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Abstract
In SLA-based cloud computing environments, efficient task scheduling is critical for optimizing resource utiliza-
tion and meeting performance objectives outlined in Service Level Agreements (SLAs). The existing literature
highlights several limitations in this domain, including the complexity of scheduling tasks across heterogeneous
Virtual Machines (VMs) while satisfying various constraints such as profit maximization or makespan mini-
mization. These limitations underscore the need for innovative scheduling algorithms capable of addressing
the dynamic nature of cloud environments. These challenges motivated us to develop a randomized Particle
Swarm Optimization (PSO) algorithm designed specifically for the task scheduling problem in SLA-based cloud
computing environments. This algorithm aims to efficiently allocate diverse tasks to available VMs while adhering
to the critical constraints defined by the SLAs. The PSO algorithm employs randomized search strategies to
efficiently explore the solution space and determine the optimal task for VM assignments. Further, to assess the
effectiveness of the proposed scheduling algorithm, comparative analyses are performed against existing schedul-
ing approaches such as Shortest Job First (SJF) and First Come First Serve (FCFS). These comparisons evaluate
the performance, efficiency, and scalability of the randomized PSO algorithm in terms of profit maximization
and makespan minimization. The outputs of this comparison provide valuable insights into the efficacy of the
proposed algorithm in SLA-based cloud computing environments. Therefore, the findings of this study offer
practical implications for enhancing the reliability, scalability, and performance of cloud-based services while
ensuring compliance with SLA commitments and customer expectations.
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1. Introduction

Cloud computing has transformed the face of modern computing by offering on-demand resources that
are flexible and scalable, reshaping how businesses operate and individuals interact with technology.
Cloud computing fundamentally provides computing services like storage, computational capabilities,
software, and applications via the internet, thereby eliminating the need for on-premises infrastructure
and empowering users with unparalleled accessibility and agility [1]. However, despite the myriad
benefits it offers, cloud computing also presents a host of challenges that must be addressed to fully
harness its potential. These challenges encompass various aspects, including security concerns, data
privacy issues, performance bottlenecks, and reliability constraints, among others. Among the most
pressing issues faced by cloud computing providers and users alike is the establishment and maintenance
of Service Level Agreements (SLAs).

SLAs serve as contractual agreements between cloud service providers (CSP) and consumers, defining
the terms and conditions under which services will be delivered, encompassing performance metrics,
assurances of availability, subscription plans, penalties for non-compliance, and recourse mechanisms in
case of service interruptions or breakdowns. In essence, SLAs encapsulate the expectations and obliga-
tions of both parties, serving as the cornerstone to ensure service quality, reliability, and accountability
in the cloud computing ecosystem[2]. The need for robust SLAs in cloud computing stems from the
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inherent complexities and uncertainties associated with distributed computing environments. As cloud
infrastructures encompass diverse hardware and software components distributed across geographically
dispersed data centers, ensuring consistent performance and availability becomes a daunting task. SLAs
provide a structured framework for delineating performance objectives, establishing benchmarks, and
enforcing compliance standards, thereby fostering trust and transparency among stakeholders [3][4].

Nevertheless, despite the best efforts to uphold SLAs, instances of service disruptions or deviations
from agreed-upon performance levels can occur, triggering penalties or financial consequences as
outlined in the SLA terms. These penalties serve as a mechanism for persuading cloud service providers
to adhere to their commitments and prioritize service reliability and responsiveness.

Task scheduling algorithms play a pivotal role in mitigating SLA violations and optimizing resource
utilization in cloud computing environments. By intelligently allocating computing resources and
orchestrating task execution based on dynamic workload patterns, task scheduling algorithms can
preemptively identify potential bottlenecks, mitigate contention for shared resources, and optimize task
completion times, thereby enhancing overall system performance and meeting SLA requirements. Thus,
this study proposes a randomized PSO algorithm for task scheduling while meeting constraints such as
profit maximization and makespan minimization in an SLA-based cloud computing environment.

The rest of the paper is organized as follows. Section 2 presents an overview of the existing literature.
Section 3 describes the proposed SLA-based task scheduling framework. Section 4 discusses the result
analysis in detail, followed by conclusion in Section 5.

