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Abstract 
In finance, Forecasting Stock Price (FSP) poses a significant challenge. However, 
the swift progress enabled by Artificial Intelligence (AI) techniques, 
particularly Deep Neural Network (DNN) has propelled the advancements in 
this sector. Consequently, researchers have investigated the application of 
different DNN techniques. Despite these efforts, existing models are often 
shallow and prone to overfitting due to the model's complexity. Consequently, 
there is still room for improvement in achieving accurate forecasts of the future 
closing price. Therefore, to advance FSP, a novel hybrid model named CGM is 
proposed, which is developed using a combination of Convolution, Gated 
Recurrent Unit (GRU), and Multi-Layer Perceptron (MLP). Thereafter, the CGM 
model is trained using technical features, Intrinsic Mode Function (IMF) 
decomposed using Empirical Mode Function (EMD), and a combination of both 
to exhaustively explore the ability of the CGM model, thus producing three 
distinct models, namely TF-CGM, IMF-CGM, and TF-IMF-CGM models. 
Furthermore, to automatically tailor the hyperparameters of the 
aforementioned models, Neural Architectural Search (NAS) is employed to 
automatically fine-tune the hyperparameters of the models. During the 
experiment, the aforementioned models are evaluated using Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage 
Error (MAPE) evaluation metrics using stock indices listed in the New York 
Stock Exchange (NYSE) and National Stock Exchange (NSE). From the 
experimental results, it was observed that technical features exert a more 
significant influence, which leads to the TF-CGM model outperforming the IMF-
CGM and TF-IMF-CGM models. Moreover, the proposed models provided better 
performance when compared with existing models present in the literature. 
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1. Introduction 

Predicting future stock prices and market indices is crucial for investors and traders 

seeking positive returns on their investments. However, it remains a challenge due to the 

complex dynamics influenced by economic, emotional, and political factors, as suggested by 

the Efficient Market Hypothesis (EMH). Despite this, efforts have been made to develop 

strategies for successful price prediction [1]. Traditionally, Forecasting Stock Price (FSP) 

involves examining historical price movement and trading volumes together with a 

comprehensive assessment of a company’s financial health to ascertain its intrinsic value 

and potential for future growth. However, such methods presume the presence of 

exploitable trends in historical data for forecasting future prices. Therefore, an alternative 

method such as statistical models like Auto-Regressive Integrated Moving Average (ARIMA) 

and Seasonal ARIMA (SARIMA) are commonly utilized for future price forecasting [2], [3], 

[4]. Nevertheless, the linearity inherent in these statistical models limits their ability to 

capture the complex dynamics exhibited by historical market data. Consequently, various 

researchers have explored the usage of Deep Neural Network (DNN) in FSP [1], [5], [6], [7], 

[8]. However, due to the shallow nature of the existing models, they are susceptible to 

overfitting. Therefore, this research paper aims to address this limitation by proposing a 

novel hybrid model named CGM, which employs a combination of Convolution, Gated 

Recurrent Unit (GRU), and Multi-Layer (MLP) Perceptron techniques.  

A convolutional layer is a building block of a Convolutional Neural Network (CNN) [9], 

which is widely used in image analysis. It involves a convolution operation, wherein filters 

slide across the input data, performing an element-wise multiplication between the filter 

and the input to extract localized spatial information. Meanwhile, GRU, introduced by [10], 

is a category of Recurrent Neural Networks (RNN), which is specifically designed to address 

the challenges of RNN in capturing long-range dependencies. Furthermore, MLP, a type of 

fully connected feedforward ANN is also utilized in the development of the CGM model. 

During the experiment, the hybrid CGM model is trained using three different types of 

inputs i.e., Technical Features (TFs), Intrinsic Mode Functions (IMFs), and a combination of 

both features, thereby producing three unique variants of the CGM model, namely TF-CGM, 

IMF-CGM, and TF-IMF-CGM models.  Furthermore, the Neural Architectural Search (NAS) 

algorithm [11], which is a subfield in Machine Learning (ML) for streamlining the ML 

pipeline is introduced to facilitate automatic hyperparameter tuning in the TF-CGM, IMF-

CGM, and TF-IMF-CGM models. 

