
Performance Comparison of Convolutional Neural 
Networks for Handwritten Digit Recognition Using 
Activation Functions and Optimization Methods 

Abdul Razaque1, Saule Amanzholova1, Azhar Sagymbekova1 and Aizhan Zaurbek1 

1International Information Technology University, Manas St. 34/1, Almaty, 050040, Kazakhstan 

Abstract  
The industrial sector and large-scale data statistics, such as population censuses, checks, tax statements, 
and so on, rely significantly on handwritten digit recognition. To satisfy the needs of paperless 
workplaces and significantly increase labor efficiency, it is important to investigate and implement a 
high-accuracy handwritten digit recognition system. Several studies have found that Convolutional 
Neural Networks (CNN) excel at addressing various types of prediction problems, including those 
requiring visual data as an input. The CNN activation functions and optimization approaches allow 
neural networks to express themselves nonlinearly and with smaller loss functions, improving their 
capacity to match data reliably. However, different neural networks react differently to optimization 
and activation functions. The classification accuracy of CNN for handwritten digits is investigated in this 
paper utilizing various combinations of activation functions and optimization approaches. In this study, 
we compared the performance of the CNN model using RMSprop and Adam optimization approaches, 
as well as ReLU and PreLU activation functions. Additionally, we used the Dropout regularization 
method throughout the model training to increase the model's ability to generalize and decrease 
overfitting. The collected findings demonstrate that, when trained on the Kaggle handwritten digit 
dataset, the CNN model using the Adam optimization technique and PReLU activation function beats 
other models with a high accuracy of 98.60%.  

Keywords  1 
PReLU, ReLU, Adam, Root Mean Square Propagation, digit recognition, CNN, Softmax classifier 

1. Introduction 

Pattern recognition has been a key and ongoing requirement in natural language processing 
(NLP). Pattern recognition is used in many fields, such as those involving digit, facial, object, 
fingerprint, and number identification [1]. This subject has been continuously studied and 
advanced in this field by numerous experts and academics since the middle of the 20th century. 
One difficulty with great application value is the recognition of handwritten numerals. Since even 
a minor inaccuracy in number identification could result in a huge error that cannot be detected 
by context, everyone anticipates that the accuracy of number recognition should be improved. 
Consequently, it might lead to significant losses on occasion, such as when opening accounts and 
making cheques in the banking sector. The biggest difficulty in classifying handwritten characters 
is that different languages have diverse writing styles. When compared to other formats, it is 
more difficult to recognize handwritten digits because even when written by the same person, 
the characters vary in font, similarity, size, and shape. So, the main difficulty in identifying specific 
characters is the variety in their writing styles and this makes it more difficult to pinpoint the 
pattern recognition issue with character recognition [2].  

Since the development of artificial intelligence technology, deep learning-based handwritten 

 
DTESI 2023: Proceedings of the 8th International Conference on Digital Technologies in Education, Science and 
Industry, December 06–07, 2023, Almaty, Kazakhstan 

 a.razaque@iitu.edu.kz (A. Razaque); s.amanzholova@iitu.edu.kz (S. Amanzholova); a.sagymbekova@iitu.edu.kz (A. 
Sagymbekova; a.zaurbek@iitu.edu.kz (A. Zaurbek) 

 0000-0003-0409-3526 (A. Razaque); 0000-0002-6779-9393 (S. Amanzholova); 0000-0001-8878-3895 (A. 
Sagymbekova); 0000-0002-4475-2613 (A. Zaurbek) 

 
© 2023 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  
 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



digit identification algorithms have been able to outperform more conventional methods in terms 
of accuracy. The most popular classification techniques include SVM, closest neighbor algorithm, 
and others but these traditional approaches are obviously exceedingly difficult and ineffective. 
The growth of neural network theory has led to the emergence of numerous new, more effective 
techniques. The Convolutional Neural Network is now a hot topic in machine learning. Its 
network structure resembles that of the visual nerve’s system receptive field, making it especially 
well-suited for activities requiring image processing [3-4]. Feature extraction is a key component 
of the handwritten digit recognition system. Convolution Neural Networks (CNN) automatically 
extract features from training datasets that are fixed and to some extent susceptible to character 
shifting and structural distortions. It is possible to repair and reconstruct features directly from 
initial images using the automatic feature extraction approach, whereas traditional feature 
extraction methods are labor-intensive and inefficient [5-6].  

