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Abstract  
Security camera-based surveillance systems are becoming the main tool in public settings, utilizing 
computer vision and machine learning techniques for diverse applications in safety monitoring. The 
proposed model is a spatial feature-extracting DenseNet-121 followed by convolutional LSTM for 
temporal feature extraction and classification. In this paper, we propose a novel architecture for 
violence detection from various video data of surveillance cameras. The proposed model is called 
DenseNet-LSTM it demonstrates efficient computational performance while achieving good results. The 
model is evaluated on a diverse set of violent action datasets such as Hockey, Movies, Movie Datasets, 
Violent Flow, and Real-Life Violence Situations (RLVS). DenseNet-LSTM promises near state-of-the-art 
performance and accuracy on most of them while requiring low computational time. 
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1. Introduction 

Video surveillance, commonly referred to as CCTV (Closed Circuit Television) [3], has become an 
integral tool for enhancing security and monitoring in various environments. In urban settings 
such as cities and town centres, video surveillance is deployed to deter criminal activities, 
including theft, vandalism, and public disturbances. The presence of visible cameras acts as a 
powerful deterrent, discouraging potential wrongdoers from engaging in illicit activities [2]. In 
commercial establishments like malls, banks, and retail stores, video surveillance serves both as 
a proactive security measure and a monitoring tool. It helps in safeguarding assets, ensuring the 
safety of employees and customers, and investigating any incidents that occur within the 
premises. Video surveillance is a versatile and indispensable technology, playing a vital role in 
maintaining security and offering valuable insights for effective monitoring across a wide range 
of environments. The utilization of data captured by video surveillance-based systems can be 
used as a powerful tool to detect and prevent violent events. Nonetheless, the majority of 
individuals perceive video surveillance as an intrusion into their privacy [1]. There's 
apprehension regarding the potential uses or abuses of video recordings, particularly with 
advancements in contemporary image-processing technologies. 

This research work proposes a low-weigh, efficient deep-learning method to classify violent 
and non-violent actions in security camera footage. The primary objective is to conduct an in-
depth exploration and analysis of the DenseNet [4] network for spatial feature extraction. This 
entails a comprehensive examination of the network's capabilities and characteristics in the 
context of spatial feature extraction. Additionally, the research aims to identify and propose 
optimal solutions to seamlessly integrate the spatial feature extraction model with a temporal 
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feature extraction model, achieving an efficient and effective fusion of spatial and temporal 
information for further violent event recognition. 

2. Proposed method 

The main goal of the proposed method is to conduct an analysis of DenseNet architecture for 
video classification that is comparable with the efficiency of state-of-the-art models while 
maintaining low classification time per frame. 

The algorithm under consideration primarily consists of three main stages: 
1. Spatial feature extractor 
2. Temporal feature extractor 
3. Classifier 
Fig. 1 shows the architecture of the proposed method. First pre-processing steps are applied 

to the input video frames. The next two consecutive stages of feature extraction are applied; a 
DenseNet-121 model stage which is responsible for spatial feature extraction for each frame, and 
a ConvLSTM [5] stage which works as a temporal features extractor. Finally, the extracted 
features are fed to Dense layers for classification.  

 
Figure 1: DenseNet-LSTM network model 

 

DenseNet is a feed-forward Convolutional Neural Network (CNN) [6] architecture that 
connects each layer to every other layer. DenseNet design is founded on a straightforward and 
basic principle: by concatenating the feature maps of all previous layers, a dense block [5] allows 
each layer to access the features of all preceding levels. In classic CNNs, each layer only has access 
to the characteristics of the layer immediately before it. The architecture is arranged of transition 
layers and dense blocks. Each block is connected with a convolutional layer inside a dense block 



that is connected to every other layer within the block. The transition layers minimize the size of 
the feature maps across dense blocks letting the network grow effectively. 

 
Figure 2: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature 

maps as input. (2016). Densely connected convolutional networks. (Cornell University) 

 
Figure 2 in the paper Densely Connected Convolutional Networks [4] shows a comparison 

between the traditional convolutional network and the DenseNet architecture. In the DenseNet 
architecture, each layer is connected to all subsequent layers. This dense connectivity pattern 
allows for a better flow of information and gradients throughout the network, making it easier to 
train. Each layer has direct access to the gradients from the loss function and the original input 
signal, leading to implicit deep supervision, which helps in the training of deeper network 
architectures. Further, dense connections have a regularizing effect, which reduces overfitting 
tasks with smaller training set sizes. 

