
Definition of Cryptojacking Indicators 

Tetiana Babenko1,2, Kateryna Kolesnikova1, Rostyslav Lisnevskyi1,2, Shakirt Makilenov1,3 
and Yuriy Landovsky2    

1International Information Technology University, Manas St. 34/1, Almaty, 050040, Kazakhstan 
2Taras Shevchenko National University of Kyiv, Volodymyrska St. 64/13, Kyiv, 01601, Ukraine 
3Al-Farabi Kazakh National University, al-Farabi Avenue 71, Almaty, 050000, Kazakhstan 

Abstract  
This article explores and defines cryptojacking indicators, which are necessary to detect and suppress 
illegal activities in the field of cryptocurrency mining. The study includes the analysis of characteristic 
signs and properties of cryptojacking, as well as a review of modern detection methods and research 
methodologies. Application of the obtained indicators allows the detection of cybersecurity anomalies 
related to unauthorized cryptojacking on end systems. 
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1. Introduction 

The increasing volume of information processed and transmitted between different information 
systems, organisations and individual users increasingly depends on the continuity and accuracy 
of these processes. With each passing year, cybercriminals are becoming more adept at exploiting 
software vulnerabilities. According to Rapid7's 2021 Vulnerability Report, the time to known 
exploitation (TTKE) has decreased by 71%. The average time to exploit a vulnerability has 
dropped significantly from 42 days in 2020 to just 12 days in 2021[1]. 

In order to respond to new threats in information systems in a timely manner, it is necessary 
to have tools that allow you to analyze security risks in real-time and mitigate their impact on 
assets. Each individual asset has a large attack surface, as it is constantly exposed to a large 
number of external and internal risk factors [2,3]. In addition, within the framework of modern 
distributed systems, such assets are not isolated, but are in constant interaction with other 
network nodes, end users, or are exposed to the external environment. Another aspect of the 
situation is the presence of a large number of known vulnerabilities, or zero-day vulnerabilities, 
which also significantly affects the profile of potential threats. 

From a technical perspective, cryptocurrency mining involves continuous computation of 
specific hash functions. A cryptographic hash function (CHF) is a mathematical algorithm that 
maps data of arbitrary size (often referred to as a "message") into a fixed-size binary array ("hash 
value," "hash," or "message digest"). It is a one-way function, meaning it cannot be inverted. 
Ideally, the only way to find such a message is to use a rainbow table of corresponding hashes [4]. 

Very often, attacks on endpoint systems are realized through the exploitation of vulnerabilities 
in system and application software. Starting from attacks on browser vulnerabilities when a user 
loads an infected web page, and ending with the delivery of a malicious payload to an end system 
by exploiting vulnerabilities in network protocols and operating systems [5,6].  
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Despite the wide range of capabilities of modern EPP platforms, the number of information 
security incidents related to the compromise of end systems and their subsequent use for crypto 
mining (Cryptojacking) has increased significantly.  

Cryptojacking is the process of using the victim's computing power without consent for 
cryptocurrency mining. Cryptojacking usually leads to a decrease in system performance and an 
increase in energy costs [6-9]. 

Detection and Identification of Cryptojacking is a challenging task, as perpetrators conducting 
Cryptojacking attacks often attempt to conceal their activities. Currently, there are several 
indicators and methods that can be employed to detect Cryptojacking activity, including [9-20]: 

• Detecting anomalies in resource usage, including monitoring the central processing unit 
(CPU) and graphics processing unit (GPU) load, as increased CPU or GPU load may indicate the 
execution of mining scripts. 
• Studying processes that use an abnormally large amount of computing resources since 
Cryptojacking scripts can consume a significant amount of RAM and energy. 
• Monitoring network activity to detect suspicious activity, such as communication with 
known mining pools. High network traffic associated with mining can be an indicator of 
Cryptojacking. 
• Checking system processes and services on the end system to identify unknown or 
suspicious processes running in the background. 
• Monitoring the browser to detect unauthorized script loading and execution or 
identifying suspicious browser extensions for the detection of extensions that could run 
Cryptojacking scripts. 
• Monitoring blockchain transactions. 
• Utilizing integrated solutions. Antivirus and anti-malware software can sometimes detect 
and block malicious scripts and programs associated with Cryptojacking. 
• Analyzing system logs and cybersecurity event logs. 
Based on the above, a combination of appropriate methods and solutions is required to solve 

