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Abstract
In the constantly changing financial markets, investors and traders need to trade using optimal trading strategies.
In this article, we optimize the expected cost and the execution risk to develop an optimal trading strategy for
risk-averse investors. In this context, we study a second order convex function that incorporates both transient
and permanent market impacts in the price path rule of motion. By the use of dynamic programming, we get a
closed form solution of the unconstrained problem, in some particular cases for the risk-averse investor.
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1. Introduction

The optimum trading issue is a significant difficulty faced by academics, algorithmic traders, and market
practitioners. Performing all required asset shares in a single transaction is inefficient because of it’s
potential for considerable price fluctuations, particularly when dealing with large trade volumes. Addi-
tionally, privileged knowledge about the asset and the constantly changing nature of the market affect
price variations, in addition to the trade order. Every order made in the market provides information
on the trading and financial goals of investors, so influencing the viewpoints of other investors over
a prolonged duration. As a result, the market expects changes in the stock’s fundamental worth or
predicts that future prices will deviate from earlier estimates.

The term “no-impact price" refers to the price of an asset when there are no trades or external
factors affecting it. Temporary price implications occur due to the urgent need for execution, leading to
short-term price fluctuations. On the other hand, the term “permanent price effect" refers to the steady
irregularity caused by imbalances in supply and demand, as well as other causes discussed before. The
interaction between the price impact factor and the price path without any influence determines the
execution price dynamics of an asset. Several models of price dynamics during execution had been
suggested in the literature, such as those given by [1];[2];[3];[4];[5];[6].

[1], had proposed three models to explain the dynamics of execution prices: the Linear Price Impact
Model, the Linear Price Impact with Information Price Model, and the Linear Percentage Temporary
Price Impact Model (LPT model). As compared to the first two models, which represented the no-
impact price using an arithmetic random walk, the LPT model models it using a geometric Brownian
motion. As a result of the linear price impact model, the price change is directly proportional to the
trade magnitude. However, in the linear price impact with information price model, the price impact is
directly proportional to both the trade size and the information component. The information component
captures the influence of characteristics such as asset information and changing market circumstances
on the execution price. The LPT model [1], quantified the price effect by a linear equation that took

ComSIA’24: Computing & Communication Systems for Industrial Applications, May 10–11, 2024, New Delhi, INDIA
*Vipin Kumar Pandey
†
Arti Singh, Gopinath Sahoo
$ vipinady2016@gmail.com (V. K. Pandey); artisingh1212@gmail.com (A. Singh); sahoo.gopi@gmail.com (G. Sahoo)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Symposium on Computing and Intelligent Systems, May 10, 2024, New Delhi, India

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:vipinady2016@gmail.com
mailto:artisingh1212@gmail.com
mailto:sahoo.gopi@gmail.com
https://creativecommons.org/licenses/by/4.0


into account the transaction size and an information factor, which was calculated as a percentage of
the price without any impact. [2], proposed linear price impact functions and integrated an arithmetic
random walk to model the dynamics of execution prices, using the no-effect price as a benchmark.
[1], introduced the initial mathematical optimization model for inscribe the optimal trading problem.
Further, other researcher, including, [7],[2],[3],[4],[5], explored the inquires related the optimal trading
for single asset. [6], introduced the jump diffusion model to capture the unpredictable effects of large
transactions on prices during execution. In this model, the purpose is to provide a better understanding
of the fluctuations in asset values during significant transactions. However [8]; and [9], proposed
the use of stochastic dominance for all types of investors in portfolio optimization.Using the same
approach, [5], analyzed optimal trading strategies. In addition, [10], extended the linear price impact
with information price model of [1], referred to as the AR(1) price model, to a more general framework.
To describe the evolution of asset prices over time, the AR(2) model is commonly used in optimal trading
strategies. A second-order autoregressive model is called an AR(2) model.

In this paper, we extend the AR(2) model of [10], to a more general framework. We use the con-
vex combination of temporary and permanent price impacts under the AR(2) model with an AR(2)
information factor.

2. Motivation and Contribution of the paper

In existing literature, no-impact price dynamics are often described as arithmetic random
walks.According to this assumption, the price of the asset in any given period will be determined
by the price of the asset in the previous period, reflecting a first-order autoregressive AR(1) behavior.
Using a more comprehensive model for the linear price impact with information, introduced by [1], this
paper makes a significant contribution to the literature.In the extension, the second-order autoregressive
with exponent behavior is incorporated into the AR(2) price model for both permanent and temporary
price impacts by [5]. The information factor indicates that the state in any given time period depends
on the state in two previous ones.

3. The optimization problem

Consider an investor with a goal to buy a significant amount of shares, let’s call it 𝑆̄, within a specific
time period, say [0, 𝑇 ]. This time frame is split into smaller intervals, each with a length of Δ𝑡 = 𝑇

𝑁 ,
and the 𝑡𝑡ℎ time frame is equal to 𝑡Δ𝑡.

