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Abstract 
Enhancing and reconstructing environmental images involve refining visual 
data to improve quality and reconstructing scenes. In remote sensing, this aids 
in accurate analysis, contributing to advanced understanding and decision-
making. This study focuses on advancing hyperspectral image analysis in 
remote sensing through the design of a deep learning-based model aimed at 
enhancing and reconstructing environmental images. An integral aspect 
involves introducing a novel approach using LaplaceGAN to generate synthetic 
images with high fidelity, building upon real images as a foundational basis. 
Furthermore, the study proposes the implementation of a specialized VGG-
UNet architecture tailored for the classification of hyperspectral images, 
specifically addressing the nuances of remote sensing data. To assess the 
model's efficacy, a comparative analysis is conducted, pitting the performance 
of VGG-UNet against alternative methods such as Res-UNet and Faster R-CNN 
in the context of remote sensing image classification. This research aims to 
contribute to the field by designing a deep learning model that not only analyzes 
hyperspectral images comprehensively but also enhances and reconstructs 
environmental images, thereby advancing the most recent methods for better 
comprehension and judgement in a range of remote sensing applications. 
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1. Introduction 

A new era in image processing has been brought about by the development of deep 

learning. In the realm of environmental science, where the acquisition of high-quality 

imagery is crucial for accurate analysis and decision-making, Deep learning model 

applications are now the main focus of research and development. Environmental images, 

ranging from satellite captures of Earth's surface to ground-level snapshots of ecosystems, 

are often beset with challenges that compromise their utility[1]. Factors such as 

atmospheric interference, low resolution, and noise frequently degrade the visual quality of 

these images, impeding their efficacy in various applications such as environmental 

monitoring, land cover classification, and climate change analysis. 

Neural networks with numerous layers are used in deep learning, a type of machine 

learning, to automatically learn and extract characteristics from incoming data. 

Convolutional neural networks (CNNs) are a particular kind of neural networks intended 

for tasks involving images. Have emerged as powerful tools for deciphering complex 

patterns within environmental images. Enhanced images contribute to more accurate land 

cover classification, facilitate object detection, and improve anomaly detection in 

environmental monitoring [2]. In applications such as disaster management, climate 

monitoring, and ecological preservation, the availability of high-quality images is 

instrumental in informed decision-making. 

However, deploying deep learning models for environmental image enhancement is not 

without its challenges. Limited availability of diverse and comprehensive datasets, 

interpretability of deep learning models, and computational demands pose significant 

hurdles [3]. This research paper seeks to delve into the transformative deep learning's 

promise for improving and rebuilding environmental imagery. By examining the most 

recent developments, difficulties, and possible uses, this study seeks to add to the growing 

conversation on how deep learning may influence environmental image processing in the 

future. Researchers and scientists are now investigating the use of environmental remote 

sensing, also known as imaging spectroscopy, to find and identify minerals, terrestrial 

plants, artefacts, and backdrops, we collect hyper spectral data. 

 

The following are the research's primary goals: 

1. To provide deep learning frameworks for the thorough examination and 

categorization of hyperspectral photos acquired by remote sensing. 

2. To introduce an innovative approach based on LaplaceGAN for generating 

synthetic images with high fidelity, utilizing real images as a basis. 

3. To propose the implementation of a VGG-UNet architecture specifically created 

specifically for the purpose of classifying hyperspectral photos obtained using 

remote sensing technology. 

4. Conduct a comparative analysis, pitting the performance of VGG-UNet against 

alternative methods such as Res-UNet and Faster R-CNN, to assess their efficacy 

in the context of remote sensing image classification. 



2. Literature Review 

[4] investigated that deep learning has shown to be one of the most effective machine 

learning strategies for a range of inference problems in recent years. [5]  investigated the 

impact of image motion artifacts on cardiac magnetic resonance (MR) segmentation and 

evaluated many methods for concurrently correcting aberration and segmenting heart 

chambers. [6] reviewed the state of the art in terms of research on using deep learning to 

several picture fusion scenarios, including multi-modal, sharpening, and image fusion from 

digital photography.[7]. examined in order to provide a comprehensive summary of recent 

advancements in deep learning-based image super-resolution. 

[8] investigated the current approaches to data augmentation, encouraging 

advancements, and meta-level choices for data augmentation implementation will all be 

covered in this study. [9]  outlined a deep learning architecture of U-net-based mapping 

paradigm for urban villages. The study area is located in Guangzhou City, China. For 

investigation, a building boundary vector file and an eight pan-sharpened band, 0.5-meter 

spatial resolution Worldview satellite picture were employed. [10] proposed the use of 

deep learning based on augmented convolutional neural networks (CNNs) for the real-time 

detection of apple leaf disease. The apple leaf disease dataset (ALDD) is first created in this 

study by using techniques for picture interpretation and data augmentation. The dataset 

consists of complex photos captured in actual field situations as well as images captured in 

laboratories. 

