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Abstract 
From traffic management to license plate scanning, the field of traffic regulation 
is fraught with difficulties that need to be addressed with innovative solutions. 
Manual tracking infractions of traffic laws is conceivable, but it requires a 
substantial amount of manpower to monitor all vehicles and their license 
plates. When automobiles are travelling fast, the license photographs become 
blurry and this method becomes less efficient. In addition, it is difficult for toll 
collectors and traffic controllers to physically check license plate numbers at 
each and every toll gate or traffic post for stolen vehicles or vehicles that breach 
traffic laws. Maintaining records of several hundred vehicles becomes 
impractical and renders it nearly impossible to establish a coherent tracking 
system.  
This paper discusses these problems and offers a novel system that 
dramatically streamlines and improves the efficiency with which traffic rule 
violations and license plate detection are recorded. The system uses deep 
learning and image processing to improve license plate detection. Websites 
having public databases of stolen cars were also scraped and was utilized to 
create a new database in the proposed system. Once a license plate is identified, 
a robust OCR (Optical Character Recognition) model is used to extract the text 
from the license plate, which is then compared with the newly created database 
values of stolen vehicles using cosine similarity of the letters and digits found 
in the identified license plate. 
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1. Introduction 

Vehicles, as the primary mode of transportation in today's industrialized society, are 

integral to virtually every facet of human endeavor. Infractions like speeding and running 

red lights will become more common as the number of vehicles on the road continues to 

rise rapidly. If drivers had to rely exclusively on numbered traffic officers to prevent the 

vast number of daily traffic violations, public transportation would grind to a standstill. Each 

vehicle has its own set of details represented by its License Plate (LP) [1]. Its likeness is a 

valuable tool for reaching its owner and exchanging data. As a result, pictures are frequently 

employed as the first means of determining a person's or vehicles identify. Furthermore, 

image analysis technology was already deeply established in almost every aspect of human 

activity. As a result, automatic collection and management of LP data from digital 

photographs has evolved as a useful tool for public transportation surveillance [2, 3]. 

The problem of manually identifying vehicles can be resolved through the 

implementation of Automatic License Plate Recognition (ALPR) systems. The ALPR is used 

for vehicle identification in a variety of traffic-related applications, such as toll management 

booths, airports, cargo areas, parking lot access validation, highways, and the detection of 

stolen vehicles. Recent developments in Parallel Processing and Deep Learning (DL) have 

aided many computer vision applications, including object detection/identification and 

optical character recognition (OCR)[4], and ALPR systems are no exception. By employing 

an ALPR system equipped with machine learning tools, it becomes possible to eliminate the 

need for manual work and labor-intensive tasks associated with tracking LPs, recording 

their numbers, and cross-referencing them with a database of stolen cars or vehicles 

violating traffic rules.  

The proposed approach combines state-of-the-art machine learning techniques with 

various Image Processing (IP) techniques to achieve higher accuracy, reduced redundancy, 

and produce clear, sensible outputs for LP detection [5]. Once a LP is detected, a robust OCR 

model is employed to extract the text from the identified LP. This extracted text is then 

compared with values in the database using cosine similarity of the detected plate's letters 

and numbers. The system generates a list of all suspected plates based on the similarity 

ratio. In order to enhance user-friendliness, a Graphical User Interface (GUI) has been 

developed, enabling non-technical users to easily navigate the system. The GUI includes 

interactive buttons for loading and predicting images, as well as a button to check the 

current status of the database(s) [6]. 

2. Literature Review 

The early development of automatic LP detection can be traced back to 1970 in the 

United Kingdom at the Police Development Branch. The initial design was established in 

1979 by two companies, Computer Recognition System and EMI Electronics, located in 

Wokingham, UK. However, significant advancements in this field started emerging after the 

1990s with the introduction of advanced and cost-effective technologies. LP detection and 

recognition have been extensively researched, resulting in numerous models and 

approaches.  



 

In the approach mentioned in [7], a robust technique utilizing deep neural networks is 

employed for LP detection in images. The detected LPs are then pre-processed and 

subjected to License Plate Recognition (LPR) using the LSTM Tesseract OCR Engine. In a 

paper by Hamidreza & Kasaei [8], a real-time LP detection and recognition model is 

developed based on morphology and template matching techniques. Another approach by 

Serkan O [9] involves utilizing edge detection algorithms and smearing algorithms for LP 

extraction. In a study conducted by R. Babu [10], a LPR model was created using the YOLOV3 

object detection algorithm. However, YOLOV3 had limitations due to a training bias, as it 

could only detect objects in similar scales as it was trained on. YOLOV5, on the other hand, 

addressed this bias by utilizing CSP nets, representing a significant upgrade over YOLOV3 

[11] in terms of performance. 

