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Abstract 
The major source of our economy, which is the agricultural sector, is 

seriously threatened by plant diseases. They negatively impact crops 

and the means of livelihood for farming communities. The need for 

automated solutions becomes evident when we consider how labor-

intensive and error-prone traditional manual methods are for 

identifying illnesses. Our study FloraCheck investigates plant disease 

identification using the EfficientNetB3 model by using deep learning. 

We have chosen the PlantVillage dataset and implemented advanced 

image preprocessing techniques for effective model training. Existing 

approaches show differences in the data and models they use and 

often struggle with limitations such as dataset specificity and a lack 

of comprehensive generalization. FloraCheck is bridging these gaps 

by harnessing the power of EfficientNetB3 through transfer learning, 

ensuring adaptability to a diverse range of plant diseases. The model 

is refined through strategic construction involving batch 

normalization, regularization, dropout and a final classification layer. 

This ensures the development of a robust and adaptive framework 

for accurately detecting plant diseases. Our project has achieved an 

accuracy rate of 98.93%, signifying a considerable advancement in 

the automated detection of plant diseases. 
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1. Introduction 

In India, agriculture remains the backbone of the economy, with a substantial percentage 

of  
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the population engaged in farming activities. Especially in rural areas, agriculture is not 

merely  

an occupation but a way of life. However, the agricultural sector stands as the major pillar 

of many economies worldwide, it provides sustenance, employment, and economic stability 

to millions of people out there. Unfortunately, plant disease poses a daunting challenge to 

this vital sector. These diseases not only threaten crop yields but also jeopardize food 

security and the livelihoods of farming communities. The urgency for efficient and 

automated solutions to detect and combat these diseases has never been more apparent. 

Our research is propelled by the profound impact that plant diseases impose on 

agricultural productivity and food security. Traditional manual methods for disease 

identification are not only labor-intensive and time-consuming but also prone to errors. The 

need for automated systems that can precisely identify and diagnose plant diseases is 

evident given the scope and complexity of today's agricultural challenges. In an ever-

changing global landscape, these kinds of systems are essential for maintaining crop health 

and maximizing agricultural output. 

In response to these pressing challenges, our study sets to achieve several 

objectives. First and foremost, our goal is to create a reliable and effective automated system 

for the identification and treatment of plant diseases by employing cutting-edge deep 

learning techniques. Secondly, we seek to explore the effectiveness of transfer learning and 

advanced image preprocessing techniques in enhancing the accuracy and adaptability of the 

proposed system. Finally, we will evaluate the developed model's practical suitability for 

deployment in agricultural settings by assessing its performance using real-world datasets. 

Our study presents several significant contributions to the field of plant disease 

detection and agricultural technology: 

1. We present an innovative method for automated plant disease identification 
that makes use of deep learning, specifically the EfficientNetB3 model. 

2. Through the integration of sophisticated image preprocessing techniques and 
transfer learning, we enhance the model's ability to precisely identify a wide 
range of plant diseases. 

3. Through extensive experimentation and evaluation using the PlantVillage 
dataset, we demonstrate the efficacy and real-world applicability of the 
developed model in diverse agricultural scenarios. 

Finally, the structure of our paper is as follows: 

In Section 2, we have mentioned a comprehensive overview of relevant research work in 

the field of automated plant disease detection. Further in Section 3, focus has been laid on 

outlining the methodology implemented and technical approach adopted in our study, 

which includes data acquisition, data preprocessing, model construction, model training, 

and classification. Section 4, we present the results of our experiments, including 

classification model, performance metrics, comparative analysis and the limitations. It also 

does the analysis and discussion of the findings of our study, interprets the results, and 

highlights implications for agricultural practice. In Section 5, of the paper concludes with an 

overview encompassing our contributions, limitations, and prospects for future research 

endeavors. Finally, in Section 6, the References provide a concise list of all sources cited 

throughout the paper, facilitating further exploration of the topic and validation of the 

study's findings. 