Deep learning approaches, such as multilayer CNN using Tensor flow and Keras, have the 
maximum accuracy when compared to the most common machine learning algorithms, such as 
k-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest Classifier (RFC) 
[7]. Because of its great accuracy, CNN is widely utilized in image classification, video analysis, 
and other applications. As a result, in this study, a network model of this type is developed using 
deep learning as a starting point to evaluate the performance of handwritten digit recognition.  

1.1. CNN Architecture  

The initial step in classifying handwritten digits is to extract features from the images. We can 
now easily extract features from images and classify them by using deep learning techniques. 
Convolutional neural networks (CNNs) are often chosen for pattern recognition challenges since 
they don't require manual selection of significant features from the images [8]. Without any 
human oversight, it is capable of automatically selecting an image's most significant features or 
patterns. Due to these factors, CNN is regarded as a top feature extractor and classifier. In this 
study, CNN architecture has been employed to recognize handwritten digits. The simplest 
structure of a neural network contains three layers: input, implicit, and output layer. Several 
neurons are present in every layer of the network. Through an activation function and matching 
weights between each neuron, the last layer neurons are translated to the neurons in the 
following layer, and the result is our categorization category. CNNs are the advancement of neural 
networks which have mainly four basic layers: the first is the Convolutional Layer, the second is 
Pooling Layer, the third is Flatten Layer and finally for the fourth, we have Fully connected layer. 
In CNN, to extract features we use convolutional and pooling layers. When features have been 
extracted, CNN can use a final layer which is fully connected to map the features into the final 
output. Below Figure 1 depicts the basic CNN structure. 

A convolutional layer may be subjected to numerous filters for more precise feature 
extraction. In a CNN model, multiple convolutional layers are frequently stacked up and the 
outputs serve as inputs for subsequent layers. It aids in the extraction of more sophisticated and 
intricate information from the input layer [9]. The pooling layer is one more CNN component used 
to minimize feature map size. Additionally, it decreases the number of parameters that must be 
taught, which in turn helps in less computational time and energy. The final feature mapping is 
fed to the Flatten layer after convolutional and pooling layers to create a one-dimensional vector. 
After then, fully connected layers receive this one-dimensional variable as input. SoftMax 
combines the features of fully connected layers to train the computer to recognize them. The deep 
learning library used by Python is called Keras. It implements deep learning using a tensor flow 
backend. For the implementation of CNN, many researchers have employed keras . Figure 1 
shows CNN architecture.  



Convolution Pooling Convolution Pooling
Output

Kernel

Donald

Goofy

Tweety

Input Image
Feature-

Mapping

Pooled Feature-

Mapping
Feature-

Mapping
Pooled Feature-

Mapping

Flatten 

Layer

Feature-Mapping Process Fully-Connected Layer

 
Figure 1: Convolutional neural network architecture 

1.2. Contribution 

The main contributions are summarized as follows: 

• The classification accuracy of CNN for handwritten digits is investigated that utilizes 
various combinations of activation functions (ReLU and PreLU). 
• The performance of the CNN model is compared using RMSprop and Adam optimization 
approaches. Furthermore, dropout regularization method is employed throughout the model 
training process to increase the model's ability to generalize and decrease overfitting. 

1.3. Problem Identification 

CNN is ideal for image recognition. However, a large amount of training data is required to 
construct a high-accuracy model. Not only is there a high need for data, but researchers' 
computational abilities are also challenged. Researchers are always looking for ways to strike a 
balance between accuracy and speed. They concentrated on obtaining more accurate models 
without boosting data collection. There are several techniques, such as improving data 
improvement algorithms, changing network architecture, improving activation functions, and so 
on. Different optimization strategies and activation functions behave differently in different 
neural networks [10]. As a result, we evaluate the impact of ReLU and PReLU activation functions 
with Adam and RMSprop optimizers on CNN model accuracy using the Kaggle dataset of 
handwritten digits in this study. After comparing the accuracy of the handwritten digit 
recognition methods with other literature, we determined that employing the PReLU activation 
function and the Adam optimizer successfully increases the rate at which handwritten digits are 
recognized. 

1.4. Paper Organization 

The remainder of the paper is organized as follows: 
Section II provides a review of relevant work. Section III presents methods and materials. The 

experimental approach is described in Section IV. The experimental result is presented in Section 
V. Finally, the entire paper is concluded in Section VI.  