2. Related work

The existing literature offers a range of operational models and methods for creating and managing
SLAs in the context of cloud computing. Furthermore, we delve into various task-scheduling approaches
within the framework of SLA-oriented cloud computing. The study[5] introduces an approach that
employs artificial neural networks (ANNs) to schedule tasks within cloud data centers, emphasizing
the goal of improving energy efficiency. The authors in[6] introduce a genetic algorithm (GA)-based
task scheduling method designed for the allocation and execution of diverse tasks within a cloud
computing framework. The objective is to reduce both task completion time and execution costs while
maximizing the utilization of available resources. The work carried out in[7] proposes an Energy and
Performance-Efficient Task Scheduling Algorithm (EPETS) to address the challenge of task scheduling
in virtualized cloud environments. By leveraging virtualization technology, the approach aims to
balance the workload across different types of resources while minimizing energy consumption and
maximizing performance. The paper[8] proposes a job scheduling algorithm that takes into account
both the cost and the quality of service (QoS). This algorithm assesses the cost-related QoS parameters
of virtual resources from the unified resource layer in real-time. Its goal is to improve user satisfaction
and optimize the profits of commercial cloud providers. The study[9] addresses the challenges of
managing workloads efficiently in edge-cloud environments by proposing cost-aware automatic scaling
and workload-aware replica management solutions, aiming to optimize resource utilization, minimize
costs, and enhance performance. The work[10] introduces a cost-based energy-efficient scheduling
technique for dynamic voltage frequency scaling (DVFS) systems in cloud computing environments.
This technique aims to optimize resource utilization, reduce energy usage, and lower operational costs
by prioritizing tasks based on energy consumption and cost considerations.

The paper[11] presents a cost-effective and reliability-aware job scheduling algorithm for cloud
computing systems. This algorithm prioritizes job assignments based on service cost and reliability
considerations, so as to enhance resource utilization and ensure efficient execution of workloads in
cloud environments. The researchers in[12] develop an intelligent cloud task scheduler using Deep
Reinforcement Learning (DRL), where the scheduler relies on learning directly from experience without
pre-existing knowledge to make optimal scheduling decisions. They frame task scheduling as a dynamic
optimization challenge with limitations and utilize the deep deterministic policy gradients (DDPG)
network to determine the best task assignment solution while adhering to performance and cost



constraints. The authors also propose a correlation-aware state representation approach to capture
inherent demand characteristics and design a dual reward model to learn the optimal task allocation
strategy. The paper[13] utilizes deep reinforcement learning (DRL) techniques to make real-time
decisions about job allocation across various cloud resources to improve resource utilization and reduce
overall costs in hybrid cloud deployments. The study[14] presents a combined heuristic approach
designed to optimize task scheduling in fog-cloud computing scenarios, with a focus on QoS demands
and cost-effectiveness. The key goal of cost reduction is pursued by implementing a unique model
called Hybrid Flamingo Search with a Genetic Algorithm (HFSGA) for improved task scheduling. The
authors in[15] introduce a job scheduler driven by Deep Reinforcement Learning (DRL) to manage the
real-time dispatch of jobs. Its primary objective is to organize user requests effectively to ensure quality
of service (QoS) for end-users while also substantially cutting down on the expenses associated with
executing jobs on virtual instances. The method proposed relies on a Deep Q-learning Network (DQN)
model and seeks to diminish Virtual Machine (VM) costs while upholding high QoS for incoming jobs
in cloud frameworks.

The paper[16] suggests a novel approach named Ant Grey Wolf Optimization (AGWO), which
integrates the principles of Ant Colony Optimization (ACO) and Grey Wolf Optimization (GWO).
This hybrid method aims to accelerate and enhance the quality of solution discovery in ACO. AGWO
primarily focuses on improving the efficiency and results of cloud-fog computing frameworks by
optimally scheduling IoT task requests. The work carried out in[17] proposed a heuristic approach for
task scheduling in cloud computing. The authors in[18] introduce an innovative Grey Wolf Optimizer-
based Task Scheduling (GWOTS) algorithm, which is designed to assign tasks to available resources.
This meta-heuristic technique serves as a solution to optimization challenges. The study[19] presents
a preemptive approach based on Deep Reinforcement Learning (DRL). This approach enhances the
training of the scheduling policy through efficient preemptive mechanisms for jobs, to minimize the
cost of job execution while ensuring the expected response time in a cloud setting is met. The paper[20]
proposes an SLA-aware task-scheduling algorithm based on the Whale Optimization Algorithm for
cloud computing systems. By prioritizing task scheduling based on SLA requirements and leveraging
WOA for optimization, the algorithm aims to enhance resource utilization, meet SLAs, and improve the
user experience in cloud environments. The work[21] presents a methodology for service placement
and scheduling on the continuum from edge to cloud computing, prioritizing cost awareness. The
approach can adjust to dynamic environments while maintaining optimal performance.