the problem of detecting and identifying Cryptojacking activity. Since the task of detecting 
Cryptojacking activity, especially in distributed information systems, contains uncertainties and 
cannot be well described by analytical methods, solutions based on artificial intelligence, in 
particular neural networks, are increasingly used in scientific works on this topic.  In this paper, 
we will study the possibility of finding indicators of unauthorized crypto activity based on the 
analysis of operations performed by the application and network activity. 

2. Approaches review   

In the field of cryptojacking, most of the proposed detection methods use dynamic analysis. The 
main reason for this is that mining scripts use a set of known instructions. For example, miners 
use cryptographic hash libraries and repeatedly increment the value of a static variable (i.e. 
nonce), or connect to some known service providers to keep downloading computation results 
and receive new tasks. These typical actions of cryptojacking malware create a pattern that allows 
them to be detected by dynamic analysis.  An analysis of research in the area of detecting 
Cryptojacking activity showed that there are only a few studies that use static features, such as 
operation codes [21] and WebAssembly (Wasm) instructions. WebAssembly [21] is a low-level 
instruction format that allows programs to run closer to a machine-level language and deliver 
higher performance using stack-based virtual machines. This low-level instruction model allows 
WebAssembly to execute code more efficiently, and this feature provides more profit because the 
cryptojacking script runs faster. All major browsers on the market now support WebAssembly. 
The detection system proposed in [21] uses transaction codes for static analysis, where 
transaction codes are extracted using IDA Pro.  The system proposed by the authors of [21] 
detects cases of compromise of the end system for cryptomining with an accuracy of 95%. 

Analysis of CPU-related events [9-24] are the most commonly used parameters for detecting 
cryptojacking based on dynamic analysis, since cryptojacking scripts need to receive CPU 



instructions to perform mining, regardless of the hardware used. Although CPUs are a typical 
feature of cryptocurrency mining, using CPU events alone can lead to high false positive rates 
(FPRs), as flash game websites or online rendering websites also heavily use CPUs for their 
operations. The analysis of memory usage for Cryptojacking is widely presented in and is another 
commonly used feature of cryptojacking  

In [21], system calls were used to detect the process of unauthorized Cryptojacking. System 
calls are executed with level 0 privileges to make calls and request services from the OS kernel. 
The proposed detection system in [21] uses system calls that are then used to train deep learning 
models, and they achieve 99% accuracy. 

It should be noted that despite the widespread use of neural networks to detect and identify 
various types of attacks on endpoints or intermediate elements of information and 
communication systems, there are few published scientific studies on their use to detect and 
identify cryptojacking. For example, in [15], a solution is proposed, but in a rather unrealistic 
scenario that does not take into account encrypted traffic, a reduced set of traditional machine 
learning models is proposed, using a set of uninformative features as input data. 

Paper [16] proposes a method for detecting cryptojacking based on signs of provider network 
behavior. The authors identified cryptojacking features from the first four packets in the stream 
and developed a neural network classifier that accurately and efficiently detects signs of 
cryptojacking traffic. The authors of [17] proposed to use neural networks to analyze assembly 
code that is platform- and high-level programming language-independent. The paper presents 
the results of numerical experiments with different neural network architectures, which show 
that the neural network apparatus is a highly effective tool for detecting cryptojacking attacks 
and allows achieving high classification accuracy even with limited training data.  The research 
work [18] focuses on providing a solution for detecting malicious cryptomining activity by 
passively monitoring the network and identifying cryptomining characteristics. The authors of 
[9] deployed a complex and realistic cryptomining scenario for training and testing machine 
learning models, in which clients interact with real servers via the Internet and use encrypted 
connections. The analysis of the research results led to the conclusion that the use of machine 
learning models can detect cryptomining attacks even if the traffic is encrypted.  

