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Abstract

With the following system description, we present our approach for claim detection in tweets. We
address both Subtask A, a binary sequence classification task, and Subtask B, a token classification task.
For the first of the two subtasks, each input chunk—in this case, each tweet—was given a class label.
For the second subtask, a label was assigned to each individual token in an input sequence. In order
to match each utterance with the appropriate class label, we used pre-trained RoBERTa (A Robustly
Optimized BERT Pretraining Approach) language models for sequence classification. Using the provided
data and annotations as training data, we fine-tuned a model for each of the two classification tasks.
Though the resulting models serve as adequate baseline models, the exploratory data analysis suggests
fundamental problems in the structure of the training data. We argue that such tasks cannot be fully
solved if pragmatic aspects of language are ignored. This type of information, often contextual and
thus not explicitly stated in written language, is insufficiently represented in the current models. For
this reason, we posit that the provided training data is under-specified and imperfectly suited to these
classification tasks.
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1. Introduction

Political rhetoric, propaganda, and advertising are all examples of persuasive discourse. As
defined by Lakoff [1], persuasive discourse is the non-reciprocal “attempt or intention of one
party to change the behavior, feelings, intentions, or viewpoint of another by communicative
means”. Thus, in addition to the purely content-related features of communication, the

Forum for Information Retrieval Evaluation, December 15-18, 2023, India
*Corresponding author.

"These authors contributed equally.
& albert.pritzkau@fkie.fraunhofer.de (A. Pritzkau); julia.waldmueller@unibw.de (J. Waldmiiller);
olivier.blanc@unibw.de (O. Blanc); michaela.geierhos@unibw.de (M. Geierhos); ulrich.schade@fkie.fraunhofer.de
(U. Schade)
& https://www.fkie.fraunhofer.de (A. Pritzkau); https://go.unibw.de/waldmueller (J. Waldmiiller);
https://go.unibw.de/blanc (O. Blanc); https://go.unibw.de/geierhos (M. Geierhos); https://www.fkie.fraunhofer.de
(U. Schade)
@ 0000-0001-7985-0822 (A. Pritzkau); 0000-0002-8180-5606 (M. Geierhos)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

=] CEUR Workshop Proceedings (CEUR-WS.org)



mailto:albert.pritzkau@fkie.fraunhofer.de
mailto:julia.waldmueller@unibw.de
mailto:olivier.blanc@unibw.de
mailto:michaela.geierhos@unibw.de
mailto:ulrich.schade@fkie.fraunhofer.de
https://www.fkie.fraunhofer.de
https://go.unibw.de/waldmueller
https://go.unibw.de/blanc
https://go.unibw.de/geierhos
https://www.fkie.fraunhofer.de
https://orcid.org/0000-0001-7985-0822
https://orcid.org/0000-0002-8180-5606
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Albert Pritzkau et al. CEUR Workshop Proceedings 1-11

discursive context of utterances plays a central role. The shared task CLAIMSCAN’2023 [2]
on the topic Uncovering Truth in Social Media through Claim Detection and Identification of
Claim Spans considers claims as a key element of current information campaigns, with the
aim to mislead and deceive. The goal of both Subtasks A and B is to develop systems that can
effectively detect and identify claims in social media text. The utterance of a particular claim is
understood as a communicative phenomenon. This approach assumes that communication
depends not only on the meaning of the words in an utterance but also on what speakers intend
to communicate with a particular utterance. In linguistics such an approach is adopted by the
field of pragmatics. It is not always possible to deduce the function of an utterance from its
form. Additional contextual information is often needed. Recent research [3, 4] suggests the
possibility that transformer-based networks capture structural information about language,
ranging from orthographic, morphological and syntactical up to semantic features. Beyond
these features, these architectures remain almost entirely unexplored. This task is an attempt
to explore the limits of the prevailing approach, in particular, to investigate the ability of
transformers to capture pragmatic features.

