5.0, a versatile and extendable simulation 
framework. The simulations were executed on a high-performance computing system equipped 
with a robust Core-i9 2900 CPU and 18 GB of DDR3 RAM. CloudSim's comprehensive modeling 
and simulation features for cloud computing infrastructures and services made it the natural 
choice for our research, ensuring the reliability and accuracy of our evaluations. For the crucial 
tasks of training and testing our IDS, we opted for the NSL-KDD dataset, an enhanced iteration 
of the KDD'99 dataset, recognized for its relevance in intrusion detection research. The dataset 
boasts a substantial repository of five million connection records, with approximately two 
million meticulously reserved for exclusive testing purposes. Within this dataset, we 
meticulously examined 55 distinctive features extracted from each connection record. These 
features are accompanied by labels that categorize connection status into two classes as the 
normal or indicative of a specific attack type. These features span various data types, including 
continuous, discrete, and symbolic variables. 

4.2. Result and evaluation 

In Section 3.1, we applied the artificial neural network classifier to a network traffic dataset 
encompasses both benign and malicious files. To ensure the classifier's robustness and 
generalization to unseen data, we employed repeated 10-fold cross-validation. Table 1 presents 
the mean (highlighted in bold) and standard deviation of accuracy, precision, and sensitivity 
across 1000 iterations of repeated 10-fold cross-validation. 

 
Table 1:  
Metrics for classifier performance 

Metric Mean Standard Deviation 

Accuracy 0.99 0.01 
Precision 0.98 0.01 
Sensitivity (Recall) 0.94 0.03 
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Figure 2: ROC curve for detection of malicious file content 

 
Figure 2 showcases a receiver-operator characteristics curve derived from data collected 

during all 1000 iterations of the repeated 10-fold cross-validation process. ROC curves provide 
a valuable analysis of the trade-off between a classifier's sensitivity and specificity at different 
classification thresholds. The area under the ROC curves (AUROC), reported in Table 2, and 
quantifies the overall discrimination capability of a classification model. A higher AUROC 
signifies superior differentiation between distinct classes. In Fig. 2, represents the average ROC 
curve across all 1000 iterations, while the shaded grey area illustrates the range of ROC curves 
produced during these iterations. The dashed line serves as a benchmark, representing the 
performance of a random classifier that assigns file classes arbitrarily. 

 
Table 2:  
Metrics for AUROC 

Metrics Value 

Average AUROC 0.99 
Standard Deviation AUROC 0.01 
Maximum AURO 1.00 
Minimum AUROC 0.84 

 

4.2.1 Classifier performance on unseen test data 

In Fig. 3, we present the performance of one of our best-trained artificial neural network 
designs on a completely unseen test dataset. Remarkably, this dataset was entirely excluded 
from both the training process and the cross-validation procedure. The results are striking: the 
best-performing classifier correctly identified 100% of malicious file contents in the test 
dataset, demonstrating a remarkable absence of false positives. 
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Figure 3: Performance evaluation on unseen test data: confusion plot matrix  

4.2.2 Evaluating false positives 

Assessing the performance of the best-trained classifier in terms of flagging false positives on 
an extensive dataset of candidate network traffic data is critical. An overabundance of false 
positives renders a network intrusion detection system ineffective, as genuine malicious code 
becomes obscured by misidentified benign traffic. To test this, we processed data from 500,000 
random files, encompassing various types such as text files, log files, compressed and 
uncompressed music, executable, office documents, and miscellaneous file data. This dataset 
was prepared to match the format expected by our artificial neural network. The classifier was 
then applied to this benign data. Across this large-scale dataset, the classifier misidentified a 
mere 10,500 samples, accounting for approximately 1.8% of all data samples. This 
comprehensive evaluation demonstrates the robustness and accuracy of our intrusion detection 
system, particularly in the critical task of minimizing false positives while effectively identifying 
malicious file content. 

 

4.2.3 Evaluation methodology and metrics for intrusion detection system 
assessment 

In this section, we provide a comprehensive overview of the evaluation methodology 
employed to assess the effectiveness of our intrusion detection system. Subsequently, we 
present the results obtained using various evaluation metrics, each serving a unique purpose in 
assessing the system's performance. The mean absolute error calculates the average magnitude 
of errors between our system's predictions and actual outcomes, offering valuable insights into 
prediction accuracy. Root mean squared error: RMSE quantifies differences between predicted 
and observed values, effectively measuring the spread of prediction errors for a deeper 
understanding of accuracy. Kappa statistic: This statistic assesses the level of agreement 
between observed classifier accuracy and expected accuracy, considering random agreement 
between classifiers for a more realistic evaluation compared to traditional accuracy measures. 

