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Abstract

This report focuses on enhancing a binary code comment quality classification model by integrating
generated code and comment pairs, to improve model accuracy. The dataset comprises 9048 pairs of
code and comments written in the C programming language, each annotated as "Useful” or "Not Useful”
Additionally, code and comment pairs are generated using a Large Language Model Architecture, and
these generated pairs are labeled to indicate their utility. The outcome of this effort consists of two
classification models: one utilizing the original dataset and another incorporating the augmented dataset
with the newly generated code comment pairs and labels.
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1. Introduction

Efficient code comment quality assessment plays a pivotal role in the enhancement of software
maintainability and reliability, addressing the ever-growing demands of the software devel-
opment landscape.[1] This paper endeavors to meet this imperative need by delving into the
augmentation of an existing binary code comment quality classification model with generated
code-comment pairs, aiming to improve accuracy and efficiency.

In the dynamic realm of software development, where the pursuit of heightened code main-
tainability, readability, and overall system reliability prevails, the assessment of code quality
and its accompanying comments has emerged as an integral aspect. [2] This research further
explores the current methodologies employed in code comment quality assessment, casting light
on the historical reliance on manual evaluations—a process inherently vulnerable to disparities
stemming from individual judgment.

The primary research objective, underscored throughout this paper, is to augment an estab-
lished model drawing insights from a comprehensive dataset comprising 9048 pairs of code
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and comments, each thoughtfully categorized as either "Useful” or "Not Useful” Through this
endeavor, we aim to make significant strides in the realm of automated code comment quality
assessment, offering a valuable contribution to modern software development practices. [3]

2. Related Work

Code comment quality classification is a well-studied research area, with a variety of existing
approaches proposed in the literature. These approaches can be broadly categorized into
traditional and machine learning-based.

2.1. Traditional Approaches

Traditional approaches to code comment quality classification typically rely on manual in-
spection or rule-based systems. Manual inspection is time-consuming and prone to human
error, while rule-based systems are often inflexible and unable to capture the nuances of code
comments. [4]

2.2. Machine Learning - Based Approaches

Machine learning-based approaches to code comment quality classification have become in-
creasingly popular in recent years. These approaches typically train a machine-learning model
on a labeled dataset of code comments. The model then learns to identify the features of code
comments that are indicative of their quality. [5]

Some of the most common machine learning algorithms used for code comment quality
classification include Support vector machines (SVMs), Decision trees, Naive Bayes classifiers,
Logistic regression, and Neural networks.

2.3. Generative Al-Based Approaches

Generative Al-based approaches to code comment quality classification are a relatively new
area of research. These approaches use generative Al models to generate code comments that
are labeled as either "Useful” or "Not Useful” These generated code comments can then be used
to augment the training dataset for a code comment quality classification model.[6]

The first study, which introduced Comment-Mine [7], established the foundational framework
for extracting meaningful insights from code comments, with a particular focus on software
design and implementation elements. This approach laid the groundwork for understanding the
inherent value embedded within comments, emphasizing their potential to enhance comprehen-
sion. The second study, Comment Probe[8], furthered this understanding by automating the
evaluation process of code comments, systematically categorizing them based on their practical
usefulness in software maintenance tasks. It highlighted the tangible applications of insightful
comments in real-world scenarios. Building upon these foundational studies, this research
tries to integrate and extend these concepts. By incorporating Comment-Mine’s knowledge
extraction capabilities and leveraging Comment Probe’s automated evaluation system, the study
presented a comprehensive methodology. This approach not only bridges the gap between



recognizing the value of comments and practically assessing their utility but also enhances the
accuracy of comment quality classification. This amalgamation of methods signifies a significant
advancement in the field of software development and maintenance, contributing to a more
nuanced understanding and effective implementation of code comments in practical software
engineering contexts.

In the investigated domain, one study, referred to as the Low-Dimensional Code Represen-
tation research [9], delves into the utilization of contextualized embeddings for code search
and classification, introducing CodeELBE, a nuanced software code representation. By training
ELMo from scratch and fine-tuning CodeBERT embeddings using masked language modeling on
natural language and programming language texts, this research significantly enhances retrieval
performance, especially in binary classification and retrieval tasks. In contrast, this research
focuses on augmenting a binary code comment quality classification model by integrating newly
generated code-comment pairs using a Large Language Model Architecture. The seed dataset
includes 9048 pairs of C programming language code and comments, each annotated as "Useful”
or "Not Useful” The outcome comprises two classification models: one utilizing the seed dataset
and another incorporating the seed dataset with the newly generated code-comment pairs and
labels. This approach aims to enhance the accuracy of evaluating the quality of code comments,
contributing to the broader understanding of code comprehension and maintenance.