The manuscript is divided into six sections. Section 2 presents the summary of the 

existing literature centered on stock price prediction using DNN techniques. Sections 3 and 

4 delve into the proposed work and its experimental study, which is followed by presenting 

the results and discussion of the experiment in Section 5. Finally, Section 6 presents the 

conclusion of the research work.  

2. Literature Review 

In the last decade, researchers have increasingly turned to DNN for stock price 

prediction, leveraging their capability to capture non-linear dependencies in financial time 



series data. In the research work conducted by Selvamuthu et al., (2019), three learning 

techniques, namely Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), and 

Bayesian Regularization (BR) were explored. Their experimental results, assessed using 

both tick data and 15-minute data revealed that SCG exhibited superior performance in 

comparison to LM and BR. However, the authors concluded that incorporating LSTM and 

integrating sentiment analysis could potentially yield better results. In a comparable 

investigation carried out by Cao et al., (2019), time-series financial data underwent 

decomposition into IMFs through the application of both Empirical Mode Decomposition 

(EMD) and Complete Ensemble Mode Decomposition with Adaptive Noise (CEEMDAN) 

techniques, and its influence was assessed using a two-layered LSTM model. They observed 

that two-layered LSTM outperformed one-layered LSTM, MLP, and Support Vector Machine 

(SVM). Moreover, Chen et al., (2019) explored the application of the attention mechanism 

in LSTM for stock market prediction. Their experiment was verified using the SSE stock 

index and found that LSTM with an attention mechanism has more potential, thereby 

achieving better results compared to standalone LSTM. In the subsequent research work 

conducted by Shen & Shafiq, (2020), the effectiveness of LSTM was investigated in short-

term trend forecasting for market prices. Their approach encompassed feature expansion 

steps using min-max scaling, polarization, and computing percentage fluctuation. They 

contended that the superiority of their model over others stems from the comprehensive 

feature engineering employed in their methodology. Taking a different approach, Yang et 

al., (2020) leveraged three-dimensional CNN to extract features from stock data meanwhile, 

LSTM was used for prediction. However, they opted to exclude the pooling layers in their 

experiment to prevent potential information loss. Their findings underscored the 

significant role of ranking stock indices in enhancing the overall performance of their 

models.  

In a more recent study conducted by Ji et al., (2021), an LSTM model was proposed for 

stock price prediction. Their study involved decomposing the stock data into deterministic 

signals through wavelet transform techniques. Additionally, sentiment analysis was 

incorporated by utilizing text data acquired from social media. Their experimentation 

demonstrated success when compared to traditional models. To emphasize the significance 

of utilizing DNN in forecasting future metal prices in the metal industry, Lin et al., (2022) 

proposed a novel model that is based on Modified Ensemble Empirical Mode Decomposition 

(MEEMD) and LSTM. They pointed out that MEEMD demonstrated a better decomposition 

effect than EMD. In [19], a novel architecture named FDGRU-transformer (Frequency 

Decomposition induced Gate Recurrent Unit Transformer) was proposed to tackle the stock 

price prediction problem. Their method involved decomposing stock data into IMFs using 

the EMD technique. Furthermore, a GRU, LSTM, and multi-head attention were utilized to 

extract temporal information. Their model’s comparison with existing state-of-the-art 

models indicated better results. Moreover, as a consequence of ANN’s popularity in FSP, 

Seabe et al., (2023) explored the capability of LSTM, GRU, and bi-directional LSTM in 

forecasting the price of Bitcoin, Ethereum, and Litecoin. Their model’s evaluation illustrated 

that bi-directional LSTM possesses the highest capability in predicting the prices of the 

cryptocurrencies.  



Despite the success in the application of DNN in FSP, the existing models are often 

characterized by limited depth, potentially leading to overfitting. Therefore, to address this 

limitation and enhance the prediction accuracy, this research work introduces a novel 

hybrid model, named CGM by integrating Convolution, GRU, and MLP techniques. 