 

 

2. Literature Review 

In [1], the key elements of CNN architecture, such as convolutional layers, ReLU activation, 

pooling layers, and dropout layers, were employed in the Caffe framework. In [2], CNN 

architecture was used with layers such as Convo2D, flatten, max, pooling etc. on the Plant 

Village dataset with accuracy of 88%. In [3], the five different architectures are compared 

which include VGG16, ResNet50, InceptionV3, InceptionResNet, and DenseNet169, 

achieving the best result from ResNet50. 

[4] evaluates multiple deep learning models such as GoogleNet, ResNet101, 

ResNet50, InceptionV3, AlexNet, InceptionResNetV2, SqueezeNet, VGG16, VGG19. 

For object recognition, conventional techniques like LBP, HOG, colour features and GLCM 

for are also assessed. Bi-CNN employs pre-trained VGG and ResNet models for feature 

extraction followed by ADAM optimizer on Plant Village Dataset [5]. 

In [6], CNN is achieved through a re-parametrization method and a dynamic pruning 

gate to manage computational complexity, optimizing the feature extraction network. In [7], 

three classifiers LeafNet, SVM and MLP are evaluated to detect diseases in tea plants. 

LeafNet performed best with accuracy of 90.16%. In [8], the recognition of diseases in 

tomato leaves is done by S-CNN in which the model is trained using segmented images. In 

[9], on tomato, potato and pepper crops in the Plant Village dataset, CNN with image 

preprocessing is done and it achieves 98.029% of accuracy. 

In [10], CNN incorporated a fully connected layer for classification, convolutional 

and pooling layer for feature extraction on approx. 35,000 images of Plant Village dataset. 

In [11], max pooling layers come after the convolutional layers, and the final layer includes 

an Adam optimizer and softmax activation to lower the loss function. In [12], using CNN 

with Raspberry Pi kit to anticipate crop diseases in advance. With a suggested activation 

function and two convolutional layers, it achieves 95% of system accuracy. Fertilizer 

optimization is aided by K-means clustering-based image segmentation. 

In [13], convolution is used to identify patterns and edges, while pooling serves to 

reduce the image dimensions. CNN architectures which are applied simple CNN, VGG and 

InceptionV3. In [14], a diverse dataset is captured through various sensors. Subsequently, 

transfer learning is employed to leverage a pre-trained GoogLeNet CNN, facilitating 

detection and classification tasks. The dataset is expanded (XDB) through manual 

subdivision of images into smaller regions for optimal results. 

In [15], The synthesis of three different CNN models (VGG-16, Google Net, ResNet 

50) used with the application of two different classifiers (SVM and KNN). In [16], CNN is 

being used where the feature extraction is done by DWT, GLCM giving an accuracy of 

98.12%. In [17], three approaches are used, a customized CNN, transfer learning with 

INCEPTIONv3, and visual transformers (small and large). Training involves Adam and RM-

Sprop optimization, categorical cross-entropy loss, and callbacks and appropriate learning 

rates. 

[18] explores ML and DL techniques, like random forest, SVM, and CNN like VGG-16, 

VGG-19, and Inception-V3, to accurately detect and classify citrus leaf diseases based on a 

manually curated dataset. (Evaluation involves area under the curve (AUC), precision, F1-



 

score, recall and accuracy, comparing the performance of ML and DL methods, with DL 

demonstrating higher overall effectiveness). [19] Utilizing the Plant Village dataset for 

supervised learning, applying pixel-based operations, and employing CNNs for image 

classification. 

In [20], utilization of advanced deep learning meta-architectures including RFCN, 

SSD and Faster RCNN, SSD with Inception-v2 and the highest mean average precision 

(73.07%) was achieved and optimization with Adam significantly improves accuracy, 

particularly for specific disease classes. In [21], while the model is trained, its process has 

included 160 images of the papaya leaves. There are numerous machine learning 

algorithms, such as KNN, Naive Bayes, Random Forest, Support Vector Machine, CART, and 

Logistic Regression, these all have been applied.  Out of which, random forest performed 

the best with an accuracy of 70.14%. 