3. Methods

3.1. Data Collection and Code Comment Pair Extraction

The process of data collection involved utilizing the GitHub API with a unique API token for
authentication. An API token was incorporated to enable access to the GitHub repositories. The
search for suitable repositories was conducted through a query specifically targeting repositories
coded in the C programming language. The GitHub API facilitated the retrieval of pertinent
repository information.

Upon identifying potential repositories, the script proceeded to access the contents of these
repositories. This was accomplished by sending requests to the respective GitHub endpoints.
The response from these requests, received in JSON format, contained detailed metadata about
the files within the repositories.

Further refinement was necessary to focus exclusively on C files. This involved parsing the
JSON response and filtering files based on their file extensions. Specifically, files with the ’.c’
extension were selected for subsequent processing, ensuring that only C programming files
were included in the dataset.

For each qualifying C file, the script meticulously parsed the file content. It employed a
line-by-line approach, allowing for the precise identification of comments and code sections.
The parsing process distinguished between single-line and multi-line comments, ensuring the
accurate extraction of both types. Comments within the code were identified based on standard
commenting conventions, such as ‘//’ for single-line comments, ’/*’ for the beginning of a
multi-line comment and **/* for its end.

The extracted code-comment pairs were organized into a structured format, enabling seamless
storage and subsequent analysis. These pairs constituted the foundational dataset upon which



the subsequent phases of the research were built.

3.2. Manual Labeling Process

To facilitate the supervised learning aspect of the research, a portion of the acquired code-
comment pairs underwent manual labeling. Specifically, the initial 100 rows of the dataset were
meticulously reviewed and labeled as either "Useful” or "Not Useful” This manual labeling
process ensured the presence of a high-quality labeled subset, vital for training and evaluating
machine learning models.

The manual labeling process involved a meticulous examination of the contextual relevance
and informativeness of comments within the code context. Comments deemed to significantly
enhance the understanding of the code, improve readability, or provide valuable insights were
categorized as “Useful” Conversely, comments lacking relevance, clarity, or informativeness
were categorized as "Not Useful” This manual curation ensured the creation of a reliable ground
truth dataset, crucial for training and validating machine learning algorithms.

3.3. Machine Learning Model Training and Evaluation

The machine learning model utilized for this research was BERT (Bidirectional Encoder Repre-
sentations from Transformers), a state-of-the-art transformer-based architecture. The model
training process commenced with the preprocessing of the labeled dataset. This involved
the concatenation of comments and their surrounding code context, creating cohesive textual
sequences. These sequences were tokenized using the ’bert-base-uncased’ tokenizer, ensuring
compatibility with the pre-trained BERT model.

The dataset was meticulously divided into training and test sets, employing a standard 80-20
split ratio. The BERT model was then fine-tuned on the training data, incorporating a reduced
learning rate of 1e-6 to optimize convergence. To handle the substantial dataset effectively,
a batch size of 8 was employed, with gradient accumulation over 4 batches. This approach
allowed for efficient processing and optimization of the model’s performance.

The fine-tuned BERT model was subsequently evaluated on the test set to gauge its efficacy
in classifying comments as either *Useful” or "Not Useful” Model predictions were generated,
and the accuracy metric was calculated using the scikit-learn library. This rigorous evaluation
process ensured the determination of the model’s classification accuracy, a pivotal metric in
assessing its effectiveness in code comment quality assessment.

3.4. Predictive Analysis and Result Interpretation

The final phase of the research involved leveraging the fine-tuned BERT model to make predic-
tions on a distinct dataset. These predictions, indicative of the model’s classification prowess,
were meticulously analyzed and interpreted. The output, consisting of predicted labels for each
code-comment pair, was organized into a structured format for comprehensive analysis.
Additionally, a comparative analysis was conducted between the manual labels and the model
predictions. Discrepancies, if any, were scrutinized to discern patterns and insights into the
model’s decision-making process. This meticulous analysis facilitated a deeper understanding



of the model’s strengths and potential areas for enhancement, contributing valuable insights to
the research findings.

