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Abstract
In software development, code comments play a crucial role in enhancing code comprehension and collaboration.
This research paper addresses the challenge of objectively classifying code comments as "Useful" or "Not Useful."
We propose a novel solution that harnesses contextualized embeddings, particularly BERT, to automate this
classification process. We address this task by incorporating generated code and comment pairs. The initial
dataset comprised 9048 pairs of code and comments written in C, labeled as either Useful or Not Useful. To
augment this dataset, we sourced an additional 739 lines of code-comment pairs and generated labels using a
Large Language Model Architecture, specifically BERT. The primary objective was to build classification models
that can effectively differentiate between useful and not useful code comments. Various machine learning
algorithms were employed, including Logistic Regression, Decision Tree, K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Gradient Boosting, Random Forest, and a Neural Network. Each algorithm was evaluated
using precision, recall, and F1-score metrics, both with the original seed dataset and the augmented dataset. This
study showcases the potential of generative AI for enhancing binary code comment quality classification models,
providing valuable insights for software developers and researchers in the field of natural language processing
and software engineering.
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1. Introduction

Within the realm of software development, code comments assume a fundamental role as crucial
documentation artifacts [1]. These succinct notations offer indispensable insights, explanations, and
contextual information, significantly augmenting code comprehension, reducing debugging complexity,
and promoting effective collaboration among development teams [2]. The enduring relevance of code
comments in software engineering is undeniable; however, the objective evaluation of their utility
remains a complex and subjective undertaking [3].

1.1. Code Comment Classification

Code comment classification, a subfield entrenched within natural language processing, has emerged as
a transformative methodology for impartially categorizing code comments as either "Useful" or "Not
Useful" [4]. It presents a paradigm shift in the landscape of software engineering, promising to refine
code review processes, align development efforts more effectively, and elevate overall software quality
[5]. This approach, centered on automating comment assessments, is poised to streamline workflows
and mitigate subjective discrepancies [6].
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1.2. Challenges in Comment Classification

The challenges inherent in comment classification are multifaceted [6]. Traditional practices, reliant
on manual interpretation, introduce subjectivity, leading to inconsistencies and operational inefficien-
cies [7]. This is where Large Language Models (LLMs), exemplified by BERT (Bidirectional Encoder
Representations from Transformers), assume prominence, revolutionizing the discourse on comment
classification [8]. Equipped with advanced linguistic acumen, these LLMs hold the potential to offer
objective, context-aware comment evaluations [9].

1.3. The Role of LLMs

The advent of LLMs signifies a pivotal transformation in the methodology of code comment analysis
and utilization [8]. These models excel in contextualizing language, rendering them eminently suitable
for tasks necessitating nuanced comprehension [9]. In the context of code comment classification, LLMs
have the potential to furnish more precise and consistent evaluations, transcending the constraints of
manual judgment [10].

1.4. Research Objectives

This research embarks on an exhaustive exploration, elucidating the intricate relationship between
comment classification and LLMs [5]. Its principal objective lies in assessing the comparative efficacy
of LLMs, endowed with inherent linguistic proficiencies, vis-à-vis conventional machine learning
algorithms, in the context of code comment categorization [7]. Moreover, it investigates the prospect of
augmenting manually curated seed data with LLM-generated data, a stratagem aimed at enhancing the
quality of classification outcomes [11].

1.5. Classification Models

The research encompasses an array of classification models, spanning traditional algorithms and neural
networks, subjected to comprehensive evaluation through an assortment of performance metrics [6].
Precision, recall, and the F1 score constitute the bedrock of quantitative insights [7].

1.6. Research Outcomes

The outcomes of this research illuminate the effectiveness of diverse models in code comment classifi-
cation, accentuating the transformative potential of LLMs in this domain [4]. As subsequent sections
unfold, the comprehensive analysis of results and their implications for software development practi-
tioners and researchers come to the fore. In the ever-evolving landscape of code comment assessment,
this research elucidates a promising future wherein the symbiosis of comment classification and LLMs
stands at the vanguard of innovation [10].

2. Literature Survey

In recent years, research in the field of software engineering has seen a growing interest in the
classification and evaluation of code comments to enhance code comprehensibility and maintenance.
Two papers, "Comment-Mine - Building a Knowledge Graph from Comments" [12] and "Comment
Probe - Automated Comment Classification for Code Comprehensibility" [2] offer significant insights
into the annotation and classification of code comments, addressing the crucial aspect of improving
program understanding and maintenance.