In their study [19], the authors evaluated the effectiveness of machine learning methods on 
the task of real-time traffic classification and concluded that decision tree-based classifiers are 
the most effective for classifying network traffic. The authors of [19] modeled real-time 
classification using traffic features obtained from the first few packets of each stream. 

It should be noted that most research works are focused on detecting unauthorized 
Cryptojacking processes. However, there are several solutions to combat cryptojacking, namely, 
open-source browser extensions such as NoCoin [25] and MinerBlock are used in browsers. 
These extensions are based on blacklists that are updated when new mining domains are 
discovered. The browser, in turn, warns the user that a blacklisted website is being accessed.  
Blocking based on a blacklist is an ineffective way to combat cryptojacking, as attackers can 
change target domains and, accordingly, the effectiveness of blacklists. A method of dynamic 
blacklisting was proposed in [24], but as shown in [25], this solution also has limited 
effectiveness. 

It should be noted that most research works are focused on detecting unauthorized 
Cryptojacking processes. However, there are several solutions to combat cryptojacking, namely, 
open-source browser extensions such as NoCoin [25] and MinerBlock. These extensions are 
based on blacklists that are updated when new mining domains are discovered. The browser, in 
turn, warns the user that a blacklisted website is being accessed.  Blacklist-based blocking is an 
ineffective way to combat cryptojacking, as attackers can change the target domains and, 
consequently, the effectiveness of blacklists. 

In this study, the analysis of operations performed by the application process and the analysis 
of network traffic will be used to find identifiers of unauthorized cryptomining. 

 



3. Сryptojacking scenarios 

As known from the literature [6-24], mining is the process of creating new blocks and recording 
transactions in a cryptocurrency blockchain. It is a fundamental component of the operation of 
most cryptocurrencies and ensures network security and decentralization. The mining process 
can vary depending on the specific cryptocurrency and the algorithm employed. However, in 
general terms, it can be described as follows: 

• Transaction Collection: Network users send transactions (cryptocurrency transfers) 
using their wallets. These transactions are gathered in pools (mempools), where they await 
processing by miners. 
• Block Creation: Miners compete for the right to create a new block in the blockchain. To 
achieve this, they solve a complex mathematical problem known as "Proof of Work" (PoW) or, 
in some cases, "Proof of Stake" (PoS). 
• Task Solving: Miners solve a task that requires significant computational effort. In PoW 
systems, this may involve finding a value (hash) for a new block that meets specific conditions. 
This process is called "finding a nonce." In PoS systems, miners prove their stake in the 
cryptocurrency based on the number of coins they hold as collateral. 
• Adding a Block: The first miner who successfully solves the task gains the right to create 
a new block. This block includes the collected transactions from the mempool, information 
about the previous block, and the results of solving the task (nonce or other proofs). 
• Transaction Confirmation: The created block is broadcasted throughout the 
cryptocurrency network. Network participants (nodes) verify the block and its contents. If 
everything is correct, the block is confirmed and added to the blockchain. 
• Reward: The miner who successfully creates a new block receives a reward in the form of 
cryptocurrency. This includes transaction fees from the transactions included in the block and, 
in the case of Bitcoin, newly minted bitcoins issued as a block reward. 
• Repetition: The mining process repeats itself, creating new blocks and processing new 
transactions continuously. 
Accordingly, crypto miners have their technological specificities and distinctions. To conduct 

a comprehensive study, this work examined several examples of crypto miners. The research also 
took into account that different cryptocurrencies use different hash functions. 