The shared task CLAIMSCAN’2023 defines the following subtasks:

Subtask A. Claim Detection [5]: The task is a binary classification problem, where the
objective is to label the given social media post as a claim or non-claim. A claim is an assertive
statement that may or may not have evidence.

Subtask B. Claim Span Identification [6]: The task is to identify the words/phrases that
contribute to the claims made in the given social media post. A claim is an assertive statement
that may or may not be supported by evidence.

2. Background

The linguistic field of pragmatics regards speaking as acting, or more precisely, as acting with
the intention of manipulating the audience. The speech act called assertion [7, 8] means to make
a statement so that the audience is informed about something. According to Grice’s cooperative
principle [9], the information provided must be relevant, helpful, and true in the context of
the discourse. Since we are attuned to this principle, false claims are effective if they show
no signs of falsehood or duplicity. We simply follow the cooperative principle and take the
statement to be true, with all the consequences it implies. Signs of falsehood or duplicity can
save us from such a washout. Such signs can be violations of one’s own beliefs (e.g., ‘Hawaiian
wildfire is an attack experiment of a weather weapon conducted by the US military’), a wrong
style, e.g. excessive emotion in a news text (e.g., ‘Hawaiian wildfire is a scandalous attack
experiment of a perfidious weather weapon conducted by the sleazy US military’), or untypical
grammatical errors like omitting determiners (e.g., ‘Hawaiian wildfire is attack experiment of
weather weapon conducted by US military’). However, some of these signs might be overlooked
because of our attunement to the cooperative principle in general and Grice’s maxim of quality
(ibidem) in particular. A system might therefore perform better at detecting false claims.
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Task descriptions

This paper describes the participation in both subtasks. The challenge for Subtask A is to decide
whether a given tweet contains a claim. Accordingly, the task is formulated as a binary classifi-
cation problem. Beyond the mere identification of claims, Subtask B involves the delineation of
text intervals containing said claims. For each token in a tweet, it is to be examined whether it
is part of a claim, and subsequently, the claim span is to be determined. The model should then
predict the indices of the span intervals for each tweet.

Exploratory Data Analysis

The organizers of the CodaLab competition CLAIMSCAN’2023 have released the datasets for
both subtasks. Each subtask dataset consists of a training set, a development set, and a test set,
all focused on discussions related to the COVID-19 pandemic.

The labeled data for Subtask A, obtained from 8,483 tweets, includes both the training set of
6,986 tweets and the developer set of 1,497 tweets resulting in a ratio of 82:18. Assuming that
the split is already validated, we did not apply any resampling. Both sets consist of the tweets
in plain text with an additional binary label claim or non-claim. While the definition of a claim
was given as a claim is an assertive statement that may or may not have evidence, we observed
questionable annotations of the training set. For example, the tweet

‘Older but still relevant: Health products that make false or misleading claims to prevent, treat or
cure #COVID19 may put your health at risk via HealthCanada #cdnhealth
https://t.co/9dFNXaV3gW’

is labeled as a non-claim. However, the tweet

‘coronavirus altnews founder shekhar gupta and others spread unverified claims by a fake twitter
account’

is marked as a claim. For the purpose of submission, an unlabeled test set consisting of 1,489
tweets was used.

For Subtask B, the size of the training set was 6,044, the development set had 756 tweets
resulting in a ratio of 89:11. The test dataset contained 755 entries. In contrast to Task A, here,
in addition to the tweet text and the claim label, the start index and the end index of the token
spans corresponding to the claims were also provided. Of these, 7,585 spans were annotated as
claims, meaning that some tweets contained more than one claim. As in Subtask A, we made
several notable observations regarding the labeled training data. We observed an instance of an
impossible annotation in line 19 of the training set. This anomaly raised questions regarding
the quality of data and the need for quality control mechanisms when building the dataset.
Furthermore, during our analysis of annotation spans, it was revealed that 235 ‘@’ mentions and
16 URLs (starting with “https://..”) were present in the annotated text. We discovered that colons
appeared to be the most indicative feature for identifying the beginning of a claim, with 846
instances manifesting this pattern within the training dataset. Additionally, the data analysis
suggests the utilization of keyword-based sampling in the construction of the training dataset.
This is particularly evident from Figure 3. This is supported, for example, by the fact that the
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account name of Donald Trump (@realdonaldtrump) appears in the top 30 most frequent words
(see Figure 3b). Surprisingly, we found that cleaning the training data resulted in a poorer
performance of the model.
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Figure 1: Label distribution and class imbalance for Subtask A.

