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Abstract 
Globally, breast cancer ranks as the most widespread form of cancer among 
women. Machine Learning and Deep Learning approaches provide more 
effective means for detecting and managing this condition when compared to 
conventional detection methods. Advanced deep learning techniques, 
including LSTM (Long Short-Term Memory), Gate Recurrent Units (GRU), and 
Deep Belief Networks (DBN) have been used for classification of cancer. In this 
paper, the publicly available breast cancer dataset namely Wisconsin dataset 
is employed to investigate the efficacies of these deep learning techniques for 
classification of breast cancer. Further, the network architecture parameters 
are tuned for achieving better results using one of the latest swarm 
intelligence technique namely Sea Horse Optimization. Success rate of 
95.61%, 96.49% and 98.24% respectively have been achieved by the 
proposed SHO-LSTM, SHO-GRU and SHO-DBN models when applied to the 
Wisconsin dataset. 
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1. Introduction 

Breast cancer happens to be the most common cancer type among women globally. 

According to the Global Cancer Observatory (GLOBOCAN 2020) report [1], India ranked 

third worldwide in terms of cancer cases and it has been predicted that the number of 

cases would be increasing drastically in future. Therefore, studies on prediction of breast 

cancer have great importance of prevention and control of this disease. Various studies 

have been carried out to highlight the present scenario, challenges and cancer awareness 

among women in India [2-4]. Leveraging Machine Learning (ML) and Deep Learning (DL) 

techniques for breast cancer classification not only enhances the faster detection at an 

early stage with improved accuracy but also contributes to better patient care by reducing 

the subjectivity of human interpretation of medical information. Authors of this paper 

have earlier studied the impact of reduction of features on breast cancer classification data 

by employing classical and quantum machine learning algorithms using the Wisconsin 

dataset [5]. Further, the effect tuning of hyper-parameters on deep learning models such 

as Long Short-Term Memory (LSTM) networks, Gate Recurrent Units (GRU) networks and 

Deep Belief Networks (DBN) has been investigated in this paper. 

Various deep learning techniques e.g., MLP, RNN, LSTM, GRU and DBN play crucial roles 

in breast cancer detection by capturing context and features using sequential data. LSTM 

and GRU are two variants of Recurrent Neural Networks (RNN) that use gating mechanism 

to selectively update information overtime, with GRU being simpler and faster than LSTM 

[6]. DBNs, a form of artificial neural networks, are adept at unsupervised feature learning. 

They consist of layers of Restricted Boltzmann Machines (RBMs), which are generative 

models capable of learning valuable features from raw input data without supervision [7]. 

In Machine Learning, selection of optimal values of various parameters of a model is 

termed as hyper-parameter tuning. Hyper-parameters are basically the configuration 

settings that control the learning process of a model, such as learning rate, the number of 

neural network layers, model architecture, batch size, activation functions, etc. specific to 

the model employed. Various strategies such as grid search and random search, meta-

heuristic optimization, swarm optimization, Bayesian Optimization, etc. are generally used 

as optimization technique in hyper-parameter tuning. Among these approaches, swarm 

intelligence plays a significant role in achieving optimal solutions and reducing detection 

time for efficient control of disease. Sea-horse optimization (SHO) is a new swarm 

intelligence-based meta-heuristic approach rooted in swarm intelligence, drawing 

inspiration from the captivating behaviors observed in sea horses in their natural 

environment [8]. In this study, the detection of breast cancer using deep learning models 

namely LSTM, GRU and DBN has been attempted and the results of the optimized SHO-

LSTM, SHO-GRU and SHO-DBN are compared when applied to the Wisconsin dataset for 

breast cancer classification. 

The structure of this paper is organized as follows: Section 2 offers a concise literature 

review covering diverse techniques employed for breast cancer detection using ML, DL 

and hyper-parameter optimization. Section 3 delves into details regarding the dataset 

employed in this study. Methodology is elucidated in Section 4, followed by a discussion of 

the results in Section 5. Lastly, conclusions based on the findings are drawn in Section 6. 



2. Related Work 

A brief overview of a few relevant research works carried out in the field for detection 

of breast cancer using various techniques has been presented in this section.  

The authors of [6], proposed a stacked GRU-LSTM-BRNN deep learning model using 

Recurrent Neural Networks (RNNs) to classify patients’ health records as benign or 

malignant for breast cancer diagnosis using the Wisconsin Breast Cancer Dataset. The 

paper compares the three baseline modes: RNN, stacked LSTM and stacked GRU using 

metrics like accuracy, MSE and Cohen-Kappa score. The results reported by the proposed 

model outperform the baseline models on all metrics, achieving 97.34% accuracy, 0.97 F1-

score, 0.03 MSE and 0.94 Cohen-Kappa score. 