However, the above-discussed literature faces certain limitations such as the diverse nature of data
centers and the varying resource requirements of user applications, inherent trade-offs between profit
maximization, makespan minimization, and SLA compliance, resource heterogeneity by having VMs
with varying capacities and performance characteristics and maximizing profit or minimizing makespan
without appropriate alignment with energy efficiency goals in cloud data centers. So to address these
limitations, we propose an SLA-based task scheduling algorithm using a randomized PSO technique,
with a focus on designing scalable, and efficient task scheduling algorithms that can optimize resource
utilization, minimize makespan, and ensure SLA compliance in cloud environments.

3. SLA-based task scheduling framework

3.1. SLA-based task scheduling problem formulation

Let 𝑉𝑀1, 𝑉 𝑀2, · · ·𝑉𝑀𝑚 are the m number of VMs provided by the Cloud Service Provider (CSP).
The available tasks be 𝑇1, 𝑇2, · · ·𝑇𝑛.



3.1.1. Allocation of a task to VM

Allocation of a task to VM is defined by the following binary variable:

𝐴(𝑇𝑖, 𝑉 𝑀𝑗) =

{︂
1 if 𝑇𝑖 is allocated to 𝑉𝑀𝑗

0 otherwise
(1)

3.1.2. Gain cost

Gain cost is the defined cost in the agreement between the user and CSP to accomplish the execution of
the submitted tasks. The gain cost of a particular VM can be calculated in terms of the execution time
of the total number of tasks processed by that VM i.e.

𝐺(𝑉𝑀𝑗) =
𝑛∑︁

𝑖=1

𝐸(𝑇𝑖)×𝐴(𝑇𝑖, 𝑉 𝑀𝑗) (2)

The total gain cost considering all the VMs can be expressed as

𝐺 =
𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝐸(𝑇𝑖)×𝐴(𝑇𝑖, 𝑉 𝑀𝑗) (3)

3.1.3. Penalty cost

Penalty cost refers to the cost that the CSP incurs and pays to the user when it fails to perform the
tasks. The tasks which are not allocated to any VMs can be defined by the Boolean variable as

𝐵(𝑇𝑖) =

{︂
1 if 𝑇𝑖 is not allocated to any VM
0 otherwise

(4)

The overall penalty cost for all the VMs can be expressed in a manner similar to the gain cost as

𝑃 =
𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑆(𝑇𝑖)×𝐵(𝑇𝑖) (5)

Where, S() is the size of task. The overall benefit or loss can be calculated from the Eq.(3) and Eq.(5) as

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝐺− 𝑃 (6)

When profit is negative, it represents a loss. In order to maximize the profit, the average utilization
of VMs should be maximum.

3.1.4. Average utilization of VMs

The utilization of a VM for a specific period of time t can be defined as the ratio of its execution time to
the total time t. Thus,

𝛾(𝑉𝑀𝑗) =
𝐸𝑇

𝑡
(7)

𝛾(𝑉𝑀𝑗)=0 represents 𝑉𝑀𝑗 is idle for the time period t.



3.1.5. Makespan

The makespan of a set of m number of allocated tasks 𝑇1, 𝑇2, · · ·𝑇𝑚 executed by different VMs is the
maximum execution time of these VMs.

𝑀 = max{𝐸𝑇 (𝑉𝑀1), 𝐸𝑇 (𝑉𝑀2), . . . , 𝐸𝑇 (𝑉𝑀𝑚)} (8)

Where 𝐸𝑇 is the execution time.

If 𝑛 > 𝑚, the remaining tasks will be allocated to the VMs and hence the overall makespan becomes

𝑀 =max{𝐸𝑇 (𝑉𝑀1), 𝐸𝑇 (𝑉𝑀2), . . . , 𝐸𝑇 (𝑉𝑀𝑚)}
+max{𝐸𝑇 (𝑉𝑀1), 𝐸𝑇 (𝑉𝑀2), . . . , 𝐸𝑇 (𝑉𝑀𝑖−𝑚)}
. . .

+max{𝐸𝑇 (𝑉𝑀1), 𝐸𝑇 (𝑉𝑀2), . . . , 𝐸𝑇 (𝑉𝑀𝑛−𝑚)}

(9)

The profit can be maximized by maximizing the utilization of VMs or minimizing the makespan.
Since VMs have distinct configurations, the optimal assignment of tasks to these VMs leads to the
highest possible profit for the CSP.