  

Reference Technology Major Inclusion Parameters 

    

[11] CNN Utilizing Partial 

Convolutions for Image In 

painting for Irregular Holes 

Spectral 

Dimension 

[12] Decision Tree 

Classifier 

Using data from Landsat-7 

ETM+, a decision tree 

classifier may be used to 

categorize land uses in an 

agricultural region 

Classifier Six 

Land Use Classes 

[13] Target-Adapted 

CNN 

Utilizing time series 

segmentation to detect shifts 

in vegetation patterns 

DBEST 

[14] GIS Tool GIS, a possible tool for 

enabling the creation and use 

of thematic data to assess the 

potentiality of groundwater 

Thematic Info 



[15] Image Processing Image fusion can be 

attempted in the frequency 

domain 

Frequency 

Domain 

  

 

3.  Methodology 

3.1. Dataset Description 

In this study, we collected hyper spectral images of remote sensing from below website. 

https://www.kaggle.com/datasets/sciencelabwork/hyperspectral-image-sensing dataset-

ground-truth. The process of hyperspectral remote sensing involves the collection and 

examination of a broad spectrum of electromagnetic wavelengths.  

 

3.2. Data Pre-processing 

Data preprocessing involves the application of techniques to handle various aspects of 

the data: 

• Data Cleaning: The dataset is inspected for artifacts, noise, and inconsistencies. 

The goal of this procedure is to find and fix any problems that might compromise 

the accuracy and dependability of the data. Common data cleaning techniques 

include removing outliers, addressing missing values, and handling corrupted 

data points. 

• Data Normalization: Normalization is performed to ensure that all features in 

the dataset have a consistent scale. This step is crucial for training machine 

learning models because it stops certain characteristics from controlling the 

learning process because of variances in their strength. 

3.3. LaplaceGAN  

The LaplaceGAN (LapGAN) serve a crucial purpose in environmental image 

enhancement and reconstruction by leveraging their generative capabilities to enhance the 

photos' clarity, authenticity, and interpretive power. As shown in Fig. 1, the generator and 

discriminator are the two main parts of the Laplace Generative Adversarial Network 

(LapGAN).  

 

https://www.kaggle.com/datasets/sciencelabwork/hyperspectral-image-sensing


 

Figure 1 The structure of LaplaceGAN 

Within the LapGAN framework, the generator is designed to intake both noise and labels 

as input. In this setup, the discriminator not only provides the probability of authenticity 

(real or fake) but also specifies the category of the input sample. The intricacies of the model 

are elucidated as follows: 

 Generator  

In the Laplace GAN, the generator processes noise vectors and load pattern labels 

encoded in one-hot format to produce synthetic load profiles. The architecture involves a 

fully-connected layer for initial mapping, followed by two transposed convolution layers 

with a 2 × 2 stride and a 4 × 4 kernel for up-sampling. To stabilize training and ensure 

smooth gradient flow, batch normalization layers are applied after each computational step. 

The final transposed convolution layer, crucial for shaping generated loads within the same 

interval as normalized real loads, uses a Sigmoid activation function. 

 Discriminator  

The discriminator is used to assess the authenticity and quality of the model-generated 

pictures of synthetic environments. Its main objective is to differentiate between produced 

and actual pictures. Ensuring the produced images exhibit biologically plausible structures. 

Engaging in adversarial training with the generator, the discriminator continually adapts to 

maintain its ability to differentiate between real and synthetic data. By providing feedback 

to the generator, the discriminator guides the improvement of synthetic images, fostering a 

dynamic interplay that refines both components. Ultimately, the discriminator acts as a 

critical quality control mechanism, contributing to the production of high-quality, 

biologically relevant environmental images through the LapGAN training process. 

 The detailed results of the conducted 

3.4.  Build Model 

VGG-UNET  

A deep learning architecture called the Proposed VGG-UNet combines the advantages of 

the VGG16 and U-Net models [16] While the U-Net model is an architecture ideally suited 

for image segmentation, the VGG16 model is a potent feature extractor as shown in figure. 



 

 

 

Figure 2 Architecture of VGG-UNET 

The encoder and the decoder are the two primary components of the VGG-UNet 

architecture. While the decoder creates the segmentation mask, the task of extracting 

features from the input image falls to the encoder. The VGG16 model serves as the basis for 

the encoder in the proposed VGG-UNet. The max pooling layer comes after each of the 16 

convolutional layers that make up the VGG16 model. Five blocks with varying numbers of 

filters each comprise the convolutional layers. Every block has filters that are 3 by 3 in size. 

The U-Net model serves as the foundation for the proposed VGG-UNet decoder. 