2. Related work 



This section describes salient features of existing approaches. The hand digitization recognition 
is becoming increasingly important. There has already been a significant amount of research that 
includes an in-depth examination and use of numerous well-known algorithms for recognizing 
handwritten digits. Handwritten digit recognition can be implemented using several deep 
learning and machine learning approaches. [11] investigated the effectiveness of SVM and KNN 
for handwritten digit recognition, discovering that these approaches perform better. There are 
various more challenges that must be addressed in order to obtain outstanding performance in 
terms of accuracy for detecting handwritten numbers using machine learning and deep learning 
algorithms, such as big input data, sluggish computation speed, and a few other aspects. Model 
information (weights) is spread across many levels in a neural network, and model information 
is dispersed in diverse neurons within each layer [12]. A large amount of study has already been 
conducted into strategies for improving neural network efficiency by harnessing the natural 
parallelism that exists within them.  The majority of this research has concentrated on 
implementing neural networks on a shared memory multiprocessor parallel computer or on 
special-purpose hardware. [13] investigated the theoretical cost of each parallelization technique 
while keeping the number of processors and the size of the neural network in mind, which was 
then analyzed for performance.  [14] contributed to creating and analyzing ideal parallel methods 
for CNN training based on digit recognition, with a particular emphasis on a parallelizing platform 
employing OpenMP technology on a traditional multi-core CPU. They looked at how rapidly CNN 
training progressed and offered advice for efficient OpenMP parallel modeling based on the 
dimensions of the input images. Recurrent neural networks can be trained efficiently using a 
simple algorithm. Thus, the longest sequence in a training can be used to calculate its 
computational complexity. In most typical datasets, recordings of different lengths are included 
for perceptual machine learning tasks. These recorded data's training set can be arranged using 
batch grouping techniques. 

Deep neural network (DNN) is used on multiple devices to reduce the total training time of 
CNN [15]. A DNN's layers can be parallelized in a variety of ways. It would be impractical and 
time-consuming to thoroughly analyze this list to find the optimal parallelization strategy. Data 
parallelism is the preferred method due of its convenience. Data parallelism, on the other hand, 
typically falls short of system reliability and has a high memory requirement [16]. On a case-by-
case basis, experts designed methods have been put advanced employing domain-specific 
information. These expert-made techniques are not always the best option and do not generalize 
well to DNNs other than the ones for which they were built. The objective is to provide the work 
for automatically determining effective parallelization techniques for DNNs from their execution 
graphs. The quick approach is offered that may be used in the real world to evaluate these 
techniques. On several DNNs, the performance is assessed for the proposed strategy. The 
effectiveness of various data parallelism-discovered and expert-designed solutions is compared 
utilizing cutting-edge methods as well as data parallelism. The findings show that, in every case, 
the solutions produced using this methodology outperform the typical data parallelism strategy 
[17]. 

3. Methods and materials 

Convolutional neural network model parameter optimization frequently uses the gradient 
descent technique. The method of parameterization involves minimizing the loss function. A 
dataset with D training data, for instance, has the following loss function as shown in equation 1. 

 

𝐿(𝑊) =
1

|𝐷|
 ∑ 𝑓𝑊(𝑥𝑖)

|𝐷|

𝑖

 +  𝜆𝑟(𝑊). (1) 

 



Where 𝑓𝑊(𝑥𝑖) is a single sample (𝑥𝑖) of the loss, the 𝑟(𝑊) is the canonical term, the λ is the 
weights.  

Learning can be applied in a variety of ways using various optimization techniques. Amongst 
the most used stochastic methods for deep neural network training is Stochastic gradient descent 
(SGD). Although the standard SGD method with learning rate does converge, as it is challenging 
to select an appropriate learning rate, its empirical performance may nevertheless stagnate. 
Therefore, to further improve the empirical performance of SGD, a wide range of adaptive 
algorithms have been developed, including AdaGrad, RMSProp, Adam, etc., that exploit second-
order moments of historical stochastic gradients to alter the learning rate automatically. 