The value and meaning of accuracy and other well-known performance metrics of an an-
alytical model can be greatly affected by data imbalance. As shown in Figures 1a and 1b, the
class distribution is skewed. This poses a challenge for the balanced learning of the model, as
the non-claim class is significantly underrepresented. When comparing the distributions of
annotation length in the training set, development set, and test set, as shown in Figures 2, it
becomes apparent that these significantly deviate from each other and, in some cases, exhibit a
strong concentration of data points within specific groups.

3. System overview

In this study, we evaluate and compare a sequence classification approach on the given data
with different augmentations. The comparison is performed at the level of trained models on the
same dataset. The different evaluation paradigms result from applying the sequence classifier
heads to a pre-trained model as a base model. We suggest that contextual information leads to a
qualitative difference in the scores.

3.1. Pre-trained language representation

At the core of any solution to a given task is a pre-trained language model derived from
BERT [10]. BERT stands for Bidirectional Encoder Representations from Transformers. It is
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Figure 2: Comparison of the annotation length distributions of the training, development, and test sets
for Subtask B.

based on the transformer model architectures introduced by Vaswani et al. [11]. The general
approach consists of two stages. First, BERT is pre-trained on large amounts of text, with
the unsupervised goal of masked language modeling and next sentence prediction. Second,
this pre-trained network is then fine-tuned on task-specific, labeled data. The transformer
architecture consists of two parts, an encoder and a decoder, for each of the two stages. The
encoder used in BERT is an attention-based architecture for NLP. It works by performing a
small, constant number of steps. In each step, it applies an attention mechanism to understand
the relationships between all the words in a sentence, regardless of their respective positions.
By pre-training language representations, the encoder yields models that can either be used to
extract high-quality language features from text data or to fine-tune these models for specific
NLP tasks (classification, entity recognition, question answering, etc.). We rely on RoBERTa
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Figure 3: Comparison of the term distributions in the annotation spans and in the full text of the
messages (top 30) in the training set for Subtask B.

[12], a pre-trained encoder model that builds on BERT’s language masking strategy. However,
it modifies key hyperparameters in BERT, such as removing BERT’s next-sentence pre-training
objective and training with much larger mini-batches and learning rates. In addition, RoOBERTa
has been trained on an order of magnitude more data than BERT, for a longer period of time.
This allows RoBERTa representations to generalize downstream tasks even better than BERT.

3.2. Binary Sequence Classification Problem

Model Architecture - NLytics. Subtask A is considered to be a binary classification problem.
The models for the experimental setup were based on RoBERTa. For the classification task, fine-
tuning is first performed using RobertaForSequenceClassification [13] — RoBERT a;ArGE
— as the pre-trained model. RobertaForSequenceClassification optimizes for a regression loss
(Binary Cross-Entropy Loss) using an AdamW optimizer [14] with an initial learning rate set to
2e-5. After a warm-up period during which the learning rate increases linearly from 0 to the
initial learning rate, the optimizer is scheduled to decrease the actual learning rate linearly to 0.
The training was started with 20 training epochs each. However, this relatively high number
is significantly reduced by an early stopping callback that monitors the performance of the
model on the validation dataset. A patience of 5 epochs is set for this callback. For this setup,
fine-tuning was done on an NVIDIA TESLA V100 GPU using the Pytorch [15] framework with
a vocabulary size of 50,265 and an input size of 512.

