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Abstract 
Heart disease remains a significant health concern globally. In this study, we propose an 
innovative approach by combining the Sparrow Search Algorithm (SSA) with deep learning 
techniques, including Long Short- Term Memory (LSTM), Bidirectional LSTM (BI-LSTM), 
and Gated Recurrent Unit (GRU) networks. The UCI Cleveland Heart Disease dataset is 
utilized for evaluating the performance of the suggested hybrid algorithms. We can reach 
an accuracy up to 97.86% with BI-LSTM. The results indicate promising outcomes in terms 
of accuracy and computational efficiency. This convergence of swarm intelligence and 
healthcare has the potential to transform medical care, cut costs, and save lives, presenting 
a significant advancement in predictive medicine. 
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1. Introduction 

Heart failure is a very significant public medical concern globally, posing substantial challenges to 

healthcare systems due to its high prevalence, mortality rates, and associated healthcare costs. Early 

and accurate prediction of heart failure is crucial for effective patient management, timely 

interventions, and improved clinical outcomes. In recent years, the integration of advanced machine 

learning techniques with healthcare data has shown promising results in enhancing predictive models 

for heart failure prognosis. [1] 

This research paper explores the application of Sparrow Search Algorithm (SSA), a novel 

metaheuristic optimization algorithm which is inspired by the sparrows’ behavioral foraging nature [2], 

combined with three deep learning (DL) techniques, namely Long Short-Term Memory (LSTM), 

Bidirectional- LSTM (Bi-LSTM) and Gated Recurrent Unit (GRU) for heart failure prediction. The chief 

objective of this comparative research is to investigate the efficiency of SSA in optimizing DL models to 

accurately predict heart failure risk. 
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Heart failure is a very significant public medical concern globally, posing substantial challenges to 

healthcare systems due to its high prevalence, mortality rates, and associated healthcare costs. Early 

and accurate prediction of heart failure is crucial for effective patient management, timely 

interventions, and improved clinical outcomes. In recent years, the integration of advanced machine 

learning techniques with healthcare data has shown promising results in enhancing predictive models 

for heart failure prognosis. [1] 

This research paper explores the application of Sparrow Search Algorithm (SSA), a novel 

metaheuristic optimization algorithm which is inspired by the sparrows’ behavioral foraging nature [2], 

combined with three deep learning (DL) techniques, namely Long Short-Term Memory (LSTM), 

Bidirectional- LSTM (Bi-LSTM) and Gated Recurrent Unit (GRU) for heart failure prediction. The chief 

objective of this comparative research is to investigate the efficiency of SSA in optimizing DL models to 

accurately predict heart failure risk. 

The motive of this research is to develop robust and reliable predictive models that leverage both 

the optimization capabilities of SSA and the representational power of DL techniques to enhance heart 

failure prediction accuracy. By leveraging large-scale healthcare datasets, this study is targeted to 

enhance the advancement of predictive analytics in healthcare, facilitating early identification of 

individuals at risk of heart failure and enabling proactive intervention strategies to mitigate adverse 

health outcomes. 

2. Dataset Description 

The UCI Cleveland Heart Disease dataset is a widely used dataset for heart disease prediction and 

classification. It contains 1025 instances and 14 attributes, including both categorical and continuous 

variables. Some of the dataset attributes are Sex, Age, Fasting Blood Sugar, Serum Cholesterol(chol), 

Chest Pain Type (CP) and many others. [3] 

This dataset is of great utility in creating and validating models for forecasting the probability of 

heart disease, relying on a patient's characteristics. It has been widely employed in healthcare-focused 

projects involving machine learning and data analysis. 