During the initial phase of this research, patterns related to Shift, XOR, and Rotate operations 
were detected. Their identification is essential for the following reasons: 

• Code encryption and obfuscation: Malicious actors employ these operations to conceal 
malicious code and complicate detection. It is crucial to uncover these operations as they might 
be part of encryption and obfuscation mechanisms that ensure anonymity and hinder the 
comprehension of malicious code. 
• Compromise indicator identification: Analyzing Shift, XOR, and Rotate operations can 
reveal specific patterns that indicate the use of malicious code. The presence of such 
operations in malicious software code can serve as an indicator of system compromise. 
• Detection of specific attack variations: In some cases, Shift, XOR, and Rotate operations 
may point to particular variations of cryptojacking or methods used by malicious actors. 
Revealing these characteristics allows for the analysis and prevention of new attack types. 
In this context, it should be noted that various hash functions are used for obtaining 

cryptocurrencies, namely: SHA-256, Scrypt, Cryptonight, Ethash, X11. When examining hash 
functions from a machine code perspective, it primarily involves bit operations, such as bit 
permutations and shifts. Therefore, it can be hypothesized that applications involved in 
cryptocurrency mining will exhibit an abnormal number of operations related to bit 
manipulation. Within the entire set of operations on the 'x86' architecture, the following 
operation categories are identified: Rotate, Shift, Logical Exclusive OR.  

Rotate shifts the bits of the first operand (destination operand) by the number of bit positions 
specified in the second operand (count operand) and stores the result in the destination operand. 
The destination operand can be a register or a memory location, and the count operand is an 



unsigned integer that can be either immediate or the value in the CL register. The processor 
restricts the count to a range from 0 to 31, masking all bits in the count operand except the 5 least 
significant bits. The following operations fall into this category: RCL, RCR, ROL, ROR.  

Shift moves the bits in the first operand (destination operand) to the left or right by the 
number of bits specified in the second operand (count operand). Bits that are shifted beyond the 
bounds of the destination operand are initially shifted into the CF flag and then discarded. At the 
end of the shift operation, the CF flag contains the last bit shifted out of the destination operand. 
The destination operand can be a register or a memory location, and the count operand can be an 
immediate value or the CL register. The count is masked to 5 bits, limiting the count range from 
0 to 31. Special operation code encoding is provided for counting by 1. The following operations 
are part of this category: SHL, SHR, SHRD, SHLD.  

Logical Exclusive OR performs a bitwise exclusive OR (XOR) operation on the destination 
(first) and source (second) operands and stores the result in the destination operand. The source 
operand can be an immediate value, a register, or a memory location; the destination operand can 
be a register or a memory location. (However, two memory operands cannot be used in a single 
instruction.) Each bit in the result is set to 1 if the corresponding bits of the operands are different; 
each bit is set to 0 if the corresponding bits are the same. 

4. Preparing data for modelling 

For the investigation and determination of the number of operations performed during the 
execution of a process (software product), Intel Software Development Emulator (Intel SDE) was 
utilized. Intel SDE is an emulator that enables running code with instruction sets on systems that 
do not support these instructions. It's worth noting that SDE is useful for assessing functionality 
but not performance since it executes programs much slower than if they were run on actual 
hardware. SDE only takes into account the instructions that are executed dynamically during the 
program's operation. It is a very effective way to debug a program. In this regard, if a specific 
block of addresses corresponding to certain parts of the code doesn't exhibit the expected 
instructions during execution, it can serve as an indicator of unexpected/unintended branching 
conditions. Running the program with different parameters or inputs also contributes to dynamic 
execution, so it cannot be assumed that a single program run reproduces the entire history. 

After executing the SDE operation, a file named "out_notepad.txt" is generated, which contains 
information about loaded libraries, most common instruction blocks, executed functions, and 
performed operations. An example of this information can be seen in the illustration provided in 
Figure 1. 

 

.  

Figure 1: A fragment of the SDE source file with a list of operations 

 

The key information for analysis is contained at the end of the file, where a list of all executed 
instructions during the program's operation is provided. An example of such a list can be seen in 
Figure 1. SDE allows you to filter a significant amount of information, so the resulting command 



looked like this: sde.exe -mix_omit_per_function_stats 1 -top_blocks 0 -mix_max_cumulative 0 -
mix_omit_per_hread_stats 1 -omix out_notepad.txt -- notepad.exe. 