In [8], the researchers proposed a swarm intelligence-based meta-heuristic technique 

called the Sea-horse optimizer (SHO). SHO replicates diverse movement patterns and the 

probabilistic predation mechanism observed in sea horses. The performance of SHO has 

been assessed across 23 established functions and the CEC2014 benchmark function. 

Experimental findings showcase SHO as a proficient optimizer capable of effectively 

addressing constraint problems. The authors of [9] introduced a novel Chaotic Sea Horse 

Optimization with DL models (CSHODL-PDC) for classification of pneumonia on CXR 

images.  CSHODL-PDC makes use of NASNet Large model and Fuzzy Deep Neural Network. 

The proposed model achieved the maximum accuracy of 99.22%, 98.96% precision and 

recall of 99.22%.  

The researchers of [10] proposed a Particle Swarm Optimization (PSO) optimized 

Multilayer Perceptron Neural Network (MLP). This model is compared with other machine 

learning models like K-Nearest Neighbors, Decision Tree and Naïve Bayes and shows 

higher accuracy, sensitivity and specificity. In [11], a stacked GRU (SGRU) for Deep 

Transfer Learning is used for breast cancer classification along Chaotic Sparrow Search 

Algorithm (CSSA) for hyper-parameter optimization. The proposed model achieves the 

accuracy of 98.61% compared to existing models when applied on a benchmark image 

dataset. 

The paper [12] aims to overcome the limitations of Back Propagation Learning 

Algorithm for RNNs, such as slow convergence, local minima and long term dependencies 

by using the R programming language to implement proposed models and compare them 

with standard RNN and LSTM. It employs four distinct meta-heuristic algorithms – 

Harmony Search, Ant Lion Optimization, Sine Cosine and Grey Wolf Optimizer – to train 

the LSTM model for classification tasks using real and medical time-series datasets, 

including the Breast Cancer Wisconsin and Epileptic Seizure Recognition datasets. The 

proposed models have been reported to achieve higher accuracy rates than the standard 

ones on both data sets. 

The study outline in [13] presents an arithmetic optimization algorithm combined with 

deep-learning-based histopathological breast cancer classification (AOADL-HBCC), which 

comprises four sequential steps: noise elimination and contrast enhancement, feature 

extraction utilizing AOA and SqueezeNet, feature selection employing DBN, and 

classification utilizing the Adamax Optimizer. The results show that the proposed model 

achieves the highest accuracy of 96.77% on the 100x dataset and 96.4% on 200x dataset, 



outperforming the other models. The study in [7] introduces a hybrid model that 

individually trains Random Forest (RF), MLP, and DBN on the Wisconsin Breast Cancer 

dataset. These models are then integrated using a weighted average method to achieve 

final classification. The proposed model achieves 96.5% accuracy against individual 

accuracies of 93.9%, 91.3% and 97.5% respectively. 

The paper [14] proposes an Enhanced Sea Horse Optimization (ESHO) combined with 

sine-cosine and Tent Choatic Mapping to adaptively tune the ResNet-50 parameters and 

optimize its performance on two agricultural image datasets: jade fungus and corn 

diseases. The ResNet-50 model optimized by ESHO achieves an accuracy of 96.7% for corn 

disease image recognition and 96.4% for jade fungus image recognition. In [15], a novel 

hybrid PSO-SHO algorithm combining the advantages of PSO and SHO is proposed. The 

proposed approach strives to minimize the real power losses and the voltage deviation of 

the power system by optimizing the generator voltages, transformer tap settings and 

reactive power compensators. 

3. Data 

The dataset that is employed is the Wisconsin Breast Cancer Dataset (WBC) [16]. The 

WBC dataset consists of 569 samples of breast cancer patients with a distribution of 357 

benign and 212 malignant cases. 30 characteristic features are quantified from digitized 

images of breast masses. They are numerical measures of attributes like cell nuclei, means, 

standard errors and worst values of texture, perimeter, radius, smoothness, compactness, 

area, concavity, symmetry, concave points and fractal dimension. The classifying labels are 

denoted by 0 (benign) and 1 (malignant) under the attribute ‘diagnosis’. 

 

 
 

Figure 1. Data Visualization 



3.1. Data Pre-Processing 

The data preprocessing involves cleaning, scaling features, and encoding labels for the 

target variables. Subsequently, it is portioned into training and testing sets, with 80% 

allocated for training data and 20% for testing data. Further, reshaping is used of the 

training and testing feature arrays to add an additional dimension representing number of 

channels. LSTMs and GRUs expect input data in a specific 3D shape, typically represented 

as (batch_size, timesteps, and features). For deep learning models, particularly those using 

RNNs, input data should be reshaped to meet the input requirements of the model [17]. 