Let’s use 𝑆𝑡 to represent the shares acquired during the interval 𝑡𝑡ℎ at a price of 𝑃𝑡, and 𝑊𝑡 will be
the remaining shares to buy at time 𝑡𝑡ℎ.

Now, the investor wants to minimize the expected cost of getting 𝑆̄ shares while keeping a handle
on a predetermined risk level. This perspective on risk is inspired by the work of Almgren and Chriss
(2000) and Huberman and Stanzl (2005). So, in a nutshell, the investor’s challenge is to navigate this
buying process in a way that minimizes costs and manages the associated risks effectively. The problem
(P1)

min
{𝑆𝑡}𝑇𝑡=1

𝐸

(︃
𝑇∑︁
𝑡=1

𝑃𝑡𝑆𝑡

)︃
subject to

𝑇∑︁
𝑡=1

𝑆𝑡 = 𝑆

(1)

where
𝑊1 = 𝑆, 𝑊𝑡 = 𝑊𝑡−1 − 𝑆𝑡−1 ∀ 𝑡 = 1, 2, ..., 𝑇, 𝑊𝑇+1 = 0.



In outlining the dynamics of the stock price for this dynamic programming problem, let’s denote 𝑃̃ 𝑡

as the observed stock price at 𝑡𝑡ℎ time. To simplify, we’ll assume that market prices follow geometric
Brownian motion. This allows us to express the market price at 𝑡𝑡ℎ time as follows:

𝑃𝑡̃ = 𝛼 exp(𝑍𝑡)𝑃𝑡−1 + (1− 𝛼)𝑢1𝑃𝑡−1 + (1− 𝛼)𝑢2𝑃𝑡−2 ;𝛼 ∈ [0, 1] (2)

A trader’s decision-making involves not only the current stock price but also factors in the broader
market conditions. We represent this by introducing the market information variable, denoted as 𝑋𝑡.
This variable captures the potential influence of evolving market conditions, encompassing aspects like
variations in buy-sell volume or private information about the security.
To model this variable, we adopt an autoregressive process of order 2 that is (AR(2)). In simpler terms,
the market information variable at 𝑡𝑡ℎ time, denoted as 𝑋𝑡, is represented by its value at the previous
time step.

𝑋𝑡 = 𝜌1𝑋𝑡−1 + 𝜌2𝑋𝑡−2 + 𝜂𝑡 (3)

Here, 𝜂𝑡 is a white noise process with zero mean and variance 𝜎2
𝜂 . At 𝑡𝑡ℎ time, the trader observes the

price 𝑃̃ 𝑡 and market information 𝑋𝑡 and decides to trade 𝑆𝑡 shares. We assume that the price impact of
trading is a linear function of 𝑆𝑡 and 𝑋𝑡. Therefore, the average execution price 𝑃𝑡 of trading 𝑆𝑡 shares
at 𝑡𝑡ℎ time is given by:

𝑃𝑡 = 𝑃̃ 𝑡 + 𝜃𝑆𝑡 + 𝛾𝑋𝑡 + 𝜖𝑡 (4)

The average execution price 𝑃𝑡 of trading 𝑆𝑡 shares at 𝑡𝑡ℎ is determined by the observed market
price 𝑃̃ 𝑡, the quantity of shares traded 𝑆𝑡, and the market information 𝑋𝑡. Additionally, there is an
uncertainty component 𝜖𝑡 denoting the noise in the acquisition price, characterized by a white noise
process with zero mean and variance 𝜎2

𝜖 .
The motion of price expressed in equ. (2)− (4), is the generalization of [1] linear temporary price

impact. Once the order placed at time 𝑡𝑡ℎ is executed, the resulting stock price will be influenced not
only by the actions of other market participants but also by the lasting impact of executing 𝑆𝑡 shares.

4. Optimal trading under AR(2) price model with exponents: dynamic
programming method

In solving the given problem using dynamic programming (DP) method, denoted as (P1), we leverage
the insight presented in (Bertsimas and Lo (1998)), According to this approach, the portion of the optimal
trading strategy (𝑆𝑡, 𝑆𝑡+1, ..., 𝑆𝑇 ) during any time period 𝑡, corresponding to time periods 𝑡 to 𝑇 , must
be optimal for these time intervals.

In the context of an auto regressive model of order 2 (AR(2)), specifically considering the last two
trading periods 𝑃𝑡−1 and 𝑃𝑡−2, the relevant information factors include 𝑋𝑡 and 𝑋𝑡−1. Additionally, the
factor 𝑊𝑡 represents the number of shares that remain to be traded after the (𝑡− 1)𝑡ℎtime period. The
control variable for the 𝑡𝑡ℎ time period is denoted by the number of shares 𝑆𝑡 to be traded during that
specific period.
Consider the problem (P1), to be solved by DP method.
DP Problem

min
{𝑆𝑡}𝑇𝑡=1

𝐸(

𝑇∑︁
𝑡=1

𝑃𝑡𝑆𝑡)

subject to
𝑇∑︁
𝑡=1

𝑆𝑡 = 𝑆

𝑊1 = 𝑆, 𝑊𝑡 = 𝑊𝑡−1 − 𝑆𝑡−1 ∀ 𝑡 = 1, 2, ..., 𝑇 𝑊𝑇+1 = 0.