3.5. Test-Train Split 

The training set and the test set are the two primary subsets of the dataset. The test set 

is used to evaluate how effectively the trained model generalizes to fresh, untested data, 

while the training set is used to train the model. A validation set is often constructed in order 

to avoid overfitting and fine-tune the model during training. 

Train the network: 

Using the train data, the proposed VGG-UNet model and Res-UNet, Faster R-CNN are 

trained. The performance of the proposed model is assessed and contrasted with these two 

additional Res-UNet, Faster R-CNN architectures. 

3.6. Performance Metrics 

Subsequently, the training set is employed for the purpose of training various models, 

including VGG-UNet model and Res-UNet, Faster R-CNN. The efficacy of the proposed 

algorithm will be evaluated using the performance measures listed below. The accuracy, 

sensitivity, precision, and F1-score of the confusion matrix are used to evaluate a 

technique's efficacy. 
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4. RESULTS 

 
 

 

Figure 3 VGG-UNet 

 

 

 

 

 



  
Figure 4 Res-UNet Figure 5 Faster R-CNN 

  

  

  

The confusion matrix displays how well the suggested VGG-UNet classifier in contrast to 

established models like Res-UNet and Faster R-CNN for hyperspectral image classification 

in remote sensing. The proposed model demonstrated proficiency in identifying 128 

hyperspectral and 112 non-hyperspectral images. However, it faced challenges in 

accurately classifying non-hyperspectral images, resulting in 18 false positives and a 53% 

recall rate for that class. Conversely, it exhibited an 85% recall for true hyperspectral images 

but misclassified 22 as non-hyperspectral. Notably, the focus should be on refining the 

model to minimize misclassifications of non-hyperspectral images. Despite these 

challenges, the proposed architecture outperformed existing models by achieving higher 

correct classifications and fewer misclassifications, showcasing its potential for improved 

hyperspectral image classification in remote sensing applications. 

 

 

 

 

 

 



 
Figure 6 comparison of accuracy 

 
Figure 7 comparison of precision 

 
Figure 8 comparison of recall 

 
Figure 9 comparison of F1-score 

 

The graphical comparisons highlight the superior performance of the proposed VGG-

UNet classifier against established models (Res-UNet and Faster R-CNN) in hyperspectral 

image classification for remote sensing. The VGG-UNet consistently outperforms with the 

highest accuracy (95.62%), precision (98.14%), recall (93.55%), and F1-score (91.69%). 

These findings highlight the VGG-UNet model's remarkable ability to categorizes 

hyperspectral pictures reliably, highlighting its usefulness in remote sensing applications. 

The thorough assessment based on several metrics confirms that the VGG-UNet is a solid 

and trustworthy option for developing hyperspectral image analysis in the remote sensing 

domain. 

 

 

 

 

   

94.13

92.46

95.62

90
91
92
93
94
95
96

Faster R-
CNN

Res-UNet VGG-UNet

Accuracy

97.44

95.49

98.14

94

95

96

97

98

99

Faster R-
CNN

Res-UNet VGG-UNet

Precision

89.12
90.22

93.55

86

88

90

92

94

Faster R-
CNN

Res-UNet VGG-UNet

Recall

88.12

90.76
91.69

86
87
88
89
90
91
92

Faster R-
CNN

Res-UNet VGG-UNet

F1-score



5. Conclusion.  

Finally, the assessment of the suggested VGG-UNet classifier against established models, 

Res-UNet and Faster R-CNN, for hyperspectral image classification in remote sensing has 

yielded valuable insights. The study proposes the implementation of a specialized VGG-

UNet architecture tailored for the classification of hyperspectral images, specifically 

addressing the nuances of remote sensing data. To assess the model's efficacy, a 

comparative analysis is conducted, pitting the performance of VGG-UNet against alternative 

methods such as Res-UNet and Faster R-CNN in the context of remote sensing image 

classification. Complementing these findings, the F1-score, recall, accuracy, and precision 

comparisons depicted in the graphs consistently showcased the superior performance of 

the VGG-UNet model. With a notably high accuracy of 95.62%, precision at 98.14%, recall at 

93.55%, with a remarkable 91.69% F1-score, the VGG-UNet outperformed Res-UNet and 

Faster R-CNN. These metrics collectively underscore the VGG-UNet's efficacy in 

hyperspectral image classification, reinforcing its potential for enhanced remote sensing 

applications. Despite facing challenges, the proposed architecture demonstrated its 

superiority through higher correct classifications and fewer misclassifications, emphasizing 

its promise for improved hyperspectral image analysis. With a foundation for model 

refinement and breakthroughs in accurate hyperspectral image classification for 

environmental monitoring and decision-making processes. the studies thorough evaluation 

and comparative analyses advance deep learning techniques in remote sensing. 
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