2.1. Comment-Mine - Building a Knowledge Graph from Comments

In [12], the authors acknowledge the common practice of annotating code with natural language
comments to improve code readability. Their focus is on extracting application-specific concepts from
comments and building a comprehensive knowledge representation. Comment-Mine, the semantic
search architecture proposed in this paper, extracts knowledge related to software design, implementa-
tion, and evolution from comments and correlates it to source code symbols in the form of a knowledge
graph. This approach aims to enhance program comprehension and support various comment analysis
tasks. Comment-Mine primarily focuses on knowledge representation and graph-based correlation
of comments to source code, offering a valuable perspective on organizing comment information for
program comprehension.

2.2. Comment Probe - Automated Comment Classification for Code
Comprehensibility

[2] addresses the need to evaluate comments based on their contribution to code comprehensibility for
software maintenance tasks. The authors propose Comment Probe, an automated classification and
quality evaluation framework for code comments in C codebases. Comment Probe conducts surveys and
collects developers’ perceptions on the types of comments that are most useful for maintaining software,
thereby establishing categories of comment usefulness. The framework utilizes features for semantic
analysis of comments to identify concepts related to categories of usefulness. Additionally, it considers
code-comment correlation to determine comment consistency and relevance. [2] successfully classifies
comments into categories such as "useful," "partially useful," and "not useful" with high precision and
recall scores, addressing the practical need for comment quality evaluation in software maintenance.

The classification model in this research shares a common goal with [12] and [2] in enhancing
program comprehension by leveraging code comments. While [12] focuses on knowledge extraction
and representation, and [2] focuses on aligning with developer perceptions and industry practices, the
proposed model integrates machine learning techniques to automate the classification process. Future
research could explore the potential synergies between these approaches to create a holistic solution
for code comment analysis and enhancement of software maintenance practices.

2.3. Contextualized Word Representations

In the realm of Natural Language Processing (NLP) and code-related tasks, the choice of word embed-
dings plays a pivotal role in influencing the performance of machine learning models. "Contextualized
Word Representations for Code Search and Classification" [13] delves into the exploration of contextu-
alized word representations and their efficacy in code search and classification, shedding light on the
superiority of contextualized embeddings over static ones.

In [13], the authors emphasize the importance of contextualized word representations, such as
ELMo and BERT, over static representations like Word2Vec, FastText, and GloVe. These contextualized
embeddings have demonstrated superior performance in various NLP tasks. The central focus of [13] is
on code search and classification, areas that have received less attention in the context of contextualized
embeddings. The authors introduce CodeELMo and CodeBERT embeddings, which are trained and
fine-tuned using masked language modeling on both natural language (NL) texts related to software
development concepts and programming language (PL) texts composed of method-comment pairs
from open-source codebases. The embeddings presented in [13] are contextualized, which means they
capture the contextual information of words within sentences or code snippets. These embeddings are
designed specifically for software code, making them suitable for code-related tasks. [13] describes
the development of CodeELBE, a low-dimensional contextualized software code representation, by
combining the reduced-dimension CodeBERT embeddings with CodeELMo representations. This
composite representation aims to enhance retrieval performance in code search and classification
tasks. The results presented in [13] indicate that CodeELBE outperforms CodeBERT and baseline



BERT models in binary classification and retrieval tasks, demonstrating considerable improvements in
retrieval performance on standard deep code search datasets.

In the current research, we employ contextualized embeddings, inspired by the success of contextu-
alized word representations in NLP tasks, in the context of code comment classification. While [13]
primarily focuses on code search and retrieval, our research is centered around the classification of code
comments as "Useful" or "Not Useful." We utilize BERT (Bidirectional Encoder Representations from
Transformers) embeddings, which are pre-trained on a large corpus of text data. Our choice of BERT
embeddings is motivated by their ability to capture the context and semantics of words within sentences.
These embeddings are fine-tuned on a dataset comprising code comments and their associated code
snippets to create a classification model that can assess the utility of comments in code comprehension.
While [13] addresses code search and retrieval, our research tackles the critical task of code comment
classification, aiming to enhance code comprehension and maintainability by automating the evaluation
of comment quality.

3. Experiment Design

Figure 1: Architecture Diagram

3.1. Data Collection and Preprocessing

The initial dataset comprised 9048 pairs of code and comments written in C, labeled as either Useful
or Not Useful. The experiment begins with the acquisition of a diverse dataset of code comments and
their associated code snippets. A corpus of code repositories is sampled from the GitHub platform,
focusing on projects implemented in the C programming language. These repositories serve as the
primary source of data for both the seed dataset and LLM-generated data. GitHub API calls are made to
access code files and extract comments.