To conduct these studies, SDE was set up to collect information only on global transactions, 
and therefore did not collect statistics for individual flows. 

In the process of further research, we developed an application that performs such operations: 
• Launch the SDE program together with the target research software. 
• Open the file where the SDE results are stored. 
• Analyzing and parsing the results. 
• Visualize the information obtained as a result of the analysis. 
First, the script receives information about the application to be examined, and then sets a 

name for the output file. Next, it prepares a command for SDE, taking into account all the 
optimization flags, and executes this command directly. The program will not continue execution 
until the running process is completed.  The subsequent phase involves opening the generated 
file, extracting information from it, and conducting parsing. During this phase, specific operations 
were identified, encompassing RCL, RCR, ROL, ROR, SHR, SHL, SHRD, SHLD, and XOR. The 
program's "main" function utilized in this research is illustrated in Figure 2. 

To illustrate the results of the study, we used the Matplotlib library [91]. Matplotlib is a 
powerful tool for data visualization in Python. This library allows you to create graphs and charts, 
is open source and available for use. Matplotlib is an alternative to other software solutions, such 
as MATLAB, and provides the ability to integrate graphical representations into user program 
interfaces through APIs (application programming interfaces). The Matplotlib library helped us 
visualize the results of our research and present them in an understandable way.  

 

 
Figure 2: The "main" function of the program 

5. Analysis of software behavior 

At the initial stage of research, we analyzed a cryptominer called XmRig. XmRig is a high-
performance open-source software tool that is cross-platform and designed to mine 
cryptocurrency using the computing power of processors (CPU) and graphics processing units 
(GPU). The tool is available for use on operating systems such as Windows, Linux, macOS, and 
FreeBSD. Figure 3 shows the console interface of the XMrig miner. 
 

 
 

Figure 3: XMRig console interface 



XmRig was executed for 2 minutes. The ratio of Shift, XOR, and Rotate operations to all 
operations in the XMRig cryptominer is shown in Figure 4. 

 

 
Figure 4: The ratio of Shift, XOR, and Rotate operations to all operations in the XMRig crypto 

miner 

 
Over 30 billion operations were performed in a period of 2 minutes. About 5% of all operations 

were allocated to Shift, Rotate, and XOR operations The distribution of operations is shown in 
Figure 5.  

 
Figure 5: Distribution of operations in the XMRig crypto miner 

 
As a result of the analysis, it was found that the vast majority of operations are Rotate (1.62% 

of the total number of operations) and XOR (3.53% of the total number of operations). Although 
Shift operations can be used to calculate hash functions, in this context, they account for only 
0.18% of the total number of operations. 

Similarly, we analyzed the work of a miner known as cpuminer. Cpuminer is a multi-threaded, 
highly optimized miner aimed at using central processing units (CPUs) to mine cryptocurrencies, 
including Litecoin, Bitcoin, and others. The program implements the SHA-256d and scrypt(N, 1, 
1) algorithms, which allow mining using different algorithms. Cpuminer also supports the get 
block template and Stratum mining protocols, which makes it possible to use it both for individual 
mining and for participating in community mining on the network.  The analysis of the cpuminer 
program execution indicates its uniqueness and high optimization for cryptocurrency mining on 
central processing units (CPUs). One of the characteristic features is a large number of XOR 
operations, which make up a significant percentage of the total number of operations, namely 
6.71%. On the other hand, Shift and Rotate operations are very limited in cpuminer, accounting 
for only 0.01% of all operations. This disproportion indicates a difference in data processing 
approaches compared to other cryptocurrency mining programs. 



It is also important to analyze the overall ratio of all operations to important operations, which 
indicates the efficiency and specific characteristics of cpuminer in the context of cryptocurrency 
mining. The results of the analysis are shown in Figure 6. This analysis helps to understand how 
the program uses computing resources to achieve optimal results in cryptocurrency mining. 