Furthermore, to achieve a balance between model prediction performance and 

representativeness in architectural configurations, the NAS algorithm is employed to 

automatically optimize hyperparameters, eliminating the need for manual hyperparameter 

tuning. A detailed description of the proposed hybrid CGM model is presented in the 

following section. 

3. Proposed CGM model 

Conventional methods such as time series analysis and statistical approaches have 

established the groundwork for comprehending market dynamics. However, due to the 

subjective and non-linear characteristics inherent in traditional approaches, contemporary 

methodologies like DNN techniques offer more promising alternatives for FSP. Nonetheless, 

existing DNN models are often shallow, and susceptible to overfitting. Therefore, this 

research work aims to contribute to the ongoing discourse by proposing a novel hybrid 

model, named CGM, which stands for Convolution, GRU, and MLP respectively. The 

proposed hybrid CGM model (given in Figure 1) comprises an Input block, a Conditional 

block, and an Output block. The components are discussed below. 

 

 
Figure 1. Visual representation of the hybrid CGM model 

 

3.1. Input block 

The Input block of the CGM model incorporates Convolution, GRU, and MLP modules. 

The Convolution module consists of four Convolutional layers. The initial layer establishes 

a connection with the input layer. Subsequently, the output is concurrently fed into three 

parallel Convolutional layers, capturing various aspects and representations of the input 

data. In tandem with the Convolution module, the Input block also integrates a GRU module 

to learn feature dependencies over long ranges. Similar to the Convolution module, the first 



GRU layer establishes a connection with the input layer. The resulting output is then 

directed to two subsequent GRU layers for further processing, and their outputs are 

aggregated before being forwarded to subsequent layers. Additionally, to augment feature 

extraction capability, an MLP module is also employed, comprising three Dense layers. 

Analogous to the aforementioned modules, the initial Dense layer receives input from the 

input layer and its output is concurrently transmitted to two Dense layers. The resulting 

outputs are amalgamated and forwarded for subsequent processing. The visual 

representation of the Convolution, GRU, and MLP modules of the Input block are given in 

Figure 2 (a), (b), and (c) respectively. 

 

 

Figure 2. (a) Convolution, (b) GRU, and (c) MLP modules. 

3.2. Conditional and Output block 

In the Conditional block, three sets of Dropout and Normalization layers are arranged 

parallelly to improve training stability, prevent overfitting, and further enhance the overall 

performance of the model. The input of the Conditional block is derived from the 

Convolution, GRU, and MLP modules of the preceding block. Each of these modules feeds 

independently into the corresponding Dropout and Normalization layers within the 

Conditional block. The visual representation of the Conditional block is given in Figure 3 (a). 

After the Conditional block, the outputs are forwarded to the Output block. The Output 

block consists of Concatenation, Bi-directional GRU, and Dense Layers. The Concatenation 

layer concatenates the input received from the Conditional block to create a unified feature 

yielding a more comprehensive feature representation of the input. The concatenation steps 

follow the procedure given in Equation 1.  

𝑥𝑐𝑜𝑛𝑐𝑎𝑡 =  {
𝑔(𝑛1, 𝑛2, 𝑛3) 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑙𝑜𝑐𝑘 = 𝑇𝑟𝑢𝑒 

𝑔(𝑐1, 𝑐2, 𝑐3)                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (1) 

where g is the concatenation operation, 𝑛1, 𝑛2 , 𝑛3 are the outputs from conditional block 

and 𝑐1 , 𝑐2, 𝑐3 are outputs produced by Convolution, GRU, and MLP modules. The visual 

representation of the Output block is given in Figure 3 (b).  

Following the concatenation step, the combined output is passed through a bidirectional 

GRU layer to handle input from both forward and backward directions. This enables the 



model to grasp both past and future context, facilitating the model to capture bi-directional 

dependencies within the data. Ultimately, the resulting output is directed to the final Dense 

layer with a sigmoid function for predicting the future stock price.  