4. Proposed Method 

In this paper, Gate Recurrent Unit Networks (GRU), Long Short-Term Memory (LSTM) 

and Deep Belief Networks (DBN) have been used to predict breast cancer. Further, we 

have designed these models with optimized parameters for our classification problem. In 

order to achieve this, we have used the Seahorse Optimization algorithm to optimize the 

hyper-parameters and achieve better accuracy. The focus of optimization is on various 

parameters involved in these neural networks, like learning rate, filter numbers, neurons, 

epochs etc. The fitness function optimizes based on the classification accuracy. The figure 

2 demonstrates a flowchart of our proposed method. 

 

 

Figure 2. Proposed Method Flowchart 

The process begins with by selecting a deep learning mode, such as GRU, LSTM, or DBN. 

The input data is preprocessed. Seahorse Optimizer’s (SHO) parameters like epochs, 

population size are initialized along with the Objective function that optimizes based on 

the model’s accuracy. SHO then generates hyper-parameters for the chosen model, and the 

respective model is trained with these hyper-parameters. These steps are repeated till the 

maximum number of iterations is completed. Overtime, SHO produces the highest global 

accuracy, and we subsequently assess the model’s performance using various traditional 

performance metrics based on the parameters associated with this accuracy. The models 

and optimizer’s involved are discussed in detail in the coming sections. 



4.1. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a deep learning model that addresses the 

challenges of learning long-term dependencies [18], which traditional recurrent neural 

networks struggle with. They are specialized neural networks designed to handle 

sequential data and learn long-term dependencies. LSTMs extend the basic RNN cell [19]. 

The basic RNN cell takes input at each step, computes a hidden state based on this input 

and its previous hidden state. The output from the cell helps in training and prediction. 

Instead of this simple cell, an LSTM cell contains three key components: (1) Input Gate: 

This gate controls how the amount of new information enters the cell, (2) Forget Gate: 

Determines which information from the previous hidden state needs to be forgotten, (3) 

Output Gate: Sets the output based on the current input and hidden state. Additional to the 

hidden state (similar to RNN’s hidden state), LSTMs have a cell state which is essentially a 

separate memory component that stores long-term information. Cell state is updated with 

the combined information of input, forget and output gates. 

4.2. Gate Recurrent Units (GRU) 

Gated Recurrent Units (GRUs) stem from RNNs, incorporating a gating mechanism 

initially introduced in [20]. Similar to LSTMs, GRUs employ gating mechanism to 

selectively incorporate or forget certain features, albeit lacking an output gate, thereby 

resulting in fewer parameters compared to LSTMs. GRU also finds use in processing 

sequential data such as text, speech and time-series data. GRU can control the flow of 

information from previous activation state while computing the new activation state [6]. 

Compared to LSTM, GRU has a superior convergence rate as it has lesser number of 

parameters and can outperform LSTM models [18]. The GRU comprises two gating 

mechanism: the reset gate and the update gate. The reset gate regulates the extent to 

which the previous hidden state is forgotten, while the update gate determines the 

amount of new input required to update the hidden state. 

4.3. Deep Belief Networks (DBN) 

Deep Belief Network (DBN) is a generative graphical model, composed of multiple 

layers of latent variables or more popularly known as “hidden units”. They have 

connections between the layers but no between units within each layer [19]. Consider 

visualizing these systems as intricate, multi-layer networks with each layer processing 

information from the preceding one, progressively constructing a sophisticated 

comprehension of the entire dataset. DBNs are built by layering simple, unsupervised 

networks such as Restricted Boltzmann Machines (RBMs) or auto encoders. The 

configuration of the output layer in a DBN is contingent upon the specific task at hand. For 

instance, in a classification task involving k classes, the DBN would utilize k SoftMax units, 

each dedicated to one class [7]. The hidden layer of each sub-network serves as the visible 

layer for the next one in sequence. The training process involves contrastive divergence 

applied layer by layer, from the lowest visible layer, which serves as the training set [21]. 



4.4. Hyper-parameter Optimization of Deep Learning Models 

Hyper-parameters are external configuration variables set by programmers to operate 

model training. They are parameters that define the details of learning process. Examples 

of hyper-parameter optimization encompass various instances such as learning rate 

(which regulates the magnitude of steps taken during gradient descent optimization), 

batch size (which dictates the quantity of training examples utilized in each iteration of 

gradient descent), the number of hidden layers, activation functions (like ReLU, sigmoid, 

tanh), dropout rate (indicating the fraction of neurons within dense layers, among others. 