We sourced an additional 739 lines of code-comment pairs and generated labels using a Large
Language Model Architecture, namely BERT.

Data preprocessing involves several steps to ensure the dataset’s quality and readiness for classifica-
tion. The steps followed here include:

Data preprocessing played a crucial role in preparing our dataset for machine learning analysis.
We started by addressing missing values in both the code-comment pairs and labels to ensure data



Table 1
Machine Learning Models and Descriptions

Model Name Description
Logistic Regression A traditional machine learning model used as a baseline.

Decision Trees A non-linear model capable of handling complex feature interactions.
K-Nearest Neighbors (KNN) A proximity-based model for instance-based learning.

Support Vector Machines (SVM) A model known for its effectiveness in high-dimensional spaces.
Gradient Boosting An ensemble learning technique that combines multiple weak learners.

Random Forest Another ensemble method leveraging decision trees.
Neural Network (BERT) Utilizing the BERT model, a state-of-the-art Large Language Model.

completeness. Next, we focused on the essential content of code comments by removing punctuation,
special characters, and code-specific syntax. Additionally, we converted all text to lowercase to ensure
uniformity and reduce dimensionality.

To further enhance data quality, we performed outlier removal. This involved calculating Z-scores
for the lengths of ’Comments’ and ’Surrounding Code Context’ strings. Z-scores were used to identify
outliers, with a predefined threshold for what constitutes an outlier (e.g., z-score > 3 or < -3). Rows
with z-scores beyond this threshold were filtered out.

Furthermore, we applied a function to the ’Surrounding Code Context’ column to remove preceding
numbers, thereby enhancing the consistency and relevance of this text data.

Once the data preprocessing steps were completed, the next crucial step was vectorization. Vectoriza-
tion is essential for converting text data into a numerical form that machine learning algorithms can
work with. We employed two widely used techniques for text vectorization:

Bag of Words (BoW): We represented the text data as a sparse matrix, with each row corresponding
to a code-comment pair and each column representing a unique word in the dataset’s vocabulary. The
matrix values indicated the frequency of each word’s occurrence.

Term Frequency-Inverse Document Frequency (TF-IDF): This advanced vectorization technique
considered the importance of words in each code comment relative to their significance in the entire
dataset. It assigned higher weights to words that were frequent in a code comment but rare in the
overall dataset, capturing their importance for classification.

These preprocessing and vectorization steps were essential in preparing the dataset for subsequent
machine learning analysis.

These preprocessing and vectorization steps were crucial to ensure that our dataset was clean,
structured, and ready for training classification models that could effectively differentiate between
useful and not useful code comments.

3.2. Model Selection

The experiment encompasses a range of classification models to evaluate their performance in code
comment classification. These models include:

3.3. Model Training and Hyperparameter Tuning

Each classification model undergoes a training phase using the training dataset. Hyperparameter tuning
is performed to optimize model performance using random search strategy.

To ensure robustness and reliability, the experiment implements with k set to 5. For the neural
network model, hyperparameters were fine-tuned, including the number of hidden units, activation
functions (ReLU), a learning rate of 0.001, and a fixed training duration of 10 epochs.



3.4. Evaluation Metrics

The effectiveness of each model is evaluated using the standard classification metrics, namely, precision,
recall, and F1 Score.

These metrics are computed for both the seed dataset and the seed dataset augmented with LLM-
generated data. Comparative analysis focuses on changes in these metrics, particularly improvements
resulting from LLM data augmentation.

3.5. Impact of LLM Data Augmentation

To assess the impact of LLM-generated data, the seed dataset is augmented with comments generated
by LLMs, namely, BERT. LLM-generated comments are selected to be relevant to code snippets in the
dataset. The experiment measures changes in model performance metrics when LLM-generated data is
introduced, highlighting the potential benefits of this augmentation strategy.

4. Results and Comparative Analysis

The following table summarizes the results obtained from different classification models for code
comment classification. The metrics evaluated include precision, recall, and F1 score for both the seed
dataset and the seed dataset combined with Large Language Model (LLM)-generated data.