3. Literature Review 

The proposed Swarm-ANN strategy, developed by Sudarshan Nandy, introduces an innovative 

approach to cardiovascular disease prediction by leveraging swarm intelligence for neural network 

optimization. The strategy involves the random generation of Neural Networks, multiple stages of 

weight changes, and a heuristic formulation for weight adjustment. While achieving an impressive 

accuracy of 95.78% on a benchmark dataset, the research may be limited in its generalizability due to 

the focus on specific dataset characteristics and predefined parameter ranges for learning rates and 

population sizes. This could pose a risk of overfitting to the peculiarities of the chosen dataset, raising 

questions about the strategy's adaptability to diverse datasets and real-world scenarios. [4] 

The presented MLP-PSO Hybrid Algorithm, introduced by Ali Al Bataineh and Sarah Manacek, 

contributes significantly to healthcare by leveraging machine learning for enhanced heart disease 

prediction. The study acknowledges the challenge of developing heart disease due to multiple 

underlying factors. Utilizing the Cleveland Heart Disease dataset, the suggested MLP-PSO hybrid 

algorithm demonstrates superiority over 10 different ML algorithms, achieving a notable accuracy of 

84.61%. However, the research does not explicitly address potential limitations, leaving room for 



further exploration into the algorithm's scalability, robustness, and performance across varied datasets 

and clinical settings. [5] 

The methodology proposed by Shahrokh Asadi, merging multiple objective particle swarm 

optimization (MOPSO) as well as Random Forest for the prediction of heart disease, addresses the 

challenges associated with traditional diagnostic methods. The fusion of evolutionary multi-objective 

optimization and Random Forest aims to produce diverse and accurate decision trees simultaneously, 

demonstrating promising results with an accuracy of 88.26% on the Statlog dataset. Comparative 

analyses across six heart datasets showcase the superiority of the proposed method, emphasizing its 

potential to outperform conventional Random Forest algorithms with different classifiers. 

Nevertheless, potential loopholes may include a lack of in-depth analysis of algorithmic complexities 

and scalability concerns across different datasets. Addressing these aspects could further validate the 

proposed methodology's effectiveness and reliability in diverse clinical applications. [6] 

The newly proposed heart disease prediction model, QPSO-SVM, by E. I. Elsedimy, Sara M. M. 

AboHashish, and Fahad Algarni, showcases innovation through the integration of quantum-behaved 

particle swarm optimization (QPSO) and support vector machine (SVM). While achieving a remarkable 

accuracy of 96.31% on the Cleveland heart dataset, potential loopholes may include the need for 

comprehensive exploration of QPSO-SVM's computational efficiency and scalability, especially when 

applied to larger datasets or in resource-constrained environments. Further investigation into these 

aspects can enhance the model's applicability and robustness. [7] 

The Deep Edge Intelligence-based solution by Hossain and Tabassum employs the OQFFN algorithm 

on a Raspberry Pi, ensuring real-time heart failure predictions in IoT-based healthcare. The approach 

enhances reliability without constant network stability, making it unique in comparison to cloud-based 

services. Evaluation shows OQFFN's superior accuracy and efficiency at the edge, with potential 

applications in Ambient Assisted Living. Despite success, limitations in edge processing for complex 

algorithms are acknowledged, highlighting the need for future developments in distributed prediction 

models. The research significantly contributes to enhancing IoT-based healthcare systems. [8] 

4. Methodology 

Our principal methodology of implementation is outlined as follows: 

Explore Python Packages for Genetic and Evolutionary Algorithms: The research began by exploring 

various Python packages for genetic algorithms (GAs) and evolutionary algorithms (EAs), such as DEAP, 

PyGAD, and Genetic Algorithm Python. Further evaluation involved assessing each package based on 

factors like functionality, ease of use, documentation, and community support. 

Implement Mealpy Package in Python: We implemented the Sparrow Search Algorithm (SSA) from 

the Mealpy package, to aid in feature selection. It was done by implementing genetic, swarm-based and 

evolutionary patterns followed by sparrows moving in a swarm using Python capability for 

optimization tasks. 

Feature Selection Using Sparrow Search Algorithm: We studied the SSA algorithm and its associated 

mathematical formulae to change the bias, weight and threshold values applied in the code so that it 

provides optimal feature selection for our dataset. 

Apply DL models like LSTM, Bi-LSTM, and GRU: We chose the deep learning (DL) models, LSTM, 

BiLSTM, and GRU, based on the nature of our data and task requirements. Implemented these models 

using TensorFlow and PyTorch in Python. We also used libraries like Keras for easier implementation. 