In the projected work an advanced system for LP detection and recognition that 

leverages the power of DL and IP, resulting in a more accurate and intelligent approach is 

presented. The suggested system integrates state-of-the-art technologies to improve the 

speed and accuracy of LP detection and recognition in real time, which is useful for 

monitoring traffic, conducting surveys, and other similar applications. 

3. Methodology & Modeling Approaches 

The design of a LPR System involves three key stages that encompass the complete process 

flow: 

i. Plate Localization and Resizing,  

ii. Normalization  

iii. Character Recognition 

 

3.1 Plate Localization and Resizing 

The key step in the license plate recognition system is to obtain localized regions of the 

plate. Numerous algorithms have been devised in the past to achieve optimal plate 

localization. All these techniques involve two main processes: 

• Vertical Edge Detection- which is a technique to detect vertical edges. It is implemented 

through spatial filtering between a predefined mask and the image, which is obtained 

after binarization. A mask of size 3x3 used for edge detection is shown in Fig. 1 

 
Fig. 1. Edge Detector Mask 

• Adaptive Thresholding - which calculates the threshold values of smaller regions.  This 

method is useful where different regions might have different threshold values unlike 



 

normal thresholding, where threshold value is global. To get a binary image b(x,y), a 

threshold of T(x,y) is applied [12] where 

b(x, y) = f(x) = {
0,  if I(x, y) ≤ T(x, y)
1, Otherwise

 

 

Two approaches have been developed in the past for achieving Adaptive Thresholding: 

a) The Chow and Kaneko Algorithm which divides the image into a series of 

overlapping sub-images and calculates the optimal threshold value for each sub-

image by analyzing its histogram. Interpolation of the sub-images enables obtaining 

threshold values at the pixel level 

b) Local Thresholding method which operates by calculating the intensity values of 

local neighborhoods surrounding pixels. The mean of the local intensity distribution 

is commonly used for this calculation. 

 

Both approaches are based on the assumption that smaller regions of the image exhibit 

uniform illumination. 

• Grab Cut Algorithm -This algorithm is based on graph cuts and utilizes a Gaussian 

model to estimate the color distribution of the target object. By constructing Markov 

random fields over the pixels and employing energy functions, the algorithm prefers 

connected regions with the same tag or label. Graph optimization techniques are then 

employed to achieve efficient and effective object segmentation. 

3.2 Normalization 

Normalization is a process that involves modifying or adjusting the range of pixel values 

in an image. The primary objective of normalization is to rescale the image to a suitable state 

that meets the requirements of subsequent processing [13]. Normalization can be 

categorized into two types: 

a) Linear Normalization which establishes a linear relationship between the original and 

transformed image. Mathematically, it is implemented as: 

In = (I − Min)
newMax − newMin

Max − Min
+ newMin 

b) Nonlinear normalization which involves establishing a nonlinear relationship 

between the original and transformed image. It can be mathematically expressed as: 

IN=(newMax-newMin)
1

1+e
-
I-β

α

+newMin 

 



 

where IN is the normalized image, newMax and newMin are the maximum and minimum 

pixel intensities in the image,   is the range of pixel intensity and  is the width of the input 

image which is same as the total number of pixels in the image with noise reduction. 

3.3 Character Recognition 

OCR is the process of electronically converting images containing typed or handwritten 

text into digital or machine-readable code. OCR dates back to the 1920s, when physicist 

Emanuel Goldberg invented a new type of machine that could scan characters and convert 

them into telegraph code. He later greatly improved and developed an electronic document 

retrieval system. on the input image being isolated from the surrounding OCR relies on two 

primary algorithms: 

i. Matrix Matching: This method performs a pixel-to-pixel comparison between the 

current image and a stored template. It heavily relies elements and the stored 

template being at a similar scale and font. 

ii. Feature Extraction: This method involves decomposing the glyphs (individual 

characters) into distinct features such as closed loops, intersections, and lines. This 

approach enhances efficiency by reducing the dimensionality of character 

representation. 

3.4 Extraction and Vocalization of Text from Image 

Pytesseract and pyttsx3 python libraries have been further used for extraction and 

vocalization of text from images. These tools have been used to incorporate another 

additional feature through which a license plate number can be vocalized (read out loud) 

after identification. Pytesseract is a highly proficient tool for optical character recognition 

(OCR) that utilizes the Tesseract engine. Pyttsx3 provides a powerful functionality for 

converting text into speech. It converts textual data into voice output (speech). 