• Stochastic Gradient Descent: The complete dataset is trained using the standard gradient 
descent algorithm. Stochastic gradient descent is a variation of it that trains each data element 
separately. 
• Adagrad: This approach selects the learning rate based on the circumstances. Because the 
real rate is based on parameters, learning rates are adaptive. The learning rate will be lower 
for parameters with a high gradient and higher for parameters with a short gradient. 
• RMSProp: Adagrad is altered by RMSProp in terms of finding the gradient. The 
accumulation of gradients results in a weighted average exponentially. RMSProp keeps only 
the most recent gradient data and throws away the history. The rmsprop and its variations are 
covered in [18]. The study investigates adagrad with logarithmic regret bounds as well.  
• Adam: Its name comes from "adaptive moments." It incorporates both momentum and 
rmsprop. A bias adjustment technique is also included in the update operation, which takes 
gradient's smooth type into account. The Adam method is discussed in [19]. 

3.1. Dropout regularization methods 

As the availability of training data is limited, overfitting can quickly happen while training a 
big network [20]. When a network fits a training dataset well but performs poorly when that 
dataset is replaced with another, this is referred to as overfitting. A model with millions of 
parameters would substantially run the danger of overfitting the training set because in typical 
neural networks, each neuron is intimately coupled, causing each neuron to back-propagate to 
the subsequent neuron. This greatly increases the difficulty of training the network. Dropout 
regularization techniques enable the network to have a high learning rate, where some nodes in 
specific layers are arbitrarily ignored, while also accelerating convergence, controlling, and 
reducing overfitting. As a result, the network learns features in a distributed manner and discards 
a network property at random. The technique also enhances generalization, which successfully 
lessens overfitting. It is comparable to mixing multiple models to create the final model, which 
can effectively reduce overfitting look. 

3.2. Activation function 

The output of the higher node and the input of the lower node in a multilayer neural network 
are functionally related. This function is called the activation function. The following qualities 
should be included in the ideal activation function: 

• It can stop the gradient from vanishing when the data is output to both ends. 
• Select the symmetry center point as (0, 0) to avoid the gradient from working in a 
particular direction. 
• The computational cost of the network should be very minimal because each layer needs 
to employ an activation function. 
• The gradient descent method is employed by the neural network for iterative training, 
and each layer's activation function should be differentiable. 

Some researchers focus more on selecting an effective activation function in their deep learning 
study. To give the neural network nonlinear capabilities, activation functions are included, and 



various activation functions affect the model's ability to fit nonlinear functions in different ways. 
We have several activation mechanisms, including the ReLU and PReLU activation functions, 
among others. 

ReLU has gained a lot of popularity as an activation function recently. It is described in 
equation 2 as shown below. 

 

𝑦 = {
0, (𝑥 ≤ 0)
𝑥, (𝑥 > 0)

 (2) 

 

The corresponding image is shown in Figure 2: 
 

-4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

5

6

O
u

tp
u

t 
(y

)

Input(x)

-4

ReLU Activation Function

 
Figure 2: ReLU activation function image 
 

ReLU is hard saturated when x is less than 0 and when x is greater than 0, there is no saturation 
issue. ReLU can prevent the gradient from declining at x greater than 0, solving the gradient 
disappearance problem, and enabling supervised direct training of deep neural networks without 
the need for unsupervised layer-by-layer pre-training. However, as training progresses, some 
inputs enter a hard saturation zone and the corresponding weights are not updated, which affects 
the network's convergence. Hence, the ReLU activation function has been enhanced, and the 
result is the PReLU activation function.  It is defined as y = max (αx, x) (0 < α < 1), and the 
corresponding image is shown in Figure 3. 

In the negative region, the PReLU activation function has a small slope, which avoids the 
problem of the ReLU activation function losing its role. Although the slope is slight, the PReLU 
activation function is a linear operation in the negative region, and it does not converge to 0. This 
resolves the issue of ReLU's hard saturation at x < 0, which has no effect on the network's ability 
to converge with the training input's hard saturation area. In the PReLU activation function 
formula, the parameter α is typically assumed to be an integer between 0 and 1, and it is typically 
still small, such as zero point zero. 
 



-8 -6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

O
u

tp
u

t 
(y

)

Input(x)

-8

PReLU Activation Function

 
Figure 3: PReLU activation function image 
 

A. Setting up the optimizer and annealing function 
Once the network model has been successfully built, we will require an optimization 

algorithm, a scoring function, and a loss function. The model's performance on image datasets 
with known labels is measured using the loss function. Cross-entropy is the one that is most 
frequently employed loss function, and the optimizer is the most important function that 
iteratively improves the parameters to minimize the loss function. 