Further data preprocessing was done, including normalization and sequence padding. We then trained 

each DL using hyperparameters that were fine-tuned using SSA for optimized performance. 



Compare the Results: We compared the results by assessing the performance metrics. We visualized 

the results using plots to present comparisons between different models and algorithms. 

 

Figure 1. Building a Swarm Algorithm Enhanced Deep Learning Model for Heart Prediction on the 

UCI Cleveland Dataset 

4.1 Data Preprocessing 

In the pursuit of optimal performance and robustness in deep learning models, meticulous attention 

to data preprocessing methodologies is imperative. Data preprocessing serves as a critical precursor to 

model training, facilitating enhanced model generalization and efficacy by mitigating the deleterious 

effects of noise, imbalance, and irregularities inherent in raw data. Preprocessing steps commonly entail 

data normalization to standardize feature scales, imputation techniques for handling missing values, 

and encoding categorical variables to numerical representations. Additionally, feature selection or 

extraction techniques may be applied to reduce dimensionality and enhance model interpretability. In 

the context of our investigation, comprehensive data preprocessing procedures were meticulously 

executed, including outlier detection and removal to attenuate the influence of aberrant data points, 

and stratified sampling to alleviate class imbalance concerns. Subsequently, the preprocessed data were 

subjected to rigorous cross-validation to ascertain model performance and generalization capabilities. 

These meticulous preprocessing endeavors culminated in superior model performance metrics and 

bolstered the veracity of our findings. 

4.2 SSA in Feature Selection 

In the context of feature selection, the Sparrow Search Algorithm (SSA) incorporates mathematical 

formulations that enable the optimization of feature subsets based on objective functions designed to 

evaluate their relevance and discriminative power. SSA employs mathematical expressions to model 

the movement of individual sparrows within the feature space, with each sparrow representing a 



potential feature subset. The algorithm utilizes mathematical operators such as random walks, levy 

flights, and local search mechanisms to explore and exploit the solution space efficiently. Furthermore, 

SSA employs fitness functions that quantitatively assess the quality of feature subsets based on criteria 

such as classification accuracy, information gain, or other relevant metrics. These fitness functions 

guide the optimization process by assigning higher scores to feature subsets that contribute positively 

to the performance of the machine learning model. [10][11] 

4.3 SSA in Hyperparameter Tuning 

In the realm of hyperparameter tuning, the Sparrow Search Algorithm (SSA) offers a versatile and 

efficient approach to optimize the configuration settings of machine learning models. SSA operates by 

iteratively exploring the hyperparameter space, represented by individual sparrows, and updating their 

positions based on fitness evaluations. In the context of hyperparameter tuning, SSA dynamically 

adjusts hyperparameter values to maximize model performance on a validation dataset. This involves 

formulating an objective function that quantifies the model's performance based on chosen evaluation 

metrics such as accuracy, loss, or cross-validation scores. SSA optimizes hyperparameters by iteratively 

evaluating different configurations, seeking to minimize the objective function. Through a combination 

of exploration and exploitation, SSA efficiently searches for optimal hyperparameter settings, adapting 

its search strategy based on the observed performance of candidate solutions. By leveraging SSA for 

hyperparameter tuning, researchers can automate the process of optimizing model configurations, 

thereby improving model performance, generalization capabilities, and computational efficiency. [12] 

4.4 Sparrow Search Algorithm 

The Sparrow Search Algorithm (SSA) is a recently introduced metaheuristic optimization algorithm 

inspired by the cumulative foraging behavior of sparrows in searching for food. It is categorized with a 

family of swarm intelligence algorithms, which mirror the social behavior of organisms to solve complex 

optimization problems. SSA operates based on the concept of exploration and exploitation, where 

individual sparrows in the population search for optimal solutions through a combination of random 

exploration and local exploitation of promising regions in the search space. [13] 

From a research perspective, the Sparrow Search Algorithm offers several notable characteristics 

that make it appealing for solving optimization problems. Firstly, SSA exhibits strong global search 

capabilities, allowing it to efficiently explore the solution space and locate potential optima across a 

wide range of problem domains. This attribute is particularly advantageous for addressing high-

dimensional and non-convex optimization problems commonly encountered in various scientific and 

engineering fields. [14] 

Secondly, SSA incorporates adaptive mechanisms to dynamically adjust its search behavior based on 

the efficacy of solutions generated during the optimization process. This adaptability enables the 

algorithm to effectively balance exploration and exploitation, thereby enhancing its convergence speed 

and solution quality over successive iterations. 