4. Process Flow  

The primary steps for implementing the LP recognition system are given below and Fig. 2   

presents the complete flow chart for the LP recognition system. 

i. Pre-Processing Steps- Resizing Image to match stride and LetterBox Based 

Padding-The image of a vehicle is heavily preprocessed with a convolution filter and 

padding. 

ii. License Plate Detection and filtering out the cropped plate-Pre-processed image 

is fed into the object detection machine learning models. The predicted result is then 

further processed and pruned to give the best cropped image. 

iii. Character extraction from cropped image-Image Re-scaling - The cropped image 

is then fed into the OCR in order to detect the LP alphabets and numbers. 



 

 

Fig. 2. Flowchart for implementation of license plate recognition system 

 

The image is adjusted before processing so that its width and height are evenly divisible by 

the stride length of 32. Stride is a parameter used in Neural Networks as a measure to skip 

a given number of pixels while sliding the convolution filter based on the convolution 

formula given below: 

F∘ I(x,y)= ∑ ∑ F(i,j)I(x+i, y+j)

N

i=N

N

j=N

 

 

The convolution “spreads” each pixel (i,j) in I, where I is the entire image and F is the second 

image which defines neighbour relationship. This is done as a means of image compression 

since it reduces convolution processing on highly correlated, unwanted pixels, thus 

increasing the efficiency of the overall network. 

 

The image is reduced in size following the convolution technique so padding is done to keep 

the size of the original image the same. Padding is an additional layer applied to the edges 

of an image without changing its overall proportions. The original image's aspect ratio in 

the present work is preserved through scaling followed by letterbox-based padding. The 



 

flow chart for letterbox-based paddings is shown in Fig. 3.  

 

The resize ratio (r) was calculated to a 416 x 46 image, and the delta between new image’s 

shape and r* original image’s shape was then calculated. The image was padded based on 

the difference in height and width and then the image is fed to the machine learning model-

YOLOv5 [14]. After modifying the hyper parameters, the trained model is loaded, and the 

processed image is sent forward to get the results. Fig. 4 shows the code snippets of the 

model architecture.  

 
Fig. 3. Flowchart for Letter Box based padding 

 



 

 
 

Fig. 4. Code snippet for model architecture 

The last step was to resize the image to the final dimensions before continuing. Re-scaling 

the image keeps the range of weights small and is given by the formula,  𝑥1 =
𝑥

255
 , where x 

is the original size of the image. This keeps the weights from exploding into very high 

numbers, which would make the convolution numbers reach very high values. If the scaling 

isn't done right, it can lead to high bias values, which lowers the confidence. Poor scalability 

results in poor accuracy and a lot of noise. 

Computer vision requires identifying objects in an image. Object detection is harder than 

classification since classification doesn't locate objects in images. Models like YOLO can 

accurately locate targets in images. Convolution Neural Networks (CNN) helps YOLO detect 

objects. Applying a single Neural Network to an image, the algorithm then segments the 

image, locates bounding boxes, and makes probability predictions for each box. The 

bounding box with the highest probability is chosen to represent the object in the image.  

YOLO v5 is a single-stage object finder and its great precision and instantaneous object 
detection have made it a favourite among researchers and developers. YOLO also uses many 
class masks to hide the items it finds at once. The various parameters and benchmarks for 
the YOLOv5 machine learning model are given in Table 1. 



 

Table 1 YOLOv5 parameters and benchmarks 

Activation function The YOLOv5 model uses Leaky ReLU for some of the hidden 

layers and sigmoid activation function for the rest of the 

layers. 

Optimization function The default for YOLOv5s is chosen to be Stochastic Gradient 

Descent (SGD) 

Cost function In order to determine the loss of class likelihood and object 

scores, YOLOv5 uses “binary_cross_entropy_with_logits” 

function from PyTorch python library. 

 

 
 

Fig. 5. Code snippet for Plate Detection 
 

The code snippet for LP detection is given in Fig. 5. Most object detection models, after 

sliding windows over the image, have more than one candidates/proposal for detected 

objects[15]. Proposals are simply highlighted areas in the search image where the sought-

after object is most likely to be located. The adjoining windows of the candidate window 

share similar features with the candidate areas, yielding hundreds of candidate regions for 

the target image. As approaches for producing proposals must have a high recall rate, the 



 

stage's restrictions must be loosened. However, processing hundreds of candidate windows 

incurs enormous compute costs for obvious reasons; Non-Max Suppression (NMS) comes 

to the rescue in this situation. The algorithm of NMS works as follows [16]:  

i. Consider the proposal list "B" with the confidence score "S" and the overlap 

threshold "N." 

ii. Select the greatest S score of confidence, remove it from B, and then add to D. 

iii. Compare IoU (Intersection over Union) of the proposals, and if IoU is greater than 

N, remove it from B since this is likely to be a redundant one. 

iv. Keep repeating the process till there are no more proposals left in B. 