Hyper-parameter optimization (HPO) is the process of selecting optimal values for a 

machine/deep learning model’s hyper-parameters. HPO can be seen as the last step of 

model design and the initial step of neural network training [22]. It finds a tuple of hyper-

parameters that gives an optimal model with enhanced accuracy or prediction. Over the 

years many techniques have been employed for hyper-parameter optimization such as 

Grid Search, Random Search, Bayesian Optimization, Genetic Algorithms and even swarm 

based techniques like Particle Swarm Optimization and Ant Colony Optimization [23]. For 

the optimization of DL models proposed in this study we have taken the hyper-parameters 

as represented in table 1, along with the new Seahorse Optimization Algorithm. 

Table 1. Hyper-parameters optimized using SHO 

Model Hyper-parameters 

LSTM Filters, neurons, batch-size, epochs 

GRU Filters, neurons, batch-size, epochs 

DBN Hidden layers, learning rate, epochs 

 

4.5. Seahorse Optimization Algorithm 

Introduced in 2022, the Seahorse Optimization (SHO) algorithm represents a novel 

swarm-based meta-heuristic optimization approach [8]. SHO replicates the natural 

movement, hunting and breeding patterns observed in seahorses. Seahorse movement 

behavior encompasses two scenarios: (1) Spiral Movement of the hippocampus in 

conjunction with the ocean vortex and (2) Brownian motion of the hippocampus amidst 

the waves. Further, predatory behavior consists of the following two situations: success 

and failure. The breeding behavior of seahorse is described by random mating and 

offspring inherit traits of both parents. An equal mix of male and female seahorses is taken 

in the population. To enhance the balance of the SHO algorithm, global strategies are 

applied to motion behavior and local strategies are applied to predation behavior.  

The following equations (1) and (2) denote the spiral and Brownian movement 

behaviors of seahorses respectively. SHO utilizes Lévy flight to emulate the spiral 

movement observed in seahorses, which aids in preventing SHO from becoming trapped 

in local optima. In the spiral movement, the three dimensional vector of coordinates 

(x, y, z) is denoted by x, y and z. Regarding the Brownian equationl denotes the constant 

coefficient and βt represents the coefficient for the motion random walk.  

 



𝑋𝑛𝑒𝑤
𝑖 (𝑡 + 1) =  𝑋𝑖(𝑡) + 𝐿𝑒𝑣𝑦(λ)((𝑋𝑒𝑙𝑖𝑡𝑒(𝑡) − 𝑋𝑖(𝑡) × 𝑥 × 𝑦 × 𝑧 + 𝑋𝑒𝑙𝑖𝑡𝑒(𝑡)) (1) 

 

Xnew
1 (t + 1) =  Xi(t) + rand × l × β

t
× (Xi(t) − β

t
× Xelite) (2) 

 

Equation (3) is the mathematical representation of predation, withr2representing a 

random number generated by SHO to distinguish between success and failure scenarios. If 

r2exceeds 0.1, the predation by the seahorse is deemed successful; otherwise, it results in 

failure. α denotes the step size of the seahorse’s movement in pursuit of prey.  
 

𝑋𝑛𝑒𝑤
2 (𝑡 + 1) =  𝑓(𝑥) = {

𝛼 × (𝑋𝑒𝑙𝑖𝑡𝑒 − 𝑟𝑎𝑛𝑑 × 𝑋𝑛𝑒𝑤
1 (𝑡)) + (1 − 𝛼) × 𝑋𝑒𝑙𝑖𝑡𝑒 , 𝑟2 > 0.1

(1 − 𝛼) × (𝑋𝑛𝑒𝑤
1 (𝑡) − 𝑟𝑎𝑛𝑑 × 𝑋𝑒𝑙𝑖𝑡𝑒) + 𝛼 × 𝑋𝑛𝑒𝑤

1 (𝑡), 𝑟2 ≤ 0.1
  (3) 

 
Equation (4) and (5) denote the mathematical equations used to calculate parent 

seahorses. Xsort
2  is fitness values of the population in ascending order. (6) denotes the 

mathematical equation representing an offspring. r3 is a random number between [0, 1]. 