 

B. Softmax regression classifier 
The Softmax classifier, which uses a version of logistic regression, simplifies binary concepts 

like hinge loss [1]. Typically, Softmax is used for multi-classification issues. Through function 
action, it serves the purpose of mapping the output of many neurons to the range (0, 1). This 
procedure can finish jobs requiring several classifications since it can be thought of as probability. 
When an array V has an element i identified as Vi, its value after softmax regression [2] is shown 
in equation 3. 

 

𝑆𝑖 =
𝑒𝑖

Σ𝑗𝑒𝑗
 (3) 

 

For instance, if you design a neural network-based classifier using Softmax, there are 10 
categories, ranging from category 1 to category 10 and 10 output neurons. 

4. Experimental approach  

We examined the performance of CNN models utilizing ReLU and PReLU activation functions with 
Adam and RMSprop optimizers on the Kaggle dataset of handwritten digits. The effectiveness of 
these models is evaluated in terms of recognition rates. The Jupyter Notebook platform was used 
to run the simulations. A training and testing set is created from the input images. Each image has 
784 pixels, which stand in for the digit structures. 

4.1. Dataset 

This paper makes use of the Kaggle dataset that contains samples of handwritten digits. 
Machine learning models are used to recognize and develop systems based on handwritten digits. 



The researchers frequently use the Kaggle handwritten digit dataset that has 42,000 sample 
images of handwritten digits. Different training and testing dataset (e.g. 70% training with 30% 
testing and 80% training with 20% testing) are used.  

4.2. Pre-Processing 

When developing a predictive model, we must first examine and change the data. This requires 
performing several operations to be pre-processed like importing images, scaling them, 
modifying their color, displaying the dataset, and transforming the images to vector form [19]. 
Exploratory Data Analysis is the umbrella term for all these actions taken collectively. We take 
these actions to speed up our computing process and simplify the model. 

4.3. Layer-Construction Process 

After the preprocessing phase is complete, we build the CNN model. On the handwritten digit 
dataset from Kaggle, convolutional neural networks are trained using the Keras API and Tensor 
flow as the backend. The convolutional neural network, as previously mentioned, consists of four 
layers. In our experimental approach there are nine layers overall, of which 1st, 3rd and 5th are 
convolutional layers, 2nd, 4th and 6th are pooling (MaxPool2D) layers, the then we 
have flattening layer, and the final two are fully connected layers that are simply an artificial 
neural networks (ANN) classifier. In our model, we employed learnable filters for Conv2D layers 
with sizes of 32 filters for 1st layer, 64 filters for 2nd layer, and 64 filters for the third layer. By 
specifying the kernel size, kernel filters transform a specific area of an image. All the convolutional 
layers are subjected to the kernel filter matrix, which is 3x3s in size. Filters can be thought of as 
feature map-based image transformations. The MaxPooling2D layer comes next, and it's 
responsible for segmentation and feature extraction. As implied by the function's name, the Max 
Pooling function is used to assess the max for each step. Here, we used Maxpool filters of the size 
2*2. To give the network nonlinearity, this study uses the activation functions “ReLU” and 
“PReLU”. The Flatten layer receives the input from the Maxpool layer and converts it to a 1D 
vector. We employed a dropout regulator with a 50% dropout ratio prior to the 1st and 2nd fully 
connected layers. 128 neurons were employed in the 1st dense layer and 10 neurons in the 2nd 
dense layer. An activation function named softmax is added to the final output layer's 
probabilistic value based on 10 neurons for 10 classes. 

4.4. Optimization and Loss Functions 

After adding all our layers to the model, the next step is to define the loss function, as well as 
the optimization process, to test the performance of our model on labeled images. The difference 
between the expected and observed labels' error rates is the loss function. For categorical 
classifications with more than two classes, we employed a special form called "categorical cross-
entropy." The optimizer is the most vital component. To reduce loss, this function iteratively 
modifies kernel values, weights, and biases. In this paper, we have chosen RMSprop and Adam 
optimizers. 

4.5. Accuracy 

We have evaluated the performance of our model using the metric function "accuracy". Unlike 
the loss function, the metric evaluation results are used only for evaluation and not to train the 
models. 

5. Experimental results 



CNN has been applied on the Kaggle dataset to observe the variation of accuracies for 
handwritten digits. The accuracy is achieved using Keras and Tensorflow. Utilizing configurations 
of activation functions and optimization techniques, training, and validation accuracy for 18 
epochs are observed.  Based on the experimental results, following combinations have been 
analyzed. 