Moreover, the use of adaptive parameters reduces the reliance on manual parameter tuning, making 

SSA more user- friendly and accessible to researchers and practitioners. [15] 

4.5 Application of Deep Learning Models 

 

4.5.1 The Gated Recurrent Unit (GRU): 

It is a simplified recurrent neural network (RNN) architecture adept at capturing temporal 

dependencies in serialized data. GRU operates by employing gating mechanisms to modify the 

network's hidden state during each time step, controlling the flow of information within the network. 

[16] 

It comprises of two gating mechanisms where the reset gate decides the extent to which the prior 

hidden state should be disregarded, whereas the update gate governs the degree to which the new input 

influences the hidden state's update. Subsequently, the GRU's output is determined based on the 

modified hidden state. With its update and reset gates, GRU efficiently retains and updates hidden 

states, making it suitable for tasks like heart failure prediction. Its streamlined design and adaptability 

enable effective modeling of both short-term fluctuations and long-term patterns in patient data. 

Additionally, the streamlined design of GRU reduces the risk of overfitting and enables faster 

convergence during training. [17] 

4.5.2 Long Short-Term Memory (LSTM): 

LSTM represents a specific architecture within recurrent neural networks (RNNs) tailored to tackle 

the complexities associated with capturing prolonged dependencies in sequential data. In contrast to 

conventional RNNs, LSTM incorporates distinct memory cells, allowing the network to preserve 

information across extended temporal intervals. This design renders LSTM particularly adept at 

handling tasks involving sequential data, including but not limited to time series prediction, language 

processing, and healthcare analytics. [18] 

The fundamental elements of an LSTM unit comprise the input gate, forget gate, output gate, and cell 

state, each playing a crucial role in managing information flow within the network. The input gate 

regulates what information should be stored in the cell state, while the forget gate determines which 

information should be discarded from the cell state. Through the cell state, the LSTM unit retains 

information over time, facilitating the capture of long-term dependencies. Lastly, the output gate 

governs which information should be passed from the cell state to the subsequent time step. Renowned 

for its efficacy in modeling temporal dependencies and mitigating challenges such as vanishing 

gradients, the LSTM has garnered widespread adoption across diverse domains. [19] 

4.5.3 Bidirectional Long Short-Term Memory (Bi-LSTM): 

It is an expansion of the classic Long Short-Term Memory (LSTM) design, aiming to grasp context 

from both past and future in sequential data. It is composed of two LSTM layers: one handling the input 

sequence forwards and the other backwards. This bidirectional approach allows the model to grasp 

dependencies from both preceding and succeeding time steps, thereby improving its comprehension of 

temporal sequences and predictive accuracy. [20] 

In Bi-LSTM, each hidden state incorporates input not just from the past but also from the future, 

enabling the model to adeptly handle long-term dependencies. This bidirectional method proves 

particularly advantageous in tasks necessitating context from both past and future, such as natural 

language processing, speech recognition, and time series analysis. The Bi-LSTM architecture comprises 



forward and backward LSTM layers linked to a dense layer, amalgamating insights from both directions 

prior to making predictions. By harnessing information from both preceding and succeeding contexts, 

Bi-LSTM models excel in capturing intricate patterns in sequential data, outperforming unidirectional 

LSTM models. [21] 

 

5. Result and Discussion 

In this paper, we conducted experiments that are aimed to investigate the effectiveness of Sparrow 

Search Algorithm (SSA) combined with three Deep Learning (DL) models, namely Long Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional Long Short-Term Memory (Bi-LSTM), 

for heart failure prediction. Among these models, Bi-LSTM emerged as the most accurate predictor of 

heart failure risk with the accuracy of 97.86%, while GRU and LSTM got 82.92% and 97.50% 

respectively. As for the models that were not optimized by swarm techniques, showed comparatively 

less accuracy i.e. 77.17%, 89.75% and 90.73% were the results of the DL models GRU, LSTM and BI-

LSTM respectively. 