Model Architecture - CODE. The experimental setup and approach for the binary classifi-
cation problem are almost identical to the one above. Instead of RoOBERTa, we used BERT [10].
Therefore, we fine-tuned the model using BertForSequenceClassification. This model was also
trained for five epochs, following the same approach described above. A NVIDIA GeForce RTX
3090 GPU with 24GB of memory was used for fine-tuning using Pytorch [15].



Albert Pritzkau et al. CEUR Workshop Proceedings 1-11

3.3. Token Classification Problem

Tagging format. We have transformed the initial span markup into the IOB (Inside, Outside,
Begin) tagging format. Since we have only one possible entity class, each token can be assigned
one of the tags given by O-claim, B-claim, and I-claim.

Model Architecture — NLytics. Subtask B is considered to be a token classification problem.
We have fine-tuned a RoOBERTa model to predict the above IOB tags for each token in the input
sentence. In the default configuration, each token is classified independently of the surrounding
tokens. Although the surrounding tokens are taken into account in the contextualized embed-
dings, there is no modeling of the dependency between the predicted labels: for example, an I tag
cannot logically follow an O tag. Since RoOBERTa does not model the dependencies between the
predicted tokens, we further added a linear-chain Conditional Random Field (CRF) model [16] as
an additional layer, in order to model the dependency between the predicted labels of individual
tokens. Since the sequence of an O tag following an I tag does not occur in the training set, it
assigns a very low probability to the transition from an O tag to an I tag by observation. The CRF
receives the logits for each input token, and makes a prediction for the entire input sequence,
taking into account the dependencies between the labels, similar to Lample et al. [17]. Note
that RoBERTa works with byte pair encoding (BPE) units, while the CRF needs to work with
whole words. Thus, only head tokens were used as input to the CRF, and any word continuation
tokens were omitted. The models for the experimental setup are based on RoBERTa. For the
classification task, fine-tuning is first performed using RobertaForSequenceClassification [13] —
RoBERTar srcE — as the pre-trained model. RobertaForSequenceClassification optimizes
for a regression loss (Binary Cross-Entropy Loss) using an AdamW optimizer [14] with an
initial learning rate set to 2e-5. After a warm-up period during which the learning rate increases
linearly from 0 to the initial learning rate, the optimizer is scheduled to decrease the actual
learning rate linearly to 0. The training was started with 20 training epochs each. However,
this relatively high number is significantly reduced by an early stopping callback that monitors
the performance of the model on the validation dataset. A patience of five epochs is set for
this callback. For this setup, fine-tuning was done on an NVIDIA TESLA V100 GPU using the
Pytorch [15] framework with a vocabulary size of 50,265 and an input size of 512.

Model Architecture - CODE. We also experiment with an alternative setup for the token
classification problem of Subtask B, using a simplified tag set. In this setup, the RoOBERTa model
is fine-tuned to predict a binary label (0 or 1) for each token, describing whether the token is
part of a claim or not. Unlike the IOB tag set, the first token of a claim is not distinguished
and is assigned the same label 1 as the subsequent tokens that are part of the claim. For this
experiment, we stop fine-tuning the RobertaForSequenceClassification model after 4 epochs on
the training set to avoid overfitting, as we empirically observe a degradation of the performance
on the validation dataset after this point. We observed that regularly short sequences of only
one or two tokens were incorrectly annotated as claims with this setup. We therefore decide to
filter out those predicted claims that are shorter than three words in a second step, in order to
reduce noise and obtain more realistic annotations.
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4. Results

We participated in both Subtasks A and B. Because of the similar approach, these working notes
describe the results of two teams, NLytics and CODE. The official evaluation results for the test
set are shown in Tables 1 and 6. In the following, the results are presented for each subtask.
In the discussion of the results, we address the reasons for the differences in the performance
of the two teams. The submissions were optimized for the minimum validation loss to avoid
overfitting the resulting model. During the training phase, we focused on finding the best
combinations of deep learning methods and optimizing the corresponding hyperparameter
settings. Fine-tuning pre-trained language models like RoBERTa on downstream tasks has
become ubiquitous in NLP research and applied NLP. Even without extensive preprocessing of
the training data, we already achieved competitive results. The resulting models serve as strong
baselines, that, when fine-tuned, significantly outperform models trained from scratch.