The technique relies on a single threshold value "N"; therefore, this parameter is crucial 

to the model's overall performance.  

 

 
Fig. 6. Code snippet for NMS application 

 

 

 
Fig. 7. Bounding box around the License Plate using Non-Max Suppression (NMS) 

 



 

The Predicted image is then applied to an NMS technique to eliminate hundreds of 

proposals and select the one with the highest degree of confidence. The code snippet for 

application of NMS is shown in Fig. 6. As illustrated in Fig. 7, NMS seeks the optimal 

bounding box around the License Plate and suppresses all others [17,18]. The basic concept 

is to repeatedly select the entity with the highest probability, output it as the prediction, and 

then eliminate any remaining boxes with an IoU ≥0.5 with the box output in the previous 

step.  

The detected area is then used to figure out the height and width of the area of interest, 

which is then adjusted to make the final cropped image for LP detection. The OCR used for 

extraction of LP is Tesseract OCR. Tesseract is an open-source software OCR engine 

developed by Hewlett-Packard in 1980. Once a cropped image is captured, tesseract is 

applied on the cropped image. The flow chart for operation of Tesseract is given in Fig. 8.  

 
Fig. 8. Tesseract Flow Chart 

 

The inputs for tesseract are binary images with polygon-based alphabets/numeric areas 

elucidated using adaptive thresholding.  

The steps to extract text from the image is given below: 

1. Linked component analysis saves outlines and merges them into alphanumeric blobs. 

2. Blobs are organised into text-based lines, and proportional alphanumeric text is split 

into words by definite-ordered or fuzzy white spaces. 

3. Recognition of text is a two-stage process: 

Stage 1: Every given word was acknowledged. The words that are 

recognized/classified are used as training data using adaptive filters. 

Stage 2: Words with low recognition accuracy ratings are re-recognised. 

4. The final stage included napped white spaces and alternative hypotheses 



 

The algorithms to extract lines and words from the image is given in Fig. 9 and Fig. 10 
respectively. 
 

 

 Fig. 9. Algorithm for finding line from the extracted text 

 

 

Fig. 10. Algorithm for finding words from the extracted text 

Algorithm to find lines in the extracted text 

1. Line Finding: 

i. Line filtering and blob generation remove vertically contacting character drop-covers in a 

simple percentile stature. 

ii. The text size is approached to middle-height (median) 

iii. Filtered blobs are placed atop non-covering, equal, but inclining lines. 

iv. Lines are relegated using the least median of squares to determine baselines. 

v. Last advance consolidates blobs with half-horizontal overlaps and aligns diacritical 

imprints with the right base. 

2. Fitting over the baseline: 

i. The quadratic spline function fits baselines using text lines, allowing tesseract to handle 

pages with bended lines. 

ii. Quadratic spline fits the most crowded partition with least square fit. 
3. Chopping and Pitch detection: 

i. Fixed-pitch lines are examined. 

ii. When fixed pitch text is found, tesseract slices the words into pitch-based characters and 

disables the chopper and associator. 

4. Proportional Word Finding: 

i. Misinterpreting word spacing can lead to the emission of undetected or erroneous words. 

Tesseract estimates gaps between a base line and a mean line in a confined vertical range. 

Algorithm to find words in the text 

1. Chopping Joined Characters: 

a. Chops the blob with worst confidence 

b. Curved vertices or line sections determine chop-points, which may take up to 3 sets to cleave 

an ASCII set. 

2. Joining and linking Broken characters: 

a. If the word has low accuracy/precision after potential cleaves, the associator tries to get the 

best first pursuit of the segmented graph. 

b. New candidate states are selected from a need line and assessed by grouping unclassified 

mixes of sections. 

c. The associating method is done after chopping and is inefficient, and it has the advantage of 

requiring fewer complex data structures than would be required to maintain the whole graph 

of segmentation. 

d. Tesseract's ability to successfully organise fragmented characters offers it an advantage over 

other/current OCR algorithms. 



 

Finally, pre-processing on the detected string is done in order to prune out unnecessary 

detections. 