This comprehensive and detailed methodology encompassed every stage of the research
process, ensuring meticulous data collection, manual curation, machine learning model training,
and rigorous evaluation. The intricate interplay between manual expertise and advanced
machine learning techniques formed the foundation of this research, culminating in a robust
and reliable code comment quality assessment framework.

4. Experiment Design

4.1. Problem Definition:

The primary objective of our experiment is to enhance code comment quality assessment
using a combination of automated code-comment pair extraction from GitHub repositories
and state-of-the-art machine learning techniques, specifically the BERT (Bidirectional Encoder
Representations from Transformers) model. We aim to categorize code comments as "Useful”
or "Not Useful” based on their contextual relevance, clarity, and informativeness.[10]

4.2. Data Collection and Preprocessing

We obtain code-comment pairs by querying GitHub repositories coded in C language. These
pairs are then meticulously parsed and tokenized for further analysis. The resulting dataset is
represented as {(Cy, Ly), (Cy, Ly), ..., (C,, L,,)} where C; represents the comment and L; represents
its label ("Useful” or "Not Useful”).

4.3. Manual Labeling Process

The first 100 code-comment pairs are manually labeled based on predefined criteria. Let L,,
represent the manually labeled set {(Cy, L;), (Cy, Ly), ..., (C100, L{00)} where L; € {0, 1}.

4.4. Model Architecture

We employ the BERT model, a transformer-based architecture, for sequence classification. The
model is trained to predict the usefulness label (L;) of a given code comment (C;). The BERT
model transforms each comment into an embedding vector E;.

4.5. Loss Function

The model is trained using the cross-entropy loss function, which computes the loss L as follows:

N
L= _lN ; (Lilog(og)+(1-L;)log(1-0%,))

where o(x) is the sigmoid activation function.
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Figure 1: Architecture Diagram illustrating the entire process of the data processing pipeline for code
comment classification.

4.6. Training Procedure

The model’s performance is evaluated using accuracy (Acc), precision(P), recall(R), and F1 -
Score (F1). These metrics are calculated as follows:

_ Number of Correct Predictions

Acc
Total Number of Predictions
_ True Positives
True Positives + False Positives
_ True Positives
True Positives + False Negatives
F1= 2xPxR
P+R

4.7. Experimental Workflow

The process begins with data collection, where code-comment pairs are obtained from random
GitHub repositories. Subsequently, the first 100 pairs are manually labeled based on predefined
criteria. Following manual labeling, the entire dataset undergoes tokenization and preprocess-
ing. The preprocessed data is then utilized to train a BERT model (L,,). After training, the
model’s performance is evaluated using a test dataset, and metrics such as accuracy, precision,
recall, and F1-score are calculated. The final step involves interpreting the results, analyzing
model predictions, and identifying false positives/negatives to gain insights into the model’s
performance and effectiveness in understanding code comments.
Refer to Figure 1 for the detailed architecture diagram illustrating the entire process.



5. Results and Analysis

In the context of the code comment quality assessment task, a comprehensive analysis of experi-
mental results was conducted on two datasets: the original dataset (Seed Data) and an augmented
dataset comprising additional comments generated using Language Model (LLM) techniques
(Seed Data + LLM Generated Data). The evaluation involved various machine learning algo-
rithms, including Decision Tree Classifier[11], Artificial Neural Network (ANN)[12], Support
Vector Machine (SVM)[13], Random Forest Classifier[14], Gradient Boosting Classifier[15],
Logistic Regression[16], Naive Bayes[17], LightGBM Classifier [10], k-Nearest Neighbors (KNN)
Classifier [18], and Recurrent Neural Network (RNN)[19]. The performance metrics, including
precision, recall, and F1-score, were used for the assessment. The detailed results of these
experiments can be found in Table 1, Table 2 and Figure 2.