 

 

Figure 3. (a) Conditional block and (b) Output block 

Throughout the experiment, three models undergo fine-tuning and training using TFs, 

IMFs, and combinations of both TFs and IMFs. This process leads to the development of 

three distinct CGM models: TF-CGM, IMF-CGM, and TF-IMF-CGM, where TFs are fed as input 

to TF-CGM, IMFs into IMF-CGM, and TF+IMFs into TF-IMF-CGM models. Henceforth, we will 

refer to these models individually as TF-CGM, IMF-CGM, and TF-IMF-CGM. Furthermore, to 

streamline the experimentation process and eliminate manual hyperparameter tuning for 

the aforementioned models, the NAS algorithm is employed. This algorithm automatically 

determines hyperparameters such as learning rate, activation function, hidden units, 

number of filters, and the decision to include or exclude a conditional block during training. 

The detailed results of the conducted experiment are discussed in the following section. 

4. Experimentation  

This section provides an in-depth exploration of the experiments carried out during the 

research study. The primary goal of the research is to develop a hybrid model that is 

expressive enough (i.e., a representable number of trainable parameters) as well as improve 

the performance of predicting future stock prices, thus striking a balance between 

complexity and performance. 

4.1. Data collection and preprocessing 

In the course of the study’s experimentation, daily OHLCV of four stock indices listed in 

the New York Stock Exchange (NYSE) and four stock indices listed in the NSE are collected 

from Yahoo Finance for training and testing. 



Furthermore, during the data preparation, NaN (not a number) values are dropped from 

the dataset. Subsequently, lag features with a window size of 5 were constructed from the 

independent features. Additionally, the stock data was decomposed into IMFs using the 

EMD technique as described in [21]. Subsequently, the time-series data is reorganized to 

embed temporal information into the dataset. Naturally, 𝑥𝑡,𝑓 ∈ 𝑋 denotes a singular input, 

where 𝑥𝑡,𝑓  represents data at time t with features f.  However, during the experiment of this 

research work, the input sample 𝑥𝑖  and label 𝑦𝑖 is reconfigured as 𝑥𝑖 =

{𝑥𝑡+𝑖 , 𝑥𝑡+𝑖+1, … , 𝑥𝑡+𝑖+𝑛} and 𝑦𝑖 = {𝑦𝑡+𝑖+𝑛+1}, where the window size n is equal 10. 

Moreover, each sample is normalized using a Min-Max Scaler [22]. Following the data 

preprocessing, the data are split into training, validation, and testing subsets in a ratio of 

7:2:1.   

4.2. Experimental configuration and evaluation metrics 

During the experimentation, the TF-CGM, IMF-CGM, and TF-IMF-CGM models were 

experimented on a Metal Performance Shader (MPS) device. Furthermore, throughout the 

experiment, Python v3.11 was used as a primary language, and TensorFlow v2.15 as the ML 

framework. Nonetheless, different programming languages and frameworks could be used 

for the experiment.  

In the initial step of the experiment, the NAS algorithm was used to optimize the 

hyperparameters of the aforementioned models independently. The NAS algorithm utilizes 

a RandomSearch technique to determine the value of the hyperparameters. The process 

involved conducting 10 trials, each comprising four runs to optimize the loss function. 

Subsequently, the optimized TF-CGM, IMF-CGM, and TF-IMF-CGM were trained using TFs, 

IMFs, and a combination of TFs and IMFs for forecasting the future close price of daily stock 

data. The models were trained for 250 epochs with a batch size of 32. Moreover, an early 

stopping mechanism is employed during training to prevent the models from overfitting 

with a patience of 30 epochs i.e., the training stops if there is no sign of improvement for 30 

successive epochs. Furthermore, Adam [23] optimizer was utilized to minimize the loss 

function associated with the models. 

During the experiment, the Mean Square Error (MSE) given in Equation 2 was used as a 

loss function to measure the performance of each trial. However, Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) were 

used to evaluate the performance of the models during the training and testing phase. The 

mathematical formulae for the metrics are given in Equation 3 – 5. 