(5)



Let

𝑉𝑡(𝑃𝑡̃, 𝑃𝑡−1, 𝑃𝑡−2, 𝑋𝑡, 𝑋𝑡−1,𝑊𝑡) = 𝐸𝑡(
𝑇∑︁

𝑘=1

𝑃𝑡𝑆𝑡) ∀ 𝑡 = 1, 2, ..., 𝑇. (6)

be the optimal cost of execution corresponding to trades into periods 𝑡 𝑡𝑜 𝑇.
During the final trading period 𝑇 , the optimal strategy is to execute all the remaining shares 𝑊𝑇 to
finish the trade. i.e. 𝑆𝑇 = 𝑊𝑇 . Thus 𝑉𝑇 is given as follows:

𝑉𝑇 (𝑃𝑇̃ , 𝑃𝑇−1, 𝑃𝑇−2, 𝑋𝑇 , 𝑋𝑇−1,𝑊𝑇 ) = min
𝑆𝑡

𝐸𝑇 [𝑃𝑇𝑆𝑇 ]

= (𝑃𝑇̃ + 𝜃𝑊𝑇 + 𝛾𝑋𝑇 )𝑊𝑡

(7)

The Bellman Equation relating 𝑉𝑇−𝑡 𝑡𝑜 𝑉𝑇−𝑡+1, is given as follows:

𝑉𝑇−𝑡(𝑃𝑇−𝑡
˜ , 𝑃𝑇−𝑡−1, 𝑃𝑇−𝑡−2, 𝑋𝑇−𝑡, 𝑋𝑇−𝑡−1,𝑊𝑇−𝑡)

= min
𝑆𝑇−𝑡

𝐸𝑇−𝑡[𝑃𝑇−𝑡𝑆𝑇−𝑡 + 𝑉𝑇−𝑡+1(𝑃𝑇−𝑡+1
˜ , 𝑃𝑇−𝑡, 𝑃𝑇−𝑡−1, 𝑋𝑇−𝑡+1, 𝑋𝑇−𝑡,𝑊𝑇−𝑡+1)]

(8)

Proposition 1. Under the AR(2), price model Under the Execution price dynamics 𝑃𝑡, Eq. (2) and (3) with
information factor (4)

𝑃𝑡 = 𝑃𝑡̃ + 𝜃𝑆𝑡 + 𝛾𝑋𝑡 + 𝜖𝑡

𝑃𝑡̃ = 𝛼 exp(𝑍𝑡)𝑃𝑡−1 + (1− 𝛼)𝑢1𝑃𝑡−1 + (1− 𝛼)𝑢2𝑃𝑡−2

𝑋𝑡 = 𝜌1𝑋𝑡−1 + 𝜌2𝑋𝑡−2 + 𝜂𝑡

(9)

In each time period corresponding to the DP problem, the following equation gives the optimal trade and
the optimal cost:

𝑆𝑇−𝑟 = 𝐴𝑟−1𝑃̃ 𝑇−𝑟 +𝐵𝑟−1𝑋𝑇−𝑟 + 𝐶𝑟−1𝑋𝑇−𝑟−1 +𝐷𝑟−1𝑃𝑇−𝑟−1 + 𝐸𝑟−1𝑊𝑡−𝑟 (10)

𝑉𝑇−𝑟(𝑃̃ 𝑇−𝑟, 𝑃𝑇−𝑟−1, 𝑃𝑇−𝑟−2, 𝑋𝑇−𝑟, 𝑋𝑇−𝑟−1,𝑊𝑇−𝑟) = 𝑎𝑟𝑃̃
2
𝑇−𝑟 + 𝑏𝑟𝑃̃ 𝑇−𝑟𝑋𝑡−𝑟

+ 𝑐𝑟𝑃̃ 𝑇−𝑟𝑋𝑇−𝑟−1 + 𝑑𝑟𝑃̃ 𝑇−𝑟𝑃𝑇−𝑟−1 + 𝑒𝑟𝑃̃ 𝑇−𝑟𝑊𝑇−𝑟 + 𝑓𝑟𝑋
2
𝑇−𝑟 + 𝑔𝑟𝑋

2
𝑇−𝑟−1

+ ℎ𝑟𝑋𝑇−𝑟𝑊𝑇−𝑟 + 𝑖𝑟𝑋𝑇−𝑟−1𝑋𝑇−𝑟 + 𝑗𝑟𝑋𝑇−𝑟−1𝑊𝑇−𝑟 + 𝑘𝑟𝑊
2
𝑇−𝑟

+ 𝑙𝑟𝑃𝑇−𝑟−1𝑋𝑇−𝑟 +𝑚𝑟𝑃
2
𝑇−𝑟−1 + 𝑛𝑟𝑃𝑇−𝑟−1𝑋𝑇−𝑟−1 + 𝑜𝑟𝑃𝑇−𝑟−1𝑊𝑇−𝑟

(11)

where all the value should be put at initial.