 

In [22], detection of plant infections relies on K Means clustering and GLCM 

technique. Accuracy achieved was 98.27%. In [23], through the introduction of a rice plant 

disease recognition system, the ML algorithms such as KNN, Logistic Regression, Naive 

Bayes and Decision Tree are introduced. The Decision Tree algorithm gave best results by 

achieving an accuracy of a perfect 97.9167%. This dataset consisted of three different 

disease classes wherein each class has 40 images. 

 

In [24], this paper's primary objective was to suggest enhancements to the existing 

machine-learning based classification methods which are for plant disease detection, 

supported by a comparison of the KNN classifier and SVM classifier. The outcomes 

demonstrated that the suggested algorithm has achieved a good accuracy of 98.56%, which 

also surpassed the 97.6% accuracy of the old/existing system. In [25], the suggested 

approach detects the plant diseases with an average accuracy of 93% by using the Random 

Forest Classifier as well as the digital Image processing technique. 

 

In [26], Transfer learning is implemented with five pre-trained deep neural network 

architectures: VGG16, DenseNet169, InceptionV3, ResNet50, and Xception. Following 

model training, images representing different corn diseases from various datasets are 

employed as test data to evaluate the models' generalization capabilities. The DenseNet169 

model demonstrated superior performance. The highest generalization accuracy of 81.60% 

was achieved when training the DenseNet169 model using (RGBA) images from the CD&S 

corn disease dataset, with backgrounds removed. In [27], the study compares 4 deep neural 

models such as fasterRCNN, EfficientDET, YoloV5 and YoloV6. Amongst all, YoloV5 model, 

which was trained with 93% accuracy on pre-trained hyper parameters, produced the best 

result. [28] achieves a detection accuracy of 98.26% by using the EfficientNetV2 model for 

cardamom plant disease detection and the U2-Net for background removal.  

 

[29] employs transfer learning with six different CNN architectures, including 

VGG16, InceptionV3, Xception, Resnet50, MobileNet, and DenseNet121, for multi-class 

classification of plant diseases using 11,333 images from the PlantVillage dataset, with 

DenseNet121 achieving the highest accuracy at 95.48%. [30] proposes a rice plant disease 



 

diagnosis method using DenseNet169-MLP, combining DenseNet169 as a feature extractor 

and a multilayer perceptron for classification along with fuzzy c-means (FCM) based 

segmentation for identifying diseased portions, achieving an accuracy of 97.68%. [31] uses 

a hyperparameter-optimized Deep Convolutional Neural Network with data augmentation 

to achieve an accuracy of 98.41%. 

 

3. Methodology  

 

 
Figure 1: Schematic overview of proposed methodology. 

 

 

3.1. Data Acquisition  

We have opted for the PlantVillage dataset, a compilation of images encompassing 

diverse plant species and diseases. Originally comprising 38 labelled classes, we refined 

the dataset to 25 classes. This curation, focused on specific plant species and diseases, 

establishes a controlled framework for the purpose of recognizing and classifying plant 

diseases. The resulting dataset, presented in Table 1, optimizes precision by 

concentrating on classes crucial to our research. 



 

 

 

Table 1. Details of our dataset 

Details Count 
Number of images 31407 

Number of unique plant species 5 

Number of distinct plant diseases represented 25 

 

 
Figure 2: Sample images from Plant Village dataset. 

 

3.2. Data Preprocessing 

Before model construction, thorough data pre-processing procedures were conducted to 

guarantee the quality and relevance of the dataset. 