 
𝑓𝑎𝑡ℎ𝑒𝑟 =   𝑋𝑠𝑜𝑟𝑡

2 (1: 𝑝𝑜𝑝 2⁄ ) (4) 

 

𝑚𝑜𝑡ℎ𝑒𝑟 =  𝑋𝑠𝑜𝑟𝑡
2 (𝑝𝑜𝑝 2 + 1: 𝑝𝑜𝑝⁄ ) (5) 

 

𝑋𝑖
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

= 𝑟3𝑋𝑖
𝑓𝑎𝑡ℎ𝑒𝑟

+ (1 − 𝑟3)𝑋𝑖
𝑚𝑜𝑡ℎ𝑒𝑟  (6) 

 

The algorithm starts with a randomly generated population of seahorses, with each 
seahorse representing a potential solution. It uses a normal distribution to decide among 
the two movement behaviors of seahorses. It mimics the high success rate of seahorses in 
hunting to enhance exploitation capabilities. It draws inspiration from the breeding 
behavior of seahorses to generate new solutions, hoping to improve upon the current best 
solution. If the hunt is successful, the seahorse (problem) moves towards the prey (best 
solution) otherwise search space exploitation continues. The algorithm followed by SHO is 
explained in the following flowchart: 

 

 

Figure 2. Flowchart illustrating the working of SHO algorithm 



The SHO algorithm maintains a balance between exploration (diversification) and 

exploitation (intensification) to mitigate the risk of getting stuck in local optima and to 

efficiently locate the global optima. This algorithm has been applied to various engineering 

design problems, and shows promising results.  

5. Results 

Various Performance metrics namely accuracy, F1-score, recall, precision and 

specificity have been used for comparison of results between standard LSTM, GRU and 

DBN and their SHO optimized counterparts and these parameters are given in the 

following equations (7)-(11). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (8) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (9) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (11) 

 

Accuracy is the ratio of correctly classified instances to the aggregate instances. TP 
(True Positive), TN (True Negative), FP (False Positive) and FN (False Negative) are the 
number of correctly and incorrectly classified positive and negative cases. Sensitivity or 
recall is the fraction of positive cases that the classifier correctly identifies, whereas 
specificity is the fraction of negative cases that a classifier correctly identifies. Precision is 
the proportion of true positives out of all predicted positives. F1-score is a measure of 
performance that combines precision and recall as it is the harmonic mean of the two 
metrics.   

 

The results obtained from DL models with and without SHO optimization are presented 
in the following Table 2 and Table 3 respectively. 
 

Table 2. Results obtained without Optimization on DL Models 

Model Accuracy F1-Score Recall Precision Specificity 

LSTM 92.10 91.08 97.87 85.18 88.05 

GRU 93.85 92.13 87.23 97.61 98.50 

DBN 92.11 90.11 87.23 93.18 95.52 

 

 



Table 1. Results obtained with Seahorse Hyper-parameter Optimization 

Model Accuracy F1-Score Recall Precision Specificity 

SHO-LSTM 95.61 94.73 95.74 93.75 95.52 

SHO-GRU 96.49 95.91 100.00 92.15 94.02 

SHO-DBN 98.25 97.87 97.87 97.87 98.51 

 

Before optimization, the LSTM and GRU models achieved accuracies of 92.10% and 
93.85%, respectively, while the DBN model achieved an accuracy of 92.11%. However 
after the hyper-parameter optimization with SHO, the performances of all models 
significantly improved. The SHO-LSTM achieved an accuracy of 95.61%, SHO-GRU 
demonstrated an accuracy of 96.49% and SHO-DBN acquired an accuracy of 98.25%.  

Furthermore, the SHO-DBN model consistently outperformed the other models across 
all metrics, demonstrating its effectiveness in breast cancer detection. Notably, the SHO-
GRU model achieved perfect recall (100%), indicating its ability to correctly identify all 
positive cases of breast cancer. GRU demonstrated better performance than LSTM across 
all metrics with or without optimization, indicating its greater efficiency due to lesser 
number of model parameters. The graphical comparisons of performance metrics for the 
un-optimized and optimized DL models are presented in Figure 4(a), 4(b), and 4(c). 
 

 

Figure 3. Performance metrics (a) LSTM, (b) GRU and (c) DBN 

6. Conclusion 

Machine learning and deep learning techniques offer more efficient ways to detect and 

manage breast cancer compared to traditional methods. Advanced DL models, namely 

LSTM, GRU and DBN have been successfully applied to Wisconsin dataset for breast cancer 

classification. Additionally, network architecture parameters are fine-tuned using the 

state-of-the-art swarm intelligence technique known as Sea Horse Optimization. In this 

study, we explored the effectiveness of these deep learning techniques for achieving 

improved performances when applied to two different breast cancer datasets. Specifically, 

the SHO-DBN model emerges as the most effective model for this task, with the highest 

accuracy, precision, specificity and F1-Score. These findings underscore the potential of 

optimized deep learning models as valuable tools in the early detection and management 

of breast cancer. 
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