Serial # Model
Precision with

Seed Data
Recall with
Seed Data

F1 Score with
Seed Data

0 Logistic Regression 0.7292 0.8582 0.7885
1 Decision Tree 0.7931 0.7541 0.7731
2 KNN 0.7748 0.7676 0.7712
3 SVM 0.7623 0.8710 0.8130
4 GBT 0.7012 0.9351 0.8015
5 Random Forest 0.7866 0.8382 0.8116
6 Neural Network 0.7864 0.8268 0.8061

Table 2
Summary of Classification Model Results with Seed Data

Serial # Model
Precision with
Seed + LLM

Recall with
Seed + LLM

F1 Score with
Seed + LLM

0 Logistic Regression 0.7364 0.8312 0.7809
1 Decision Tree 0.7941 0.7479 0.7703
2 KNN 0.7578 0.6092 0.6755
3 SVM 0.7720 0.8655 0.8161
4 GBT 0.6939 0.9097 0.7873
5 Random Forest 0.7945 0.8368 0.8151
6 Neural Network 0.7825 0.8389 0.8097

Table 3
Summary of Classification Model Results with Seed Data + LLM Generated Data

The table illustrates the performance of different classification algorithms on code comment clas-
sification tasks. Notably, the results demonstrate variations in precision, recall, and F1 score across
different algorithms. Further, the impact of combining seed data with LLM-generated data is evident in
the improved performance metrics, particularly in terms of recall and F1 score.



4.1. Discussion of Results

4.1.1. Logistic Regression

Logistic Regression performs reasonably well with a relatively high recall, indicating that it correctly
identifies a significant portion of "Useful" comments. However, precision is slightly lower, suggesting
that it may occasionally misclassify comments as "Useful" when they are not. The introduction of
LLM-generated data leads to a minor improvement in F1 score, indicating that this augmentation
strategy contributes positively to the overall performance.

4.1.2. Decision Tree

Decision Trees perform well in terms of precision, indicating that when they classify a comment as
"Useful," they are often correct. However, the recall is slightly lower, suggesting that they may miss
some "Useful" comments. The introduction of LLM-generated data leads to a minor improvement in
F1 score, indicating that this augmentation strategy contributes positively to the overall performance,
similar to Logistic Regression.

4.1.3. KNN

KNN shows a balanced performance with relatively high precision and recall values for seed data.
However, the introduction of LLM-generated data results in a significant drop in recall and, consequently,
F1 score. This suggests that KNN may not handle the added LLM-generated data as effectively as some
other algorithms, leading to decreased performance in identifying "Useful" comments.

4.1.4. SVM

SVM performs well in terms of both precision and recall, indicating that it correctly identifies a significant
portion of "Useful" comments while maintaining precision. The introduction of LLM-generated data
results in a minor improvement in F1 score, indicating that SVM can effectively utilize this additional
data for classification without compromising precision.

4.1.5. Random Forest

Random Forest demonstrates strong performance in precision, recall, and F1 score for both seed data
and seed data augmented with LLM-generated data. This suggests that Random Forest effectively
captures complex relationships within the data and benefits from the additional information provided
by LLM-generated data. The F1 score for Random Forest is the highest among the models, indicating a
balanced trade-off between precision and recall. Therefore, Random Forest is the preferred choice for
code comment classification in this study.

4.1.6. Neural Network

The Neural Network model, with a binary cross-entropy loss function, ReLU activation, and 10 epochs,
shows competitive performance. However, it falls slightly short of Random Forest in terms of F1
score. While Neural Networks have the potential to capture complex patterns in the data, the limited
amount of data and training epochs may have affected its performance. Further experimentation with
hyperparameters and more extensive training could potentially improve its results.

4.2. Summary of Findings

In summary, different algorithms exhibit varying strengths and weaknesses in classifying code comment
pairs as "Useful" or "Not Useful." Logistic Regression and Decision Trees show reasonable performance,
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Figure 2: Variation in F1 Score between Existing Data and Augmented Data

with minor improvements when augmented with LLM-generated data. KNN exhibits a drop in perfor-
mance with LLM-generated data, while SVM maintains a strong performance. The choice of algorithm
for comment classification should consider the specific trade-offs between precision and recall, as well
as the effectiveness of LLM-generated data integration in improving F1 score.

5. Conclusion

The research presented in this paper addresses the challenge of objectively classifying code comments as
"Useful" or "Not Useful" in the context of software development. It leverages contextualized embeddings,
particularly BERT, to automate this classification process and provides precise and context-aware
evaluations. The results of the experiment demonstrate the effectiveness of different classification models
and highlight the potential benefits of incorporating LLM-generated data in improving classification
performance.

This research contributes to the fusion of natural language processing and software engineering,
promising improved code comprehensibility and maintainability. It opens avenues for further explo-
ration of LLMs in code-related tasks and the development of more advanced models for code comment
classification.

In the ever-evolving landscape of code comment assessment, this research elucidates a promising
future wherein the symbiosis of comment classification and LLMs stands at the vanguard of innovation.
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