•  Dataset Stratification: A stratified split was implemented to guarantee that classes 
were fairly represented in the test, validation, and training sets  

• Image Processing and Augmentation: We implemented image augmentation 
techniques of horizontal flipping, rotation, zooming, brightness adjustments, and 



 

shifts to enhance robustness of our dataset and a scaling function to normalize pixel 
values. To balance efficiency and information preservation, we resize the images to 
(224, 224) pixels, aligning with the EfficientNetB3 architecture, which utilizes three 
color channels (RGB). 

• Batch Size Selection: For both training and testing, we chose a batch of 40. This 
action aimed to achieve equilibrium between computational efficiency and model 
convergence. 

 

3.3. Model Construction 

Once the data was pre-processed, we constructed the model architecture. 

• Transfer Learning with EfficientNetB3: We have utilized transfer learning with the 
EfficientNetB3 architecture as our base model for the construction of the image 
classification model. The model’s pre-training on the ImageNet dataset motivated 
this choice, enabling it to capture complex image features. To tailor the base model 
to our specific classification task, we added these supplementary layers. 

• Incorporating Batch Normalization: For the purpose of stabilizing and accelerating 
the training process, we incorporated batch normalization. This enabled us to 
normalize the input of each layer preventing internal covariate shift and promoting 
more streamlined model learning. 

• Dense layer with regularization: A dense layer with Rectifier activation was 
introduced to capture complex patterns in the data. In order to reduce overfitting, 
L2 weight regularization was applied to the layer to promote resilient learning. 

• Dropout for generalization: To enhance model generalization, a dropout layer with 
rate of 0.45 was implemented. This layer randomly deactivated neurons during 
training, to avoid overdependence of models on specific nodes and improving 
overall performance. 

• Final Classification Layer: The model’s concluding layer consists of a dense layer 
employing softmax activation, providing probabilities for each class in the 
classification task. This layer is crucial for generating predictions and determining 
the likelihood for each class. 

• Model Compilation: The model that has been compiled makes use of the Adamax 
optimizer with a step size of 0.001. Choosing categorical cross-entropy as the loss 
function was in line with our goal of training for accuracy. 

 

3.4. Model Training 

With the model architecture in place, we trained the model using specific parameters 

and evaluated its performance. 

1. Training parameters:  
• Epochs: The model underwent training for a total of five epochs.  
• Verbose Setting (Verbosity): The training progress was displayed with 

verbosity set to 1, for real time updates on metrics like loss and accuracy. 
2. Validation for performance evaluation: To gauge the performance of our model and 

confirm that it can be extended to unfamiliar data, a validation dataset was 
employed during the training process. After each epoch, the model was evaluated 



 

on this independent dataset, providing insights into its capacity to extrapolate 
beyond the provided training dataset. 

 

3.5. Classification 

The classification process determines whether a plant leaf from the Plant Village Dataset 

is contaminated or not. It further distinguishes the class of plant infection and recognizes 

the specific plant variety. 

 

4. Result and Analysis 

• Classification Model 

We have distributed our dataset into 80% training set, 10% validation set and 10% 

testing set. We prepared a classification report that provides a detailed assessment 

of the plant disease recognition system’s performance across various diseases 

affecting plants. 

 

Table 2. Classification Report 
 



 

 
 

• Performance Metrics 

 



 

 
 

The training process of the model unfolded over five epochs, revealing significant progress 

in both training and validation accuracies. Commencing with a notably high accuracy of 

89.82% and loss of 4.2516, the model exhibited a remarkable learning curve, 

culminating in an accuracy of 99.26% and a substantially reduced loss of 0.2842 by the 

final epoch. Such progression signifies the model's adeptness at capturing intricate 

patterns within the dataset. 

Finally, our plant disease recognition model achieves an accuracy of 98.93% on the 

test dataset following the model's performance evaluation. 

 

Table 3. Performance Metrix 

 Accuracy Loss 

Train 0.9937 0.2407 

Valid 0.9913 0.2649 

Test 0.9893 0.2604 

  

 

 
Figure 3: Graph of loss during training and validation across epochs. 