 

𝑀𝑆𝐸 =
1
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2

n

i=1

 (2) 

RMSE = √MSE    (3) 
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5. Results and Discussion 

This section presents the results of the hybrid CGM model in predicting the future close 

price of daily stock data. As previously stated, three variations of the hybrid CGM model, 

namely TF-CGM, IMF-CGM, and TE-IMF -CGM underwent hyperparameters tuning 

individually. The results of the NAS algorithm during hyperparameter optimization for the 

aforementioned models are given in Table 1. 

Table 1. Hyperparameters selected by the NAS algorithm during hyperparameter tuning 

Hyperparameters TF-CGM IMF -CGM TF-IMF-CGM 

Activation Function gelu gelu gelu 

Learning Rate 5.434e-4 1.089e-4 2.598e-4 

Dropout Layer True False True 

Normalization Layer True False False 

GRU units 192 160 128 

MLP units 192 160 128 

Convolution filter size 160 32 64 

Trainable Parameters 1, 587, 493 955, 137 678, 849 

 

From the results presented in Table 1, it is evident that the model favors gelu as the 

activation function compared to other activation functions. Furthermore, the 

hyperparameter tuning performed by the NAS algorithm consistently opts for a low 

learning rate. However, the determination to include or exclude the conditional block is 

contingent on the variant of the model. Subsequently, the models were evaluated on NYSE 

and NSE stock data using RMSE, MAE, and MAPE evaluation metrics. The results of TF-CGM, 

IMF-CGM, and TE-IMF-CGM on the test set are given in Table 2 and 3.  

The analysis of Table 2 and 3 leads to the conclusion that TF-CGM exhibited superior 

performance when compared to IMF-CGM and TF-IMF-CGM. Additionally, the Linear 

Regression Analysis (LRA) on NYSE and NSE shown in Figure 4 further substantiates the 

supremacy of TF-CGM over IMF-CGM and TF-IMF-CGM in forecasting the future closing 

prices of daily stock data. Furthermore, to bolster the claim of the proposed model's 

superiority, the performance of the models was compared with models documented in the 

existing literature given in Table 3. 

Table 2. Evaluation results of TF-CGM, IMF-CGM, and TF-IMF-CGM models on NYSE stock 

indices. 

Ticker Model RMSE MAE MAPE 

 

AAPL 

TF-CGM 3.47 2.58 0.037 

IMF-CGM 4.89 3.08 0.030 

TF-IMF-CGM 2.79 2.79 0.030 

 

ABT 

TF-CGM 2.24 1.63 0.022 

IMF-CGM 3.45 2.45 0.029 

TF-IMF-CGM 2.97 2.13 0.026 

 TF-CGM 6.20 4.73 0.030 



MSFT IMF-CGM 9.75 6.34 0.030 

TF-IMF-CGM 8.29 5.42 0.026 

 

AMD 

TF-CGM 3.82 2.41 0.063 

IMF-CGM 2.84 1.53 0.041 

TF-IMF-CGM 4.09 2.38 0.060 

 

Mean 

TF-CGM 3.93 2.83 0.038 

IMF-CGM 5.23 3.35 0.032 

TF-IMF-CGM 4.53 3.18 0.035 

 

 

Table 3. Evaluation results of TF-CGM, IMF-CGM, and TF-IMF-CGM models on NSE stock 

indices. 

Ticker Model RMS

E 

MAE MAPE 

RELIANCE TF-CGM 65.34 49.24 0.027 

IMF-CGM 106.01 82.54 0.038 

TF-IMF-CGM 91.56 72.12 0.037 

TATACONSUM TF-CGM 17.57 13.056 0.028 

IMF-CGM 31.77 22.93 0.036 

TF-IMF-CGM 22.33 16.41 0.031 

SBIN TF-CGM 14.35 10.87 0.032 

IMF-CGM 19.61 13.46 0.031 

TF-IMF-CGM 17.58 13.40 0.036 

CIPLA TF-CGM 24.19 16.84 0.022 

IMF-CGM 36.49 25.16 0.028 

TF-IMF-CGM 35.99 27.94 0.035 

 

Mean 

TF-CGM 30.36 22.50 0.027 

IMF-CGM 48.47 36.02 0.033 

TF-IMF-CGM 41.86 32.46 0.034 

 

 

 

  



  

  

  
Figure 4. Linear Regression Analysis of TF-CGM, IMF-CGM, and TF-IMF-CGM on NYSE and 

NSE stock indices. 