3.2. Randomized PSO algorithm for task scheduling

The task scheduling problem involves the allocation of different tasks to available VMs to satisfy some
constraints like maximizing the profit or minimizing the overall makespan of the task execution. In
this context, the conventional PSO algorithm might not be effective because the fitness function or the
objective function is not a mathematical function but rather an allocation problem. Further, also the
governing equations typically used in PSO to update the velocity and position may not be applicable.
Hence, in this work, a modified version of PSO is presented in which each particle is assigned a random
allocation of tasks to the VMs. The velocity of each particle is determined by replacing a task from
the list of tasks allocated earlier. The position of the particle is updated by assigning it to its current
velocity.

3.2.1. Position

Each particle is assigned a random allocation of tasks to the different VMs. The position is represented
by an array (1xm). It is initialized as

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = [𝑢𝑛𝑖𝑞𝑢𝑒(𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑛− 1),𝑚− 1)] (10)

Where, unique() generates m random numbers each time from 0 to n-1

3.2.2. Velocity and the fitness function

The velocity of each particle is defined by replacing a single task from the earlier allocated tasks.
The fitness function to evaluate each particle is presented in Algorithm 1. In this algorithm, MIPS() is
the MIPS of VMs, and max() finds the maximum elements from an array.
Each step of the randomized PSO algorithm is presented in Algorithm 2. In this algorithm, FUTILITY

is a number greater than any number generated by the random number generator.

3.2.3. Time complexity and convergence of the proposed algorithm

The infinite while loop stops its execution when the condition gp=gBest is satisfied i.e. the current
computed gBest and previously computed gBest do not change their values. Let 𝜄 be the number of
iterations for which the infinite while loop will execute. The inner for loop will execute up to 𝑛𝑝 times.
Hence, the worst running time of the proposed algorithm is O(𝜄 × 𝑛𝑝 ).



Algorithm 1 fitness(position)
for i = 0 to m-1 do

E[i]=T[position[i]]/MIPS(VM[i])
end for
ms=max(E[i])
return ms

Algorithm 2 Randomized_PSO(T,VM,𝑛𝑝)
gBest=FUTILITY
gp=0
for each p do

p.position=[unique(random(0,n-1), m-1)]
p.velocity=[[0] for i in range(m)]

end for
for each particle p, 1 ≤ 𝑖 ≤ 𝑛𝑝 do

p[i].pBest = Fitness(p)
end for
Find 𝑔𝐵𝑒𝑠𝑡 = argmin

1≤𝑖≤𝑛𝑝

(𝑝[𝑖].𝑝𝐵𝑒𝑠𝑡)

while !termination do
for i = 1 to 𝑛𝑝 do

Alloc=p[i].position
p[i].velocity= [replace(T[x],T[y]) in Alloc for T[x] ∈ Alloc and T[y] ̸∈Alloc
p[i].position=p[i].velocity
if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝[𝑖]) < 𝑝[𝑖].𝑃𝐵𝑒𝑠𝑡 then

p[i].PBest=Fitness(p[i])
end if
if 𝑝[𝑖].𝑃𝐵𝑒𝑠𝑡 < 𝐺𝐵𝑒𝑠𝑡 then

GBest= p[i].PBest
end if

end for
if gp==gBest then

break
end if
gp=gBest

end while

4. Results and discussion

The proposed algorithm is simulated in Cloudsim. The different VMs used in this work are in line with
the VMs of Cloudsim. Twenty number of particles are taken while simulating the randomized PSO
algorithm.

4.1. Convergence of the randomized PSO

To demonstrate the convergence of the randomized PSO, various combinations of workload and VMs
are employed. The workload contains the tasks generated randomly with sizes ranging from 2 million
instructions to 3 million instructions. The results obtained are presented in Table 1. This table entails
the randomized PSO to converge each time within a satisfactory number of iterations.



Table 1
Convergence of randomized PSO

Sl. no. # of tasks # of VM Epoch # Makespan

1 100 32 47 3599.9
2 200 32“ 10 3800
3 500 32 201 3599.9
4 100 64 11 5999.9
5 200 64 20 5800
6 500 64 91 5600
7 1000 32 100 5400
8 1000 64 173 5600
9 1000 128 333 6000
10 2000 128 568 5800

Table 2
Comparison of the proposed algorithm

Algorithm Task id Task size VM MIPS(VM) 𝐸𝑇 MS

FCFS 1 200000 1 250 800
2 300000 2 400 750 1600
3 100000 3 500 200
4 400000 4 250 1600
3 100000 1 250 400

SJF 1 200000 2 400 500 1200
5 200000 3 500 400
2 300000 4 250 1200
3 100000 1 250 400

Proposed 1 200000 4 250 800 800
5 200000 2 400 500
2 300000 3 500 600

4.2. Comparison

The proposed scheduling algorithm is compared against some standard algorithms like shortest job first
(SJF) and first come first serve (FCFS). In order to effectively compare these algorithms, we consider a
scenario where five tasks are scheduled across four VMs. The results are presented in Table 2. This
table shows a substantial reduction of the makespan (MS) while executing the four tasks.