𝑚𝑟 = 2𝜃 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃
2 + 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃

2 − 2𝑒𝑟−1(1− 𝛼)𝑢1𝜃

+ 2𝑘𝑟−1 + 2𝑚𝑟−1𝜃 − 2𝑜𝑟−1𝜃

𝛿1,𝑟 = 𝑜𝑟−1 − 2𝑚𝑟−1𝜃 + (𝛼𝑞 + (1− 𝛼)𝑢1) 𝑒𝑟−1 − 2(1− 𝛼)𝑢1𝜃 ((1− 𝛼)𝑢1 − 𝛼𝑞) 𝑎𝑟−1

− 𝜃 (𝛼𝑞 + 2(1− 𝛼)𝑢1) 𝑑𝑟−1 − 1

𝛿2,𝑟 = 𝑜𝑟−1𝛾 − 𝑛𝑟−1𝜃 − 2𝑚𝑟−1𝜃𝛾 − 𝑙𝑟−1𝜌1𝜃 + 𝑗𝑟−1 + ℎ𝑟−1𝜌1 − 𝑒𝑟−1(1− 𝛼)𝑢1𝛾

− 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃𝛾 − 𝑐𝑟−1(1− 𝛼)𝑢1𝜃 − 𝑏𝑟−1𝜌1(1− 𝛼)𝑢1𝜃

− 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃𝛾 − 𝛾

𝛿3,𝑟 = ℎ𝑟−1𝜌2 − 𝑏𝑟−1𝜌2(1− 𝛼)𝑢1𝜃 − 𝑙𝑟−1𝜌2𝜃

𝛿4,𝑟 = 𝑒𝑟−1𝑢2 − 2𝑎𝑟−1(1− 𝛼)2𝑢1𝑢2𝜃 − 𝑑3(1− 𝛼)𝑢2𝜃

𝛿5,𝑟 = 2𝑘𝑟−1 − 𝑜𝑟−1𝜃 − 𝑒3(1− 𝛼)𝑢1𝜃

(12)



From the above value we, calculate 𝑆𝑇−𝑟 as follows:

𝐴𝑟−1 =
𝛿1,𝑟
𝑚𝑟

, 𝐵𝑟−1 =
𝛿2,𝑟
𝑚𝑟

, 𝐶𝑟−1 =
𝛿3,𝑟
𝑚𝑟

, 𝐷𝑟−1 =
𝛿4,𝑟
𝑚𝑟

, 𝐸𝑟−1 =
𝛿5,𝑟
𝑚𝑟

where

𝑎𝑟 = 𝜃 + 𝑎𝑟−1(1− 𝛼)2𝑢12𝜃 + 𝑑𝑟−1(1− 𝛼)𝑢1𝜃
2 − 𝑒𝑟−1(1− 𝛼)𝑢1𝜃 + 𝑘2𝑟−1

+𝑚𝑟𝜃
2 − 𝑜𝑟−1)𝐴

2
𝑟 + (1 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃 +𝑚𝑟−1 + (2𝑎𝑟−1𝛼𝑞 − 𝑒𝑟−1𝛼𝑞−

𝑒𝑟−1(1− 𝛼)𝑢1)𝜃 + 𝑎𝑟−1𝛼
2𝑞2 +(𝑑𝑟−1𝛼𝑞 + 2𝑑𝑟−1(1− 𝛼)𝑢1)𝜃 − 𝑜𝑟−1)𝐴𝑟

+ 2𝛼𝑞(1− 𝛼)𝑢1𝑎𝑟−1 + 𝑑𝑟−1𝛼𝑞(1− 𝛼)𝑢1𝑑𝑟−1

(13)

𝑏𝑟 = 𝐵𝑟−1(1 + 2𝜃𝐴𝑟−1 + 𝛾𝐴𝑟−1 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃
2𝐴𝑟−1 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃

+ 2𝑎𝑟−1𝛼𝑞(1− 𝛼)𝑢1𝜃) +𝐴𝑟−1(2𝑘𝑟−1𝐵𝑟−1 + 𝜌1𝑙𝑟−1 + 𝜃𝑙𝑟−1𝜌1 + 2𝑚𝑟−1(𝜃
2𝐵𝑟−1

+ 𝜃 + 𝛾 + 𝜃𝛾) + 𝑛𝑟−1(1 + 𝜃)− 𝑜𝑟−1(𝐵𝑟−1 + 2𝜃𝐵𝑟−1 + 𝛾)) + 𝜌1𝑙𝑟−1𝜃𝐴𝑟−1

− 𝑗𝑟−1𝐴𝑟−1 − ℎ𝑟−1𝜌1 + 𝑐𝑟−1(𝛼𝑞 − (1− 𝛼)𝑢1 + (1− 𝛼)𝑢1𝜃) + 𝑑𝑟−1(𝛼𝑞𝜃

+ 𝛼𝑞𝛾 + (1− 𝛼)𝑢1𝜃
2 + 2𝐵𝑟−1 + 2(1− 𝛼)𝑢1𝜃 + 2(1− 𝛼)𝑢1𝛾 + 2(1− 𝛼)𝑢1𝜃𝛾)