The benefits of using DenseNet as a feature extractor for computer vision tasks are that 
DenseNets naturally integrate the properties of identity mappings, deep supervision, and 
diversified depth. They allow feature reuse throughout the networks and can consequently learn 
more compact and, according to the experiments conducted by the authors, more accurate 
models. Because of their compact internal representations and reduced feature redundancy, 
DenseNets are a good feature extractor for violence recognition. 

ConvLSTM [5] is a type of neural network architecture that extends the idea of LSTM (Long 
Short-Term Memory) to have convolutional structures in both the input-to-state and state-to-
state transitions. This allows the network to capture spatiotemporal correlations in the input 
data, making it particularly useful for spatiotemporal sequence forecasting problems such as 
precipitation nowcasting. The ConvLSTM layer preserves the advantages of LSTM but is also 
suitable for spatiotemporal data due to its inherent convolutional structure. The network 
captures spatiotemporal correlations by extending the idea of FC-LSTM to have convolutional 
structures in both the input-to-state and state-to-state transitions. By stacking multiple 
ConvLSTM layers and forming an encoding-forecasting structure, the network can learn complex 
spatiotemporal patterns in the dataset through its nonlinear and convolutional structure. This 
allows the network to handle the strong spatial correlation in the radar maps and discover 
sudden changes in the encoding network, which is difficult to achieve with other methods like 
optical flow and semi-Lagrangian advection-based methods. 

According to sequence-to-sequence learning [7] framework that can be used for a wide range 
of spatiotemporal sequence forecasting problems, including video classification and action 



recognition in computer vision. The ConvLSTM network can be used as a building block in this 
framework to extract temporal features from the input sequence, which can then be fed into other 
layers of the network for further processing. By stacking multiple ConvLSTM layers and forming 
an encoding-forecasting structure, the network can learn complex spatiotemporal patterns in the 
dataset and generate accurate predictions. 

2.1. Data Preprocessing 

The videos from the dataset are input as shapes of (V, F,128,128,3): V is the number of videos, 
F number of video frames, and (128,128) height. These input videos are processed in the next 
pipeline; Every 3rd frame is skipped to a lower amount of duplicate frames;  Each frame is resized 
to (128,128,3) shape; Data augmentation consists of converting frames to grayscale and vertical 
flipping. Thereafter Dataset is split into 80% for training sets and 20% for validation sets. 

2.1.1. Feature extraction 

In this stage two different feature types are extracted consequently; the first spatial features 
are extracted by the pre-trained Densenet-121 on the ImageNet dataset. The end part of it is a 
global average pooling (GAP) layer applied. Global average pooling reduces the spatial 
dimensions of the feature maps to a 1x1xN tensor, where N is the number of channels. This 
operation summarizes the spatial features and creates a compact representation. The total 
trainable parameters from this step are 7037504 parameters with shapes (V, 4, 4, 1024) where 
1024 is the number of features extracted from each frame. Due to violent actions performed by 
humans occurring throughout the time in the sequence of video frames, a second type of feature 
set is required. 

Thus, a fresh set of frame features is forwarded to the second stage to extract temporal 
features. In this stage, ConvLSTM is utilized to capture sequential information along the video 
frames. The LSTM setup uses a 64-unit ConvLSTM2D layer having dimensionality of the output. 
A Flatten layer is used after ConvLSTM2D. 

2.1.2. Classification 

In this step Dense layers are used for classification where the first layer has N neurons, the 
second layer has N neurons and the last layer contains only 2 for violence and nonviolence classes. 

The first and second layers used the Rectified Linear Unit (RELU) activation function as in (1), 
while the last layer used the soft-max activation function as in (2). 

 
𝑓(𝑥) = 𝑀𝑎𝑥(0, 𝑥) (1) 
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(2) 

 

3. Experiments and results 

The proposed model is evaluated against three of the state-of-the-art benchmark datasets 
including hockey fight [n], violent flow [n], and movie [n] datasets. Benchmark of Real-Life 
Violence Situations (RLVS) is most diverse in terms of environment, and actions, thus it is used 
for both testing and fine-tuning of the proposed model. 

3.1. Dataset preparation 



3.1.1. Hockey dataset 

The Hockey Dataset [8] was assembled from 1000 National Hockey League games. While 500 
of them are non-violent 500 of them contain hockey players fighting. All frames from videos were 
extracted without pre-processing due to all of them having consistent backgrounds, during 
experiments 25 frames were extracted skipping every 3rd frame to reduce duplicate frames.  