The randomized PSO is compared against the genetic algorithm in terms of the makespan. While
using GA, each chromosome represents one solution to the problem, i.e., allocation of tasks to the VMs.
Two point crossover method is used for the generation of the offspring. The fitness function as presented
earlier is used to evaluate each chromosome. The size of the population is 100. The comparison is
made for different workloads such as 100, 200, 300, 400, and 500 tasks respectively. The results of these
comparisons are depicted in Figure 1. Randomized PSO outperforms GA for each workload in terms of
minimizing the makespan.

4.3. SLA based scheduling

The service level agreement(SLA) can be defined in terms of three levels (0, 1, and 2)[6]. These levels
are defined in Table 3. To ensure SLA, a gain cost of 3 per unit processing time (as per Cloudsim) and
a penalty cost of 1 per million instructions are considered in this work. While the number of virtual
machines (VMs) may vary, the workload is represented by 128 randomly generated jobs, each with
a size ranging from 2 to 3 million instructions. For level 1, the CSP provides the maximum available
VMs to execute the tasks. The least number of VMs are made available to the user for level 1. Level



Figure 1: Comparison of randomized PSO and GA over different workloads

Table 3
Levels of SLA

Level Performance in % Budget in%

1 100 0
2 0 100
3 x y

3 provides a computing environment of a mixed type of performance-based and budget-based. For
level 1, 128 VMs are allocated to execute the tasks and the net profit is nearly 15000 (Figure 2). For 32
VMs, the randomized PSO algorithm is executed four times, and the total makespan is nearly 5000 time
units (profit of 15000). If the budget is taken into consideration, the profit is calculated accordingly. For
e.g. suppose the user requires the budget to be 6000, then only 2000 processing time is allocated, and
thereby only 32 tasks are executed (Figure 2). To study the SLA for level 3, the tasks are mixed types i.e.
x% tasks are performance-based while y% are budget-based. The figure depicts the profit of CSP for
executing 128 tasks of 30% performance-based and 70% budget-based with the help of varying VMs
(Figure 2).

The utilization rate of VMs is shown in Figure 3. The comparison of profit, penalty cost and gain cost
for level 1, 2 and 3 are shown in Figure 4 for processing of 128 number of tasks. This figure entails the
level 1 to be more profit making than other two levels. However, if the user needs processing of a huge
number of tasks, the CSP may not allocate the VMs sufficiently enough to avoid the penalty cost. Thus,
CSP may provide level 3 service even though some penalty cost may be incurred. In the level 3 service,
users may be debarred from processing most of its tasks if a deadline is considered or they have to wait



Figure 2: SLA based scheduling for maximum profit

for a longer time when no deadline is fixed. The penalty cost is nominal to gain cost for this case. As
compared to level 2, level 3 provides more profit to CSP while deploying a feasible number of VMs.

5. Conclusion

The necessity for efficient task scheduling in SLA-based cloud computing environments arises from
the increasing complexity and scale of cloud infrastructures, where optimal resource allocation is
paramount to meeting performance objectives and ensuring customer satisfaction. Task scheduling
involves the allocation of diverse tasks to available VMs while adhering to various constraints, such
as maximizing profit or minimizing the overall makespan of task execution. Taking into account the
significance of this challenge, we have developed a randomized PSO algorithm in this paper. The
rationale behind employing the developed algorithm lies in its ability to effectively explore the solution
space and discover optimal task-to-VM assignments while satisfying critical constraints and objectives
defined by SLAs. To evaluate the effectiveness of the proposed scheduling algorithm, a comparative
analysis was performed against existing scheduling approaches such as SJF and FCFS. The comparison
aims to assess the performance, efficiency, and scalability of the randomized PSO algorithm in terms of
profit maximization and makespan minimization. The outcomes of this comparison provide valuable
insights into the efficacy of the proposed algorithm in addressing the complexities inherent in SLA-based
cloud computing environments.



Figure 3: Utilization rate of VMs
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