• ReLU activation function + RMSprop 
• ReLU activation function + Adam 
• PReLU activation function + RMSprop 
• PReLU activation function + Adam 
• Heat map of confusion matrix 
• Handwritten digit recognition accuracy 

 
A. ReLU activation function + RMSprop 

The CNN model's effectiveness with the ReLU activation function and the RMSProp technique is 
determined. According to the results, the model achieved 94.63% training accuracy and 96.93% 
validation accuracy with 80% training data and 20% testing data, as shown in Figure 4(a). When 
the number of training data is reduced to 70% and the number of testing data is increased to 30%, 
the model's performance suffers marginally. As shown in Figure 4(b), training accuracy is 92.74% 
and validation accuracy is 96.28%. 
 

0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0

A
cc

u
ra

cy
 [

%
]

epochs

70.0

Training Accuracy

Validation Accuracy

ReLU+RMSprop [Training Data=80% and Testing Data= 20%]

0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0

A
cc

u
ra

cy
 [

%
]

epochs

70.0

Training Accuracy

Validation Accuracy

ReLU+RMSprop [Training Data=70% and Testing Data= 30%]

 
 

Figure 4 (a): CNN model accuracy with ReLU and RMSprop using 80% training data and 20% 
testing data; (b): CNN model accuracy with ReLU and RMSprop using 70% training data and 30% 
testing data  

 
B. ReLU activation function + Adam 
The effectiveness of the CNN model using the ReLU activation function and the Adam method 

is determined. As demonstrated in Figure 5(a), the model achieved 97.12% training accuracy and 
98.14% validation accuracy with 80% training data and 20% testing data. The model's 
performance falls marginally when the amount of training data is reduced to 70% and the number 
of testing data is increased to 30%. Figure 5(b) shows that training accuracy is 95.89% and 
validation accuracy is 98.08%. 



0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0
A

cc
u

ra
cy

 [
%

]

epochs

70.0

Training Accuracy

Validation Accuracy

ReLU+Adam [Training Data=80% and Testing Data= 20%]

0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0

A
cc

u
ra

cy
 [

%
]

epochs

70.0

Training Accuracy

Validation Accuracy

ReLU+Adam [Training Data=70% and Testing Data= 30%]

 
 

Figure 5 (a): CNN model accuracy with ReLU and Adam using 80% training data and 20% testing 
data; (b): CNN model accuracy with ReLU and Adam using 70% training data and 30% testing 
data 

 
C. PReLU activation function + RMSprop 
The effectiveness of the CNN model using the PReLU activation function and the RMSProp 

approach is determined. As shown in Figure 6(a), the model achieved 98.58% training accuracy 
and 98.45% validation accuracy with 80% training data and 20% testing data. The model's 
performance falls marginally when the amount of training data is reduced to 70% and the number 
of testing data is increased to 30%. Figure 6(b) shows that training accuracy is 98.04% and 
validation accuracy is 97.92%. 
 

0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0

A
cc

u
ra

cy
 [

%
]

epochs

70.0

Training Accuracy

Validation Accuracy

PReLU+RMSProp [Training Data=80% and Testing Data= 20%]

0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0

A
cc

u
ra

cy
 [

%
]

epochs

70.0

Training Accuracy

Validation Accuracy

PReLU+RMSProp [Training Data=70% and Testing Data= 30%]

 
Figure 6 (a): CNN model accuracy with PReLU and RMSProp using 80% training data and 20% 
testing data; (b): CNN model accuracy with PReLU and RMSProp using 70% training data and 
30% testing data 

 
D. PReLU activation function + Adam 
The efficiency of the CNN model is determined by applying the Adam technique and the PReLU 

activation function. As seen in Figure 7(a), the model obtained training accuracy of 98.73% and 
validation accuracy of 98.61% with 80% training data and 20% testing data. The model's 



performance somewhat declines when the quantity of training data is reduced to 70% and the 
number of testing data is increased to 30%. Figure 7(b) illustrates that the training accuracy is 
97.22% and the validation accuracy is 97.04%. 