3.1.2. Movie dataset 

The Movie Dataset [8] consists of 200 videos divided into 100 violence and 100 non-violence 
videos. The violent videos were collected from movie scenes, while the non-violence videos were 
collected from other actions. Unlike the hockey dataset, the movie dataset exhibits diverse 
backgrounds. During the experiments conducted, 15 frames were selected from each video. 

3.1.3. Violent flow dataset 

Violent flow [9] comprises 246 videos depicting crowd scenes featuring fights that occurred 
between individuals. These videos were sourced from violent incidents during football matches. 
In the performed experiments, 20 frames were utilized as input for our proposed model. 

3.1.4. Real life violent situations dataset 

Real Life Violence Situations [10] benchmark consists of 2000 videos divided into 1000 
violence clips and 1000 nonviolence clips. The violent clips involve fights in many different 
environments such as streets, prisons, and schools. The non-violence videos contain other human 
actions such as playing tennis, football, basketball, swimming, and eating. In creating the RLVS 
dataset, some videos were captured manually, while others were sourced from YouTube to 
prevent redundancy in persons and environment in the captured videos. Long videos are cut into 
short-length videos with a maximum duration of 7 seconds, minimum duration of 3 seconds, and 
average duration of 5 seconds. These segments are considered to have high resolution (480p – 
720p) and to include a variety of people in race, age, and gender with different environments. 

3.2. Evaluation parameters 

The Main metric that was used to determine the best type of LSTM network that works in 
combination with DenseNet-121 is accuracy and loss. We also will be using recall precision and 
f-1 score metrics to evaluate the quality of the model’s predictions in future work. The proposed 
method was tested on Hockey, Movie, Violent Flow, Real Life Violent Situations datasets. All 
models were trained on each dataset using Adam as an optimizer. The learning rate was set to 
0.0001. The Networks were trained for 20 epochs. 

3.3. Results  

Currently, the performed experiments were aimed at determining the type of LSTM network 
that works best with DenseNet-121.Table 1 shows the accuracy and loss with datasets. 
 
Table 1 
LSTM network accuracy 

Dataset Loss Accuracy 

Hockey 0.0917 97.67% 
Movie 0.0998 98.23% 

Violent Flow 
RLVS 

0.1595 
0.3079 

91.56% 
90.44% 



 
Figure3: Accuracy and Loss during training  

 
Accuracy  
Accuracy serves as a metric for assessing the performance of a classification model, and it is 

usually presented as a percentage. Accuracy quantifies the number of predictions where the 
model's output matches the actual value, essentially a binary (true/false) outcome for individual 
samples. Depicted in Figure 3 and tracked throughout the training phase, the value is often 
associated with the overall or final model accuracy. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +   𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

 
where TruePositive - is a correctly predicted label, and True Negative - is incorrectly labeled True 
when it's originally False. FalsePositive - incorrectly labelled False when it was originally True. 
And FalseNegative - fully incorrectly predicted label 

 
Loss 
A loss function sometimes called a cost function, considers the probabilities or the level of 

uncertainty in a prediction by measuring how much the prediction deviates from the actual value. 
This provides a more detailed assessment of the model's performance. Unlike accuracy, which is 
expressed as a percentage, loss is the cumulative measure of errors made for individual samples 
in training or validation datasets. Loss is typically employed in the training phase to determine 
the optimal parameter values for the model, such as the weights in a neural network. In the 
training process, the objective is to minimize this value. 
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where N is its output size, y_i - sample, y_pred_i - predicted value from the model, minus means 
for us to minimize function. 



 
Figure4:  Confusion matrix  

 
A widely used evaluation metric for characterizing the performance of a classification model - 

confusion matrix Figure 4. is typically presented as a table. This table allows for a comparison 
between predicted and actual values to assess the model's performance. 

4. Conclusion and future work  

We proposed the DenseNet-LSTM network specifically for violence detection and classification. 
Because of their reduced feature redundancy and compact internal representations, DenseNets 
are viable feature extractors for convolutional features. Feature transfer of DenseNets allows 
them to be used in computer vision tasks. Due to this combining them together with ConvLSTM 
allowed us to achieve high accuracy on various datasets. For our future work, we will introduce 
other benchmarks in order to test and analyze more diverse settings and complex actions 
between humans and potentially dangerous objects. 
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