 

 
Figure 6: Distribution of operations in cpuminer 

 
The study found that all three types of operations (Rotate, Shift, and XOR) are typical for the 

cryptomining process. It is difficult to identify clear patterns, as certain cryptominers may 
actively use Rotate operations, while others prefer Shift or XOR operations. However, the key 
aspect of the analysis is to relate all operations to those that play an important role in the context 
of cryptomining. In pure applications, the highlighted operations in total do not exceed 4% of all 
operations.  

While in cryptominers, this ratio is always at least 5%. This indicates the specific nature of the 

operations used in cryptomining and their important role in the functioning of cryptominers. to 

identify suspicious activity, the following formula was used: 
 

𝐾 =  
∑ 𝑂𝑖𝑚𝑝

∑ 𝑂𝑎𝑙𝑙
∗ 100, 

 

where K is the percentage of Shift, Rotate, and XOR operations to all operations; 

𝑂𝑖𝑚𝑝 - an array of Shift, Rotate and XOR operations; 

𝑂𝑎𝑙𝑙  - an array of all operations. 

Given the results, we can conclude that the K-ratio is important in the context of application 
analysis. If the value of the K-ratio exceeds the threshold of 5%, it is considered an indicator that 
requires further in-depth consideration and analysis of the relevant application. This practice is 
justified by the fact that exceeding the specified threshold may indicate a potential anomaly in the 
application's operation. In particular, it is known that safe and harmless applications that do not 
require significant computing resources of the end system usually do not demonstrate such a high 
level of resource utilization. Therefore, a value of the K-ratio that exceeds 5% can be considered 
as a potential indicator of anomalies in the application's functioning. This approach helps to 
detect and identify applications that may have suspicious behavior or a negative impact on the 
end system. 

6. Analysis of crypto miners' network activity 

At this stage, we investigated network traffic related to cryptomining operations.  As a rule, in the 
process of cryptomining, the Stratum protocol is used to interact between the client and the 
miner's pool server. The Stratum protocol is based on the use of a regular TCP socket and is used 
to exchange JSON-RPC messages. In practice, this means that the client establishes a connection 
to the server via a TCP socket and sends requests to the server in the form of JSON messages that 
end with the newline character "\n". Each received line on the client side is a valid JSON-RPC 
fragment containing a response to the sent request Stratum communication is initiated by the 



miner (client), who interacts with the mining pool server and goes through the authentication 
procedure. After successfully logging in to the mining pool system, the miner receives a task 
through notifications about new tasks, which have a common format, as illustrated in the figure 
7. 

 
Figure 7: Stratum notification of a new job 

  
Wireshark was used to analyze network traffic [26]. The analysis of network traffic based on 

the statistics obtained using Wireshark allowed us to conclude that the size of most packets sent 
by the cryptominer is 54 bytes long.  For example, during the study, XMRig was launched for 25 
minutes, during which time 194 requests were made. Among them, 67 requests were 54 bytes 
long, which is almost 35% of all requests made. Figure 8 shows the most common packet sizes for 
the XMRig cryptominer during 25 minutes of execution. 

 

 
Figure 8: Example of packet length distribution of the XMRig crypto miner  

 
The results of the traffic analysis of other cryptominers allow us to conclude that the presence 

of packets with a length of 54 bytes should be considered as an indicator of cryptomining. 

7. Conclusion 

In summary, the results of this study provide an important contribution to the field of 
cybersecurity and the detection of unauthorised cryptomining on endpoint systems. The 
identified indicators, such as the use of the Stratum protocol, packet length, Rotate, Shift and XOR 
operations, as well as their combination, allow us to identify potential threats and act proactively 
to protect systems from unauthorised cryptomining. These results can be useful for organisations 
and individual users seeking to improve the security of their computers and network 
infrastructures in the face of growing interest in crypto mining and cyber threats. 
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