Decision Tree 0.788 0.736 0.761
Artificial Neural Network (ANN) 0.799 0.799 0.799
Support Vector Machine (SVM) 0.799 0.935 0.862
Random Forest Classifier 0.784 0.845 0.814
Gradient Boosting Classifier 0.707 0.933 0.804
Logistic Regression 0.737 0.853 0.791
Naive Bayes (Multinomial Naive Bayes) | 0.726 0.866 0.790
LightGBM Classifier 0.757 0.864 0.807
k-Nearest Neighbors (KNN) Classifier 0.774 0.670 0.718
Recurrent Neural Network (RNN) 0.617 1.000 0.763

Table 1
Performance Metrics with Seed Data

Decision Tree 0.889 0.880 0.885
Artificial Neural Network (ANN) 0.889 0.880 0.884
Support Vector Machine (SVM) 0.839 0.920 0.878
Random Forest Classifier 0.815 0.882 0.848
Gradient Boosting Classifier 0.759 0.955 0.846
Logistic Regression 0.773 0.928 0.843
Naive Bayes (Multinomial Naive Bayes) | 0.754 0.946 0.839
LightGBM Classifier 0.778 0.900 0.835
k-Nearest Neighbors (KNN) Classifier 0.761 0.901 0.825
Recurrent Neural Network (RNN) 0.817 0.767 0.791

Table 2
Performance Metrics with Seed + LLM Generated Data

5.1. Key Observations and Insights

The results demonstrate that the combination of Seed Data and LLM Generated Data
consistently improved performance metrics such as precision, recall, and F1-score across
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Figure 2: Performance Metrics of Different Classifiers

most algorithms. Notably, ANN and SVM exhibited impressive performance on both
datasets, with high precision and recall values. These models effectively balanced precision
and recall, crucial for code comment quality assessment. The introduction of comments
generated by LLM notably enhanced the performance of all algorithms. This highlights
the utility of synthetic data in improving model generalization and robustness. Decision
Tree and Logistic Regression, although achieving reasonable results, demonstrated a more
significant improvement when exposed to LLM Generated Data. This suggests that these
models might benefit significantly from increased and diverse training data. Models such
as Naive Bayes achieved high recall values but at the expense of precision. This trade-
off emphasizes the challenge of striking a balance between minimizing false positives
(precision) and capturing all relevant instances (recall). The RNN model exhibited a
perfect recall on Seed Data but showed a notable decrease in both precision and recall
when applied to Seed Data + LLM Generated Data. This indicates potential challenges
in adapting RNN architectures to mixed datasets. Depending on the specific use case,
different algorithms might be preferred. For instance, if minimizing false positives is
critical, models with higher precision such as ANN and SVM could be the preferred
choice.



6. Conclusion and Future Outlook

In conclusion, this comprehensive exploration delved deep into the realm of enhancing code
comment quality assessment. We embarked on a journey, starting from the meticulous design
of experiments that combined cutting-edge machine learning techniques, particularly the BERT
model, with a meticulous dataset obtained from GitHub repositories. The rigorous experimental
workflow, from data collection to model training, was meticulously detailed, ensuring a robust
foundation for our analyses.

The experimentation phase was rich and diverse, involving a spectrum of algorithms from
Decision Trees to sophisticated Neural Networks, each revealing its unique strengths and
limitations. The synergy of the seed data and the LLM generated data showcased a substantial
enhancement across various metrics, reflecting the potential of hybrid approaches in real-world
applications.

Delving into the results, we uncovered nuanced insights into the performance of different
algorithms. From the precision of Artificial Neural Networks to the recall of Support Vector
Machines, each algorithm exhibited distinctive behaviors. The juxtaposition of seed data and
LLM generated data provided a holistic view, highlighting the delicate balance between precision
and recall, a critical consideration in code comment quality assessment.

However, this journey is far from over. The future outlook of this research domain holds
promises and challenges. One avenue of exploration lies in the integration of advanced natural
language processing techniques to further contextualize code comments. Embracing the power
of transformer models beyond BERT, such as GPT (Generative Pre-trained Transformer), could
unravel new dimensions in code comment understanding.

Additionally, the ethical considerations in this field demand constant vigilance. Ensuring
unbiased data collection, mitigating algorithmic biases, and upholding privacy standards are
imperative in the evolving landscape of Al ethics.

Furthermore, the collaboration between academia and industry is pivotal. Industry insights
can fuel academic research, leading to practical solutions that resonate in real-world scenar-
ios. Likewise, academia’s innovation can challenge industry norms, fostering a symbiotic
relationship that propels the field forward.

In essence, this exploration serves as a stepping stone into the vast universe of code comment
quality assessment. As technology advances and challenges emerge, the synergy between
human intelligence and machine learning algorithms will be the linchpin in unraveling the
intricacies of code comment evaluation. With continued dedication, collaboration, and ethical
mindfulness, the future holds the promise of code comment assessment that is not only efficient
and accurate but also profoundly insightful and empathetic.
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