 

0 2 4 6 8 10 12 14 16 18

73.0

76.0

79.0

81.0

84.0

87.0

90.0

93.0

96.0

99.0

A
cc

u
ra

cy
 [

%
]

epochs

70.0

Training Accuracy

Validation Accuracy

PReLU+Adam [Training Data=70% and Testing Data= 30%]

 
Figure 7 (a): CNN model accuracy with PReLU and Adam using 80% training data and 20% 
testing data; (b): CNN model accuracy with PReLU and Adam using 70% training data and 30% 
testing data 

 

Table 1 shows the training and validation accuracies of CNN model for different activation 
functions and optimization method combinations using 80% training and 20% testing data. Table 
2 shows the performance of the CNN model with 70% training and 30% testing data, as well as 
various activation functions and optimization methods. 

 

Table 1 
Performance of CNN for various activation function and optimization method combinations 

Case Activation 
Function 

Optimization 
Methods 

No of epochs Training 
Accuracy (%) 

Validation 
Accuracy (%) 

1 ReLU RMSprop 18 94.63 96.43 
2 ReLU Adam 18 97.12 98.14 
3 
4 

PReLU 
PReLU 

RMSprop 
Adam 

18 
18 

98.58 
98.73 

98.45 
98.60 

 

Table 2 
Performance of CNN for various activation function and optimization method combinations 

Case Activation 
Function 

Optimization 
Methods 

No of epochs Training 
Accuracy (%) 

Validation 
Accuracy (%) 

1 ReLU RMSprop 18 92.74 96.28 
2 ReLU Adam 18 95.89 98.08 
3 
4 

PReLU 
PReLU 

RMSprop 
Adam 

18 
18 

98.04 
97.22 

97.92 
97.04 

  

E. Heat map of confusion matrix 
Figure 8(a) depicts the confusion matrix heat map for the CNN model employing the Adam 

optimization method and the PReLU activation function. Figure 8(b) compares the accuracy of 
various models for handwritten digit recognition. PReLU+Adam has the highest accuracy for 
handwritten digit recognition. 



 
Figure 8 (a): Heat map of confusion matrix for the CNN model with PReLU activation function 
and Adam optimization method; (b): Comparison of Accuracy of different models for handwritten 
digit recognition 

6. Conclusion and future work 

The performance of CNN with different activation functions and optimization methods is 
evaluated. The main goal of this study is to identify and classify handwritten digits. The 
handwritten digit recognition necessitates better accuracy in some critical areas. As a result, deep 
learning techniques are employed with CNN to identify handwritten digits with great accuracy. 
The CNN is used with ReLU/PReLU activation function and RMSprop and Adm optimization 
methods. To conduct the experiment, the Kaggle handwritten digit dataset is used. The test 
results demonstrate that CNN with PReLU activation function with Adam optimization method 
produces the best validation accuracy of 98.60% for handwritten digit recognition when 
compared to other methods. The suggested method can be enhanced, utilized with larger 
datasets, and used to the classification of handwritten alphabets in the future. It is possible to use 
a three-step model with CNN as the first two classifiers and SVM as the third classifier. The 
current implementation can be expanded to support additional datasets and/or languages, such 
as Swedish church records for ARDIS (Arkiv Digital Sweden) or Arabic digits for MADbase 
(Modified Arabic Handwritten Digits). Techniques for feature selection can also be utilised to 
limit the training time and error rate. 

7. References 

[1] Raina, Vineet, Srinath Krishnamurthy, Vineet Raina, and Srinath Krishnamurthy. "Natural 
language processing." Building an Effective Data Science Practice: A Framework to Bootstrap 
and Manage a Successful Data Science Practice (2022): 63-73. 

[2] Hamdan, Yasir Babiker, and A. Sathesh. "Construction of statistical SVM based recognition 
model for handwritten character recognition." Journal of Information Technology and Digital 
World 3, no. 2 (2021): 92-107. 

[3] Almiani, Muder, Alia AbuGhazleh, Amer Al-Rahayfeh, Saleh Atiewi, and Abdul Razaque. "Deep 
recurrent neural network for IoT intrusion detection system." Simulation Modelling Practice 
and Theory 101 (2020): 102031. 

[4] Almiani, Muder, Alia AbuGhazleh, Yaser Jararweh, and Abdul Razaque. "DDoS detection in 
5G-enabled IoT networks using deep Kalman backpropagation neural 
network." International Journal of Machine Learning and Cybernetics 12 (2021): 3337-3349. 

[5] Chen, Xu, Jianjun Li, Yanchao Zhang, Yu Lu, and Shaoyu Liu. "Automatic feature extraction in 
X-ray image based on deep learning approach for determination of bone age." Future 
Generation Computer Systems 110 (2020): 795-801. 