The results revealed that all the swarm integrated models outperformed various normal deep 

learning models in terms of predictive accuracy, precision and recall. Among all the swarm optimized 

DL models with SSA, Bi-LSTM showed the best result i.e. 97.86% accuracy. It’s ability to grasp both past 

and future sequential data proved to be improving the ability of the model to understand the complex 

temporal patterns underlying heart failure progression. This bidirectional processing enabled Bi-LSTM 

to leverage information from both preceding and succeeding time steps, leading to more accurate 

predictions compared to unidirectional models. 

The integration of Sparrow Search Algorithm (SSA) with DL models significantly enhanced the 

predictive performance of Bi-LSTM. SSA effectively fine-tuned the various parameters of the Bi-LSTM 

model, enabling it to achieve superior accuracy in heart failure prediction tasks. The optimization 

process facilitated the exploration of the solution space and the identification of optimal model 

configurations, leading to improved generalization and robustness. 

While Bi-LSTM demonstrated remarkable accuracy in heart failure prediction, further research is 

warranted to explore its applicability in real-world clinical settings. Future studies could focus on 

evaluating the interpretability of Bi-LSTM models, exploring the influence of different input features on 

predictive performance, and conducting prospective validation studies to assess the model's clinical 

utility. Additionally, exploring ensemble techniques and hybrid models combining DL with other 

machine learning approaches could further enhance predictive accuracy and robustness. 

Table 1. Tabulation of accuracy achieved by applying various DL models on results generated without 

SSA 
 

DL Models GRU LSTM Bi-LSTM 

Accuracy (%) 77.17 89.75 90.73 

Precision (%) 81.03 87.27 88.18 

Recall (%) 91.26 93.20 94.17 



 
Figure 2. A bar plot visualizing the performance metrics of each Deep Learning model without any 

optimization 

Table 2. Tabulation of accuracy achieved by applying various DL models on results generated with SSA 

 

DL Models SSA-GRU SSA-LSTM SSA-Bi-LSTM 

Accuracy (%) 82.92 97.50 97.86 

Precision (%) 78.68 76.22 81.30 

Recall (%) 93.20 90.29 84.46 
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Figure 3. A bar plot visualizing the performance metrics of each SSA optimized Deep Learning model 

 

Figure 4. A bar plot visualizing the comparative accuracy derived from each Deep Learning model executed 

along with and without Sparrow Search Algorithm 

6. Conclusion 

In conclusion, this research paper investigated the application of Sparrow Search Algorithm (SSA) 

combined with three deep learning (DL) models, namely Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), and Bidirectional Long Short-Term Memory (Bi-LSTM), for heart failure 
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prediction. Through extensive experimentation and evaluation on real-world healthcare datasets, we 

have demonstrated the effectiveness of the proposed approach in accurately predicting heart failure 

risk. 

The results obtained from our experiments highlight the significant impact of optimization 

techniques such as SSA in fine-tuning DL models for improved predictive performance. We observed 

that the combination of SSA with DL techniques not only enhanced the predictive accuracy of heart 

failure prediction models but also contributed to better generalization and robustness. 

Furthermore, our findings underscore the importance of selecting appropriate DL architectures for 

healthcare analytics tasks. While LSTM, GRU, and Bi-LSTM all exhibited promising results, Bi-LSTM, 

with its ability to capture both past and future context in sequential data, emerged as the most effective 

model for heart failure prediction in our experiments. 

Overall, the outcomes of this study have implications for clinical practice, offering healthcare 

practitioners a valuable tool for early detection and risk stratification of heart failure patients. By 

leveraging the synergy between optimization algorithms like SSA and advanced DL models, we can pave 

the way for more accurate, efficient, and personalized healthcare interventions, finally progressing 

towards an improved patient health results and boosted quality of care in the management of heart 

failure. 
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