 

After detecting the LP, the Zonal Integrated Police Network (ZIPNET) website was scraped 

to extract license plates from the FIRs registered within North Delhi. A database is created 

using the scraped license plates. In order to identify suspected stolen vehicles, a matching 

function is implemented that utilizes a similarity score to identify potential matches when 

the model output is not completely accurate. Finally, a Graphical User Interface (GUI) was 

built for the front end using the Kivy Python module, as shown in Fig. 11. The user can input 

the image from which they wish to identify and recognise the license plate number via the 

graphical user interface. 

 

 

Fig. 11. GUI of Application 

5.  

Fig. 12.  Conversion of License Plate number into speech 

 

Conversion of License Plate number into audio (voice) output is illustrated in the flow chart 

shown in Fig. 12. [19] 



 

5. Results and Discussion 

A robust Deep Learning Model has been trained specifically for plate detection, designed 

to meet the requirements of the Indian System. The model was evaluated using a dataset of 

50 images. The extracted text from an image is determined by the average confidence of the 

model used to recognize the LP. As indicated in Table 2, the model's confidence that a LP is 

present in the image shown in Fig. 11 is 75.75 %. 

 

Considering that Indian Number plates have ten letters/numbers, various metrics were 

evaluated for the input image shown in Fig. 13 and is given in Table 3, for text matches. 

 

Fig. 13. Input image for the detection system 

Table 3 Performance metrics of proposed LP detection system 

S. 

No. 

Performance Metrics % values 

1 Accuracy of perfect matches with the original license plate  80% 

2 % Images with 9 letters matching  4% 

3 % Images with 8 letters matching  6% 

4 % Images with < 8 letters matching  10% 

5 % Images where the predicted number contains the original number 

as suffix  

6% 

6 Average cosine similarity in the test data  95.2% 

7 Average % of letter match  88.5% 

 

From the input image, vehicle LP was cropped using ML algorithms as shown in Fig. 14 (a) 

which was preprocessed to obtain the LP as shown in Fig 14 (b).   

 

                    
                                              (a)                                                                                   (b) 

Fig. 14. (a) Extracted LP image from the input image (b) pre-processed image for the detection 
system 



 

Using the extracted image, the system could recognize the content of the LP using OCR and 

the result obtained is given in Fig. 15.  

         

 
Fig. 15. Detected LP 

It is found that the proposed LP detection system for traffic management can accurately 

detect the LP with an accuracy of 80%.  Since some of the predicted strings and the original 

strings were not always equal, nor did they differ by one or two characters, however, on 

taking a manual inspection at it, they looked extremely similar. Hence, it makes sense to 

extract out the information about the similarity index of the predicted string and the actual 

result. In order to do that, metric of cosine similarity was used. In mathematical terms, 

Cosine similarity calculates the similarity of two vectors in an inner product space. Hence, 

it is used as a measure with similarity in text analysis. The formula for calculation of cosine 

similarity is given as follows: 

 

The average cosine similarity of 95.2% in the test data was obtained using the proposed 

system. Graphical representation in the form of a bar plot of metrices 1,2,3 and 4 as given 

in the Table 3 is shown in Fig. 16.   

 

Fig. 16. Plot showing number of letters matched 

The result for Average percentage of letters match is given in Table 4 and its bar chart is 

given in Fig. 17.  

Table 4 % times each letter matched 

 
 



 

 

Fig. 17. Plot showing % times each number matched 

 

Based on the various metric values of the suggested system, it can be concluded that the 

system is a reliable option for LP detection and can aid in the detection of stolen vehicles 

utilising the developed GUI application.   

6. Conclusion 

Utilizing a reliable DL Model, the proposed LP Detection system has been developed. The 

model has been trained exclusively for plate detection, in accordance with Indian System 

specifications. In addition, image processing techniques such Letter Box padding and NMS 

have been added to increase the model's accuracy. The extracted LP is subsequently 

forwarded to the Number Extraction Module for further processing. Tesseract, an OCR 

Engine responsible for extracting the numbers from the license plate and presenting the 

output in text format, is used to process the extracted LP image. The generated text is 

further processed to remove any irrelevant detections. Finally, the output from this module 

is transmitted to the Data Scraping module and shown on the Kivy Python module-built GUI. 

The presented technique additionally determines whether the detected vehicle's LP 

matches any entries in the stolen vehicles database. The extracted string from the Number 

Extraction Module is searched in the database, and the status of stolen or not stolen is 

displayed on the user interface based on the results. The extracted string and the bounding 

box around the LP received from the LP detection module is also displayed. An additional 

useful feature has also been added in the system to convert the detected License Plate 

number into Voice output (speech).  
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