4.2.4 Performance evaluation of IDS: comparative analysis and metrics 

The graphical representation in Figure 4(a) presents a performance comparison of four 
different IDS: NNID, FC-ANN, SRF, and the proposed method. The numbers in the figure 
represent accuracy percentages or some performance metric. For instance, the proposed 



method achieved an impressive 99.01% accuracy, indicating its ability to correctly classify 
instances or detect intrusions. This suggests that the 'proposed' method outperforms the other 
three methods (NNID, FC-ANN, and SRF) in terms of accuracy. Figure 4(b) illustrates a 
comparative analysis of four different Intrusion Detection Systems (IDS): NNID, FC-ANN, SRF, 
and the proposed method. The figures represent performance metrics, and the proposed 
method achieved an impressive value of 0.97, indicating a high level of precision and 
performance. In contrast, the other three methods (NNID, FC-ANN, and SRF) show different 
values, reflecting their respective performance levels 

Figure 4(c) provides a comparison of the average absolute deviation values for different 
intrusion detection systems, including NNID, FC-ANN, SRF, and our proposed method. Average 
absolute deviation measures the average magnitude of errors between the predictions made by 
each ID and the actual outcomes. Smaller values in this table indicate that the IDS predictions 
are closer to the actual outcomes, signifying higher prediction accuracy. As we move from NNID 
to our proposed method, there is a decreasing trend in the average absolute deviation values. 
This trend suggests that our proposed method exhibits improved accuracy and precision in 
predicting outcomes compared to the other IDSs listed in Figure 4(c), and Figure 4(d) presents 
RMSE values for different intrusion detection systems, including NNID, FC-ANN, SRF, and our 
proposed method. RMSE measures the spread of prediction errors in the IDS performance 
evaluation. Lower RMSE values indicate higher accuracy and precision in predicting outcomes. 
As the IDS moves from NNID to our proposed method, there is a decreasing trend in RMSE 
values, showcasing the improved accuracy of our approach compared to the others. 

 
Figure: 4 (a) Accurately classified cases comparison. (b) Kappa statistics analysis. (c) Average 
absolute deviations. (d) Evaluation of root mean squared error (RMSE) 

 
The graphical representation in Figure 4 provides a holistic view of our IDS's performance 

compared to establish IDSs, including fuzzy clustering, artificial neural networks, network-node 
intrusion detection, and the selection of relevant features (SRF). Our proposed method 
consistently outperforms these IDSs across various evaluation criteria. Notably, we observe a 



significant 2.5% improvement in correctly classified instances, encompassing true positives and 
false positives. Furthermore, our method exhibits higher accuracy, as evidenced by a Kappa 
statistic value surpassing SRF by 0.0471. In summary, our approach achieves enhancements 
ranging from 2.571% to 7.865% in correctly classified instances in Figure 4(a) and attains 
Kappa statistic values ranging from 0.0471 to 0.208 in Figure 4(b). Moreover, our method yields 
lower MAE and RMSE values, as evidenced in Figure 4(c) and 4(d), respectively 

5. Conclusion and future directions 

The research presented in this paper showcases remarkable IDS that represents a substantial 
improvement over traditional signature-based detection methods. Our IDS leverages an 
artificial neural network classifier for detecting shellcode patterns within network traffic, 
achieving outstanding results. The ANN-based classifier not only demonstrates perfect 
sensitivity by identifying all instances of shellcode but also excels in precision, minimizing false 
positives, a critical concern in real-world network intrusion systems. Furthermore, our 
approach underwent rigorous evaluation; including testing on an extensive dataset containing 
500,000 samples of benign network traffic file content. Impressively, our method achieved a 
false positive rate of less than 2%, addressing the challenge of minimizing false positives. This 
achievement is significant because high false positive rates can severely impact signal-to-noise 
ratios, rendering intrusion detection systems ineffective. 

Whereas, our paper focuses on offline shellcode pattern detection; our ongoing efforts aim to 
seamlessly integrate this method into online network intrusion detection systems. Future work 
entails real-time testing on network data, complemented by enhancements to optimize its 
performance in live network traffic monitoring. Additionally, we envision applying this 
intelligent approach to other facets of network security, including the detection of cross-site 
scripting attacks and SQL injection attacks targeting web applications. These domains hold 
significant promise for future research and development. Furthermore, we introduced new IDS 
that combine artificial neural networks, artificial bee colony algorithms, and fuzzy clustering. 
This ID effectively discriminates between normal and abnormal network traffic packets, 
producing distinct training subsets through fuzzy clustering. The ABC algorithm plays a vital 
role in updating linkage weights and biases for MLP training. Our simulations employ CloudSim 
software and the NSL-KDD dataset, and we evaluate the IDS using various criteria, including 
MAE, RMSE, and the kappa statistic, showcasing its superiority over similar IDS systems. The 
integration of meta-heuristic methods and genetic algorithms in our approach holds promise for 
future enhancements in intrusion detection systems. 
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