[6] Chatzimparmpas, Angelos, Rafael M. Martins, Kostiantyn Kucher, and Andreas Kerren. 
"FeatureEnVi: Visual analytics for feature engineering using stepwise selection and semi-
automatic extraction approaches." IEEE Transactions on Visualization and Computer 
Graphics 28, no. 4 (2022): 1773-1791. 

[7] Hatuwal, Bijaya Kumar, Aman Shakya, and Basanta Joshi. "Plant Leaf Disease Recognition 
Using Random Forest, KNN, SVM and CNN." Polibits 62 (2020): 13-19. 

[8] Su, Dan, Liangming Chen, Xiaohao Du, Mei Liu, and Long Jin. "Constructing convolutional 
neural network by utilizing nematode connectome: A brain-inspired method." Applied Soft 
Computing (2023): 110992. 

[9] Apicella, Andrea, Francesco Isgrò, Andrea Pollastro, and Roberto Prevete. "Adaptive filters in 
graph convolutional neural networks." Pattern Recognition 144 (2023): 109867. 

[10] Alkhouly, Asmaa A., Ammar Mohammed, and Hesham A. Hefny. "Improving the performance 
of deep neural networks using two proposed activation functions." IEEE Access 9 (2021): 
82249-82271. 

[11] Chychkarov, Yevhen, Anastasiia Serhiienko, Iryna Syrmamiikh, and Anatolii Kargin. 
"Handwritten Digits Recognition Using SVM, KNN, RF and Deep Learning Neural 
Networks." CMIS 2864 (2021): 496-509. 

[12] Amsaad, Fathi, P. L. Prasanna, T. Pravallika, G. Mamatha, B. Raviteja, M. Lakshmi, Nasser 
Alsaadi, Abdul Razaque, and Yahya Tashtoush. "Toward Secure and Efficient CNN 
Recognition with Different Activation and Optimization Functions." In International 
Conference on Advances in Computing Research, pp. 550-568. Cham: Springer Nature 
Switzerland, 2023. 

[13] Teodoro, Arthur AM, Otávio SM Gomes, Muhammad Saadi, Bruno A. Silva, Renata L. Rosa, and 
Demóstenes Z. Rodríguez. "An FPGA-based performance evaluation of artificial neural 
network architecture algorithm for IoT." Wireless Personal Communications (2021): 1-32. 

[14] Wang, Xudong, Changqing Miao, and Xiaoming Wang. "Prediction analysis of deflection in the 
construction of composite box-girder bridge with corrugated steel webs based on MEC-BP 
neural networks." In Structures, vol. 32, pp. 691-700. Elsevier, 2021.  

[15] Gawlikowski, Jakob, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias 
Humt, Jianxiang Feng, Anna Kruspe et al. "A survey of uncertainty in deep neural 
networks." Artificial Intelligence Review 56, no. Suppl 1 (2023): 1513-1589. 

[16] Hnamte, Vanlalruata, and Jamal Hussain. "Dependable intrusion detection system using deep 
convolutional neural network: A novel framework and performance evaluation 
approach." Telematics and Informatics Reports 11 (2023): 100077. 

[17] Hosseininoorbin, Seyedehfaezeh, Siamak Layeghy, Brano Kusy, Raja Jurdak, and Marius 
Portmann. "Exploring Edge TPU for deep feed-forward neural networks." Internet of 
Things 22 (2023): 100749. 

[18] Xu, Dongpo, Shengdong Zhang, Huisheng Zhang, and Danilo P. Mandic. "Convergence of the 
RMSProp deep learning method with penalty for nonconvex optimization." Neural 
Networks 139 (2021): 17-23. 

[19] Shahade, Aniket K., K. H. Walse, V. M. Thakare, and Mohammad Atique. "Multi-lingual opinion 
mining for social media discourses: an approach using deep learning based hybrid fine-tuned 
smith algorithm with adam optimizer." International Journal of Information Management 
Data Insights 3, no. 2 (2023): 100182. 

[20] Beltran-Royo, Cesar, Laura Llopis-Ibor, Juan J. Pantrigo, and Iván Ramírez. "DC Neural 
Networks avoid overfitting in one-dimensional nonlinear regression." Knowledge-Based 
Systems (2023): 111154. 