4.1. Subtask A

The model checkpoint with the minimum validation error was selected for submission. For
NLytics, this minimum was reached after four epochs of training. The class-related differences in
model performance shown in Table 2 clearly reflect the class imbalance in the initial distribution
(cf. Figure 1). Different data cleaning strategies to mitigate the impact of technical structures
such as URLs or account names in the linguistic evaluation, had a negative impact on the
performance of the resulting models on the development set. For example, URLs were replaced
with a unique sequence to clean up the data. The same happened with the account names.

As shown in Table 1, the Macro-F1 value for CODE differs from NLytics by 0.0476. This
discrepancy is due to the choice of the model, as the model with the lower Macro-F1 used an
uncased BERT model, despite following the same approach.

Table 1
Leaderboard of Subtask A.
Rank Name Macro-F1
1 NLytics 0.7002
2 bhoomeendra  0.6900
3 amr8ta 0.6678
4 CODE 0.6526
5 michaelibrahim 0.6324
6 pakapro 0.4321
Table 2
Confusion matrix for Subtask A — development set.
predicted
0 1
true 0| 63 133
1| 28 | 1273
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4.2. Subtask B

For NLytics, the model checkpoint with the minimum validation error was reached after three
epochs of training. Table 3 shows the corresponding evaluation metrics. The best result could
only be achieved by extending the model with the CRF. Similar to the results of Subtask A, the
data cleaning strategies had a negative impact on the performance of the resulting models on
the development set.

Table 3

Evaluation results on the development set of Subtask B.
Metric Value
Validation loss 0.37
Accuracy 0.84
Precision 0.50
Recall 0.62
F1 0.55

The evaluation results obtained using the model for the CODE architecture setup on the
development dataset are presented in Table 4. These numbers were obtained using the RoBERTa
BPE token representation and before the postprocessing step that filters out the small claims.

Table 4
CODE subtask B: Evaluation results on Byte-Pair Encoding tokens on development set.
Metric Value
Accuracy 0.85
Precision 0.85
Recall 0.85
F1 0.85

Table 5 shows the evaluation of the same model using the original token representation
and after filtering out the small claims made of only one or two words. We observe that this
additional cleaning step slightly degrades the performance of the system, with the F1 score
dropping from 0.85 to 0.83. In addition, after the results were published, we discovered that due
to a bug in the CSV formatting of the claim span indices, all predicted claims located at the end
of the input texts were missing from the submission file. As a result, 254 claims were missing
out of a total of 904 claims predicted on the test data. This should explain the poor score of
0.57 we got on the leaderboard. Since the gold standard has not yet been published, we cannot
provide the actual F1 score that we would have normally obtained on the test data.

5. Conclusion

The use of neural architectures in the field of pragmatics remains largely unexplored. The
limitations are clearly demonstrated by the results of the given task. In the future, we would like
to extend the current approach by adding features that represent the extended communicative
context. Our research aims at the specification of a consistent goal function that is adapted
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Table 5
CODE subtask B: Evaluation results on tokens after post-processing
Metric Value
Accuracy 0.83
Precision 0.83
Recall 0.83
F1 0.83
Table 6
Leaderboard of Subtask B.
Rank Name Token-F1
1 mjs227 0.8344
2 bhoomeendra  0.8030
3 NLytics 0.7821
4 CODE 0.5714

to the discursive context of manipulative communication. We hypothesize that the target
variables of this function in the form of different discourse elements will respond to different
features of the given communicative context. If the required features cannot be derived from the
linguistic structure of the utterances, they have to be obtained from the extended context of the
communication. We are investigating ways to make external features available to the training
process. Thus, in order to identify pragmatic features and to know how to take advantage of
them, the application of XAI methods seems to be promising.
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