− 𝑒𝑟−1(𝛼𝑞 + (1− 𝛼)𝑢1 + 2(1− 𝛼)𝑢1𝜃 + (1− 𝛼)𝑢1𝛾) + 𝑏𝑟−1𝜌1(𝛼𝑞 + (1− 𝛼)𝑢1

+ (1− 𝛼)𝑢1𝜃) + 2𝑎𝑟−1((1− 𝛼)2𝑢21𝜃
2 + (1− 𝛼)2𝑢21𝜃 + 𝛼𝑞(1− 𝛼)𝑢1𝜃 + 𝛼𝑞

(1− 𝛼)𝑢1𝛾 + 𝑐𝑟−1(𝛼𝑞 − (1− 𝛼)𝑢1 + (1− 𝛼)𝑢1𝜃) + 2𝑑𝑟−1((1− 𝛼)𝑢1𝜃
2

+ (1− 𝛼)𝑢1𝜃 + 𝛼𝑞𝜃 + 𝛾)− 𝑒𝑟−1(𝛼𝑞 + (1− 𝛼)𝑢1) + 𝜌1𝑙𝑟−1𝜃

+ 𝑜𝑟−1(2𝜃𝐴𝑟−1 + 𝛾𝐴𝑟−1)

(14)

𝑐𝑟 = 𝑐𝑟−1 + 2𝜃𝐴𝑟−1𝐶𝑟−1 + 𝐶𝑟−1𝜃[2𝑎𝑟−1(1− 𝛼)2𝑢21 + 2𝑎𝑟−1(1− 𝛼)2𝑢1 + 2𝑎𝑟−1𝛼𝑞

(1− 𝛼)𝑢1] + 𝜌2[𝑏𝑟−1(𝛼𝑞 + (1− 𝛼)𝑢1 + (1− 𝛼)𝑢1𝜃𝐴𝑟−1) + 𝑙𝑟−1(1 + 𝜃𝐴𝑟−1)]

+ 𝜃𝐶𝑟−1[2𝑑𝑟−1(1− 𝛼)𝑢1 − 𝑒𝑟−1(2𝑎𝑟−1(1− 𝛼)𝑢1 − 2(1− 𝛼)𝑢1)]− 𝑜𝑟−1𝐶𝑟−1

(15)

𝑑𝑟 = 𝐷𝑟−1 + 2𝜃𝐴𝑟−1𝐷𝑟−1 +𝐷𝑟−1𝜃[2𝑎𝑟−1(1− 𝛼)2𝑢21 + 2𝑎𝑟−1(1− 𝛼)2𝑢1 + 2𝑎𝑟−1

𝛼𝑞(1− 𝛼)𝑢1] + 𝜃𝐷𝑟−1[2𝑎𝑟−1(1− 𝛼)2𝑢21 + 2𝑎𝑟−1(1− 𝛼)2𝑢1 + 2𝑎𝑟−1𝛼𝑞(1− 𝛼)𝑢1]

+ 𝛼𝑞𝐷𝑟−1[𝑑𝑟−1 − 𝑒𝑟−1] + 𝜃𝐷𝑟−1[2𝑑𝑟−1(1− 𝛼)𝑢1 − 𝑒𝑟−1(2𝑎𝑟−1(1− 𝛼)𝑢1

− 2(1− 𝛼)𝑢1)] + 𝑑𝑟−1(1− 𝛼)𝑢2 + 𝜃𝐴𝑟−1𝐷𝑟−1[2𝑎𝑟−1(1− 𝛼)𝑢1 − 2(1− 𝛼)𝑢1

− 𝑒𝑟−1(2𝑜𝑟−1)] + 𝜃𝐷𝑟−1[2𝑚𝑟−1𝜃 + 2𝑚𝑟−1]− 𝑜𝑟−1𝐷𝑟−1

(16)

𝑒𝑟 = 𝐸𝑟−1 + 2𝜃𝐴𝑟−1𝐸𝑟−1 + 𝐸𝑟−1𝜃[2𝑎𝑟−1(1− 𝛼)2𝑢21 + 2𝑎𝑟−1(1− 𝛼)2𝑢1 + 2𝑎𝑟−1𝛼𝑞

(1− 𝛼)𝑢1] + 𝜃𝐸𝑟−1[2𝑎𝑟−1(1− 𝛼)2𝑢21 + 2𝑎𝑟−1(1− 𝛼)2𝑢1 + 2𝑎𝑟−1𝛼𝑞(1− 𝛼)𝑢1]