 

The analysis of Table 2 and 3 leads to the conclusion that TF-CGM exhibited superior 

performance when compared to IMF-CGM and TF-IMF-CGM. Additionally, the Linear 

Regression Analysis (LRA) on NYSE and NSE shown in Figure 4 further substantiates the 

supremacy of TF-CGM over IMF-CGM and TF-IMF-CGM in forecasting the future closing 

prices of daily stock data. Furthermore, to bolster the claim of the proposed model's 

superiority, the performance of the models was compared with models documented in the 

existing literature given in Table 4. 

Table 4. Performance comparison of the proposed hybrid model with the models present in 

the existing literature. The given scores for TF-CGM, IMF-CGM, and TF-IMF-CGM are the 

mean of the scores obtained in the NYSE and NSE stock indices given in Table 2 and 3.  

Model RMSE MAE MAPE 

[12] (SCG+ANN) - - 99.908 

[14] (EMD+LSTM+ATTENTION) 26.10 16.39 0.66 

[24] (Convolution+LSTM) 386.47 - - 

[25] (LASSO-GRU) 27.45 19.14 - 

[20] (bi-LSTM) 373.77 - 0.067 

[26] (GRU) 0.084 22.94 0.259 



TF-CGM (proposed) 17.14 12.66 0.032 

IMF-CGM (proposed) 26.85 19.68 0.032 

TF-IMF-CGM (proposed) 23.19 17.82 0.033 

 

From the results presented in Table 2 and 3, it can be concluded that TF-CGM 

outperforms IMF-CGM and TF-IMF-CGM, emphasizing the significant impact of technical 

factors on the model. Additionally, the models display reduced efficacy when applied to NSE 

data, as indicated by higher RMSE and MAE values, signifying a relatively larger margin of 

error. However, the models exhibit relatively similar MAPE values on NSE data, which 

indicates comparatively similar relative size errors in accuracy. The disparity in the scores 

of TF-CGM, IMF-CGM, and TF-IMF-CGM on NYSE and NSE data implies variations in the 

factors influencing the NYSE and NSE markets. Therefore, future research could involve 

exploring market dynamics and examining the variables that affect the performance of the 

models. Moreover, sentiment analysis could also be integrated to further enhance the 

predictive capability of the models.   

6. Conclusion 

Forecasting future stock prices poses a significant challenge in the financial sector, and 

addressing this challenge has been an active area of research. Hence, various researchers 

have contributed to this field by developing models using modern DNN techniques. 

However, existing models tend to be shallow and susceptible to overfitting. To address this 

challenge, this research paper proposes a hybrid CGM model that incorporates Convolution, 

GRU, and MLP techniques.  

Moreover, to comprehensively assess the effectiveness hybrid CGM model, three 

different inputs – TFs, IMFs, and a combination of both – were used to train the CGM model, 

resulting in three distinct models, namely TF-CGM, IMF-CGM, and TF-IMF-CGM models. 

Furthermore, to tackle the challenges associated with tailoring the hyperparameters of the 

models, the NAS algorithm was employed to automatically optimize the hyperparameters. 

These models were then trained and tested using four stock indices listed in the NYSE and 

four stock indices listed in the NSE. Thereafter, the performance of the models was 

evaluated using RMSE, MAE, and MAPE metrics. From the experiment, it was found that TF-

CGM outperformed the IMF-CGM and TF-IMF-CGM models by scoring 3.93, 2.83, and 0.038 

on NYSE data, and 30.36, 22.50, and 0.027 on NSE data respectively for the aforementioned 

evaluation metrics.  Moreover, the proposed models were compared with existing models, 

the proposed models demonstrated superior performance. 
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