 



 

 
 

Figure 4: Graph of accuracy during training and validation across epochs. 

 

 

• Comparison Analysis of Performance with Related Studies 

We compared our results with several existing research papers to contextualize the 

success of our method. Following is the comparison evaluation of performance with 

existing research papers. 

 

Our approach, concentrating on 25 carefully selected classes, distinguishes itself 

from studies like [14], which employed a more diverse dataset captured through 

numerous different sensors widely available. The deliberate emphasis on specificity 

enhances the precision of disease classification in our model. The stratified split, image 

processing, and augmentation techniques contributed to the robustness of our dataset.  

 

In comparison to [10], which utilized CNN with a fully connected layer for 

classification and convolutional and pooling layers for feature extraction, our 

preprocessing techniques align with the specific requirements of the EfficientNetB3 

architecture, ensuring efficiency and preservation of information. Leveraging transfer 

learning with EfficientNetB3, we introduced batch normalization, densely connected 

layers with regularization, and dropout for generalization.  

 

Compared to [17], which explored multiple approaches including a customized CNN 

and transfer learning, our use of EfficientNetB3 with tailored modifications ensures an 

effective balance between complexity and accuracy. Using categorical cross-entropy as 

the loss function, five epochs were conducted during the training phase at a learning rate 

of 0.001. 

 



 

In comparison to [6], where a reparameterization method and dynamic 

pruning gate were used to manage computational complexity. Our approach 

achieves competitive accuracy without resorting to complex computational 

optimization techniques.  

 

Our model achieved an outstanding accuracy of 98.93% surpassing the 

performance of [20], wherein deep learning meta-architectures with a mean 

average precision of 73.07% attained the highest score. The specificity of our model 

in detecting diverse plant diseases across various species is reflected in the 

precision, recall, and F1-score metrics, as illustrated in our classification report. 

 

So, our research showcases competitive performance when compared to 

existing research papers. The specificity and efficiency of our approach position it 

as a noteworthy contribution to the field of plant disease detection and 

classification. 

 

  

 
  Figure 5: Comparison of performance with different studies 

• Limitations 

While our project has made significant strides, it is crucial to acknowledge areas 

where  can continue to grow and improve. 

1. Larger dataset: The project acknowledges that the model's performance is 
contingent on the size and diversity of the dataset. For the model to be even 
more effective at generalizing to a wider variety of plant diseases, a bigger 
dataset might be needed.  

2. Additional factors: One aspect worth noting is our model's current focus on 
visual cues in images, leaving out contextual information such as soil conditions 
or weather patterns. Integrating these factors could provide a more 
comprehensive analysis of plant health. 

3. Real-time updates: The project does not explicitly address real-time or frequent 
updates. Changes in the dataset or emerging diseases may necessitate periodic 
model updates for sustained effectiveness. Periodic updates could be necessary 
to keep the model relevant and effective.  



 

  

5. Conclusion 

Our plant disease recognition system has accomplished prominent results using the plant 

village dataset when evaluated. The model has achieved test accuracy of 98.93% which 

shows that the model is highly trained at classifying the different classes of plant diseases 

accurately. We have also provided a comprehensive classification report containing 

evaluation parameters such as positive prediction value, sensitivity, and F-measure of 

different plant disease classes which again declares the efficiency of the model. In this 

paperwork, transfer learning has been employed with EfficientNetB3, integrated image 

preprocessing techniques, applied batch normalization, used ReLU activation and dropout 

layers making sure the model remains efficient and robust in all kinds of situations. In order 

to efficiently train and test the model, we have divided the dataset in strategic ways. Also, 

image augmentation is incorporated to enhance model’s robustness. The data is fed into the 

model by dividing it into batches. These techniques contribute to enhancing the efficacy of 

the model and capability to identify the different plant diseases precisely. 
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