+ 𝜃𝐸𝑟−1[2𝑑𝑟−1(1− 𝛼)𝑢1 − 𝑒𝑟−1(2𝑎𝑟−1(1− 𝛼)𝑢1 − 2(1− 𝛼)𝑢1)] + 𝑒𝑟−1(1− 𝛼)𝑢1

+ 2𝑘𝑟−1𝐴𝑟−1𝐸𝑟−1 +𝑚𝑟−1𝜃
2 + 2𝑚𝑟−1𝜃𝐸𝑟−1 + 𝑜𝑟−1 + 𝑜𝑟−1𝜃𝐴𝑟−1

− 𝑜𝑟−1𝐸𝑟−1 − 2𝑜𝑟−1𝜃𝐴𝑟−1𝐸𝑟−1

(17)

𝑓𝑟 = 𝜃𝐵2
𝑟−1[1 + 𝑎𝑟−1(1− 𝛼)2𝑢21 + 𝑑𝑟−1(1− 𝛼)𝑢1𝜃 + 𝑘𝑟−1 +𝑚𝑟−1𝜃

2 − 𝑜𝑟−1𝜃]

+ 𝛾[𝐵𝑟−1 + 𝑎𝑟−1(1− 𝛼)2𝑢21 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃𝐵𝑟−1 + 𝑏𝑟−1𝜌1(1− 𝛼)𝑢1

+ 𝑑𝑟−1(1− 𝛼)𝑢1𝛾 + 𝑙𝑟−1𝜌1𝛾 + 𝑛𝑟−1𝜃 + 𝑛𝑟−1𝜃𝛾 − 𝑜𝑟−1𝛾] + 𝑓𝑟−1𝜌
2
1

+ 𝑐𝑟−1(1− 𝛼)𝑢1𝜃𝐵𝑟−1 + 𝑔𝑟−1 − ℎ𝑟−1𝜌1𝐵𝑟−1 + 𝑖𝑟−1𝜌1 − 𝑗𝑟−1𝐵𝑟−1.

(18)



𝑔𝑟 = 𝜃𝐶2
𝑟−1[1 + 𝑎𝑟−1(1− 𝛼)2𝑢21𝜃 + 𝑑𝑟−1(1− 𝛼)𝑢1𝜃 + 𝑘𝑟−1 +𝑚𝑟−1𝜃

2 − 𝑜𝑟−1𝜃] + 𝜌22𝑓𝑟−1

+ 𝜃𝐶𝑟−1𝑏𝑟−1𝜌2(1− 𝛼)𝑢1 − 𝜌2𝐶𝑟−1ℎ𝑟−1 + 𝜃𝐶𝑟−1𝑙𝑟−1𝜌2 − 𝜃𝐶𝑟−1𝑒𝑟−1(1− 𝛼)𝑢1.
(19)

ℎ𝑟 = 𝜃[2𝐵𝑟−1𝐶𝑟−1 + 𝛾𝐸𝑟−1 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃𝐵𝑟−1𝐸𝑟−1 + 𝑏𝑟−1𝜌1(1− 𝛼)𝑢1𝐸𝑟−1

+ 2𝑎𝑟−1(1− 𝛼)2𝑢21𝛾𝐸𝑟−1] + 𝑐𝑟−1(1− 𝛼)𝑢1𝐸𝑟−1 + 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃𝐵𝑟−1𝐸𝑟−1

+ 2𝑑𝑟−1(1− 𝛼)𝑢1𝛾𝐸𝑟−1 + 𝑒𝑟−1(1− 𝛼)𝑢1𝐵𝑟−1 + 𝑒𝑟−1(1− 𝛼)𝑢1𝛾 − 𝑒𝑟−1(1− 𝛼)𝑢1

𝛾𝐸𝑟−1 − 2𝑒𝑟−1(1− 𝛼)𝑢1𝜃𝐵𝑟−1𝐸𝑟−1 + ℎ𝑟−1𝜌1 − ℎ𝑟−1𝜌1𝐸𝑟−1 + 𝑗𝑟−1 − 𝑗𝑟−1𝐸𝑟−1

+ 2𝑘𝑟−1𝐵𝑟−1𝐸𝑟−1 − 2𝑘𝑟−1𝐵𝑟−1 + 𝑙𝑟−1𝜌1𝜃𝐸𝑟−1 + 2𝑚𝑟−1𝜃
2𝐵𝑟−1𝐸𝑟−1 + 2𝑚𝑟−1𝜃𝛾𝐸𝑟−1

+ 𝑛𝑟−1𝜃𝐸𝑟−1 + 𝑜𝑟−1𝜃𝐵𝑟−1 + 𝑜𝑟−1𝛾 − 2𝑜𝑟−1𝜃𝐵𝑟−1𝐸𝑟−1 − 𝑜𝑟−1𝛾𝐸𝑟−1]

(20)

𝑖𝑟 = 𝜃𝐶𝑟−1[2𝜃𝐵𝑟−1 + 𝛾 + 𝑐𝑟−1(1− 𝛼)𝑢1 + 𝑛𝑟−1𝜃 − 𝑗𝑟−1] + 𝜃𝐵𝑟−1[2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃

+ 𝑏𝑟−1𝜌2(1− 𝛼)𝑢1 + 𝑙𝑟−1𝜌2𝜃 + 2𝑚𝑟−1𝜃
2] + 𝛾[𝑏𝑟−1𝜌2(1− 𝛼)𝑢1 + 𝑙𝑟−1𝜌2 + 𝑜𝑟−1]

+ 2𝑓𝑟−1𝜌1𝜌2 − ℎ𝑟−1𝜌1𝐶𝑟−1 − ℎ𝑟−1𝜌2𝐵𝑟−1 + 𝑖𝑟−1𝜌2 + 2𝑘𝑟−1𝐵𝑟−1𝐶𝑟−1 + 𝑙𝑟−1𝜌1𝜃𝐶𝑟−1

+ 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃[𝜃𝐵𝑟−1 + 𝛾𝐶𝑟−1]− 𝑒𝑟−1(1− 𝛼)𝑢1 (𝜃𝐵𝑟−1𝐶𝑟−1 + 𝛾𝐶𝑟−1)

− 2𝑜𝑟−1𝜃[𝐵𝑟−1𝐶𝑟−1 + 𝛾𝐶𝑟−1]

(21)

𝑗𝑟 = 𝜃𝐶𝑟−1[2 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃 + 𝑏𝑟−1𝜌2(1− 𝛼)𝑢1 + 𝑒𝑟−1(1− 𝛼)𝑢1 + 𝑙𝑟−1𝜌2𝜃𝐸𝑟−1

− 2𝑒𝑟−1(1− 𝛼)𝑢1𝐸𝑟−1 + 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃
2] + ℎ𝑟−1𝜌2[1− 𝐸𝑟−1]− 2𝑘𝑟−1𝐶𝑟−1

[1− 𝐸𝑟−1] + 2𝑚𝑟−1𝜃
2𝐶𝑟−1𝐸𝑟−1 + 𝑜𝑟−1𝜃𝐶𝑟−1 (1− 2𝐸𝑟−1) .

(22)

𝑘𝑟 = 𝜃𝐸2
𝑟−1[1 + 𝑎𝑟−1(1− 𝛼)2𝑢21 + 𝑑𝑟−1(1− 𝛼)𝑢1𝜃 +𝑚𝑟−1𝜃 − 𝑜𝑟−1𝜃] + 𝑒𝑟−1(1− 𝛼)𝑢1

𝜃𝑒2𝑟−1 + 𝑘𝑟−1

(︀
1 + 𝐸2

𝑟−1 − 2𝐸𝑟−1

)︀
.

(23)

𝑙𝑟 = 𝜃𝐷𝑟−1[2𝐵𝑟−1 + 𝛾 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃 + 2𝑎𝑟−1(1− 𝛼)2𝑢1𝛾 + 2𝑎𝑟−1(1− 𝛼)2

𝑢1𝑢2𝛾 + 𝑏𝑟−1𝜌1(1− 𝛼)𝑢1𝜃 + 𝑐𝑟−1(1− 𝛼)𝑢1𝜃] + 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃
2𝐵𝑟−1

+ 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃𝛾 + 𝑑𝑟−1(1− 𝛼)𝑢2𝛾 − 2𝑒𝑟−1(1− 𝛼)𝑢1𝜃𝐵𝑟−1 − 𝑒𝑟−1(1− 𝛼)

𝑢1𝛾 − 𝑒𝑟−1(1− 𝛼)𝑢2𝐵𝑟−1 − ℎ𝑟−1𝜌1 − 𝑗𝑟−1 + 2𝑘𝑟−1𝐵𝑟−1 + 𝑙𝑟−1𝜌1𝜃 + 2𝑚𝑟−1𝜃
2𝐵𝑟−1

+ 2𝑚𝑟−1𝜃𝛾 + 𝑛𝑟−1𝜃 − 2𝑜𝑟−1𝜃𝐵𝑟−1 − 𝑜𝑟−1𝛾

(24)

𝑚𝑟 = 𝜃𝐷2
𝑟−1[1 + 𝑎𝑟−1(1− 𝛼)2𝑢21 + 𝑘𝑟−1 +𝑚𝑟−1𝜃

2 − 𝑜𝑟−1𝜃] + 𝑎𝑟−1(1− 𝛼)2𝑢22 + 𝑑𝑟−1

(1− 𝛼)𝑢2𝜃 − 𝑒𝑟−1(1− 𝛼)𝑢2𝐷𝑟−1.
(25)

𝑛𝑟 = 𝜃𝐷𝑟−1[2𝐶𝑟−1 + 2𝑎𝑟−1(1− 𝛼)2𝑢21𝜃𝐶𝑟−1 + 𝑏𝑟−1𝜌2(1− 𝛼)𝑢2 + 2𝑑𝑟−1(1− 𝛼)𝑢1𝜃
2𝐶𝑟−1]

+ 𝑑𝑟−1(1− 𝛼)𝑢2𝜃 − 2𝑐𝑟−1(1− 𝛼)𝑢1𝜃𝐶𝑟−1 − 𝑒𝑟−1(1− 𝛼)𝑢2 − ℎ𝑟−1𝜌2 + 2𝑘𝑟−1𝐶𝑟−1

+ 𝑙𝑟−1𝜌2𝜃 + 2𝑚𝑟−1𝜃
2𝐶𝑟−1 − 2𝑜𝑟−1𝜃𝐶𝑟−1

(26)

𝑜𝑟 = 2𝜃𝐷𝑟−1𝐸𝑟−1[1− 𝑒𝑟−1(1− 𝛼)𝑢1𝜃 + 𝑎𝑟−1(1− 𝛼)2𝑢21𝜃
2 − 2𝑜𝑟−1] + 𝑑𝑟−1(1− 𝛼)𝑢2

𝜃𝐸𝑟−1 + 𝑒𝑟−1(1− 𝛼)𝑢2 − 2𝑒𝑟−1(1− 𝛼)𝑢1𝜃𝐷𝑟−1𝐸𝑟−1 − 𝑒𝑟−1(1− 𝛼)𝑢2𝐸𝑟−1

+ 2𝑘𝑟−1𝐷𝑟−1𝐸𝑟−1 − 2𝑘𝑟−1𝐷𝑟−1 + 2𝑚𝑟−1𝜃
2𝐷𝑟−1𝐸𝑟−1 + 𝑜𝑟−1𝜃𝐷𝑟−1

(27)



Examining the influence of a change in 𝛼 on the strategy is another noteworthy aspect. In the
price path, 𝛼 determines the degree to which our trade has a lasting impact on the market price.
To illustrate this, we conducted a numerical example involving the purchase of 1000 shares, using
simulation parameters from [10].

𝑇 = 20, 𝑆 = 1000, 𝑃0 = 50, 𝑋0 = 0, 𝜃 = 5× 10−5,

𝜌1 = 0.5, 𝜌2 = 0.5, 𝑢1 = 0.5, 𝑢2 = 0.5, 𝜎𝜂 =
√
0.001

Price process and market information have been considered as 𝜖𝑡 ∼ 𝑁(0, 𝜎2
𝜂). Figure 1 represent the

optimal trading strategy with 𝛼. We have also investigated how strategies change based on whether
the market is expected to be bullish or bearish. We consider the three market categories.

Figure 1: The optimal execution plans for investors with different levels of risk aversion. The market information
is shown by the black curve. For 𝛼 = 0 (only permanent market impact), the red curve exhibits the same trend
as the available market data.

In addition, we analyzed how strategies differ when market expectations are bullish or bearish.we
examined three types of market situations by taking different value of 𝛼. There are different market
scenario mention as follows in figure 3 and figure 4 as follows:
Additionally, we have examined how trading strategies adapt to different market expectations, whether
bullish or bearish. We are considering three types of market scenario.



Figure 2: The optimal execution plans for investors with different levels of risk aversion. The market information
is shown by the black curve. For 𝛼 = 0 (only permanent market impact), the red curve exhibits the same trend
as the available market data.

Figure 3: The optimal execution plans for investors with different levels of risk aversion. The market information
is shown by the black curve. For 𝛼 < 0 (strong permanent market impact), the red curve exhibits the same trend
as the available market data.



Figure 4: The optimal execution plans for investors with different levels of risk aversion. The market information
is shown by the black curve. For 𝛼 > 0 (weak permanent market impact), the red curve exhibits the same trend
as the available market data.

Figure 5: The market type with different levels of risk aversion. The market information is shown by the black
curve. For 𝛼 > 0 (weak permanent market impact).

In figure 5, the graph represents the market behaviour of different value of 𝑞 for various type of
market.

5. Conclusion

To develop complex methods for trading in financial markets optimally, this research proposes a
novel nonlinear programming approach. In a geometric Brownian motion under AR (2) model, our
model includes a second-order information element based on dynamic programming concepts. Trading
and portfolio managers are able to make more informed and flexible decisions by utilizing advanced
mathematical techniques, especially when navigating unpredictable and volatile market conditions.
We present a novel nonlinear programming approach to the optimal trading problem in the context of
developing sophisticated financial market trading methods. Utilizing dynamic programming concepts,
our model incorporates a second-order information element within the context of geometric Brownian
motion under AR (2). As part of our dynamic programming methodology, we explain its mathematical
foundation and its ability to manage second-order information elements under AR (2). Simulations
and empirical validations presented in the research demonstrate the effectiveness of our proposed
solution. We demonstrate the adaptability of our model across various market conditions, consistently
outperforming other methods.
The research presents simulations and empirical validations that show the effectiveness of our suggested



solution. In a variety of market conditions, the model consistently outperforms other trading strategy
optimization techniques.However, we also acknowledge that more empirical the market information’s
are necessary to validate and improve our model in a variety of asset classes and market situations
given the complex of financial markets.
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