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Abstract
In this study, we investigate the use of mid-sized and open-source large language models to enhance the
extraction of geographic information from texts, focusing on toponym resolution. Our approach involves
fine-tuning Llama2 (7B) to accurately derive the unambiguous references of toponyms within textual
contexts and subsequently assign geo-coordinates using geocoders. The method is evaluated on two
challenging datasets featuring 28,342 global toponyms. The findings demonstrate notable performance
improvements compared to existing state-of-the-art methods while maintaining computational efficiency.
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1. Introduction

Unstructured texts such as news articles, historical documents, and social media posts are rich
sources of geographic information. The extraction of this information, known as geoparsing,
is essential in areas like spatial humanities [1], geographic search [2], and disaster manage-
ment [3]. Geoparsing involves two key steps: toponym recognition (identifying toponyms
in texts) and toponym resolution (inferring the geo-coordinates of these toponyms). While
toponym recognition has advanced notably [4][5][6], toponym resolution still faces challenges
in disambiguation accuracy [7].

In the rapidly evolving field of natural language processing, large language models (LLMs)
such as GPT4 have brought significant changes, also impacting research in geoparsing [8][9].
Yet, existing studies using LLMs for geoparsing focus primarily on toponym recognition. Our
research, in contrast, targets the more complex sub-task of geoparsing: toponym resolution.
Specifically, we fine-tuned Llama2 (7B) [10], an open-source and powerful model in language
comprehension and inference, to estimate toponyms’ unambiguous references, followed by
their conversion to geographical coordinates using free geocoders. Our approach demonstrates
greater efficacy than seveal leading methods across two challenging datasets. Besides, the
approach is computationally efficient, requiring about 14 GB of memory for operation on a
standard GPU.
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2. Proposed approach

Our approach, depicted in Figure 1, involves two phases: training (fine-tuning) and geocoding.
Initially, we fine-tune Llama2 using Low-Rank Adaptation (LoRA) [11], a technique that op-
timizes GPU resource usage, to predict the unambiguous references (e.g., city, state, county)
of toponyms based on their context. Our training dataset is the LGL1 (Local-Global Lexicon)
corpus, developed by Lieberman et al. [12], comprising 588 human-annotated news articles
with 5088 toponyms from 78 local newspapers. In the geocoding phase, the fine-tuned model
first deduces the unambiguous reference of toponyms from their contextual cues. It is then
fed into a sequence of free geocoders—primarily GeoNames2, followed by Nominatim3 and
ArcGIS4. This sequential querying strategy is designed to consult the next geocoder if one fails,
enhancing the reliability and precision of the geocoding process.
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Figure 1: Workflow of the proposed approach.

3. Experiments and evaluation

3.1. Experimental setting

For LoRA, the attention dimension, the scaling parameter (𝑎𝑙𝑝ℎ𝑎), and the dropout rate are
set to 8, 16, and 0.1, respectively. We employed the AdamW optimizer for fine-tuning with a
learning rate of 0.003, over 300 epochs, and a batch size of 128. This fine-tuning process was
executed on an NVIDIA Tesla V100 GPU, utilizing about 14 GB of GPU memory.

For testing, we used two public datasets, detailed in Table 1. The geographical distribution of
the toponyms in the test dataset is shown in Figure 2. Our evaluation employed two metrics
[13]: Accuracy@161km for geocoding precision within 161 km (100 miles), and Mean Error (ME)
for average distance error.

1https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/lgl.xml
2https://www.geonames.org/
3https://nominatim.org/
4https://developers.arcgis.com/documentation/mapping-apis-and-services/geocoding/
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Figure 2: Geographical spread of 28,342 toponyms from the two datasets.

We compared our approach with 10 representative methods. These include a Voting system
[7], CamCoder [14], CHF [15], Clavin5, Blink [16], GENRE [17], Bootleg [18], and the three
standard geocoders: Nominatim, GeoNames, and ArcGIS. Among these, CamCoder is a deep
learning-based geoparser; CHF and Clavin are rule-based; and Blink, GENRE, and Bootleg
are deep learning-based entity linkers. The Voting system integrates seven methods, such as
GENRE, Blink, and CamCoder.

Table 1
Summary of the two test datasets. KB is the abbreviation of Knowledge Base.

Name Text/Tweet Count Toponym Count Type KB/Gazetteer
GeoCorpora[19] 6,648 3,100 Tweet GeoNames
WikToR[20] 5,000 25,242 Wiki article Wikipedia

3.2. Experimental results

The outcomes of our evaluation are presented in Table 2. The results show that our approach
outperforms others. On average, it exceeds the performance of the previously best method, the
voting system, by 7% inAccuracy@161km and 61% inME. Compared to the top individual method,
GENRE, our approach demonstrates more substantial improvements of 13% in Accuracy@161km
and 83% in ME. These findings underscore the effectiveness of our proposed approach.

4. Conclusion

This research presents an innovative method for toponym resolution utilizing mid-sized, open-
source large language models, specifically Llama2 (7B). Its efficiency is validated through testing

5https://github.com/Novetta/CLAVIN
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Table 2
Evaluation results on GeoCorpora and WikToR. Bold numbers indicate the best scores and the second
best scores are underlined.

GeoCorpora WikToR
Accuracy@161km ME (km) Accuracy@161km ME (km)

CamCoder 0.72 3506 0.67 501
CHF 0.75 2985 0.44 1264
Nominatim 0.74 1731 0.21 3894
GeoNames 0.71 3683 0.22 4179
ArcGIS 0.77 1224 0.24 3884
Clavin 0.77 2777 0.22 4171
Blink 0.75 1577 0.68 1217
GENRE 0.79 684 0.88 1006
Bootleg 0.69 4425 0.7 1483
Voting 0.84 460 0.91 273
Llama2 (7B) 0.9 247 0.98 37

on two public datasets, establishing a new standard in the field. Furthermore, it maintains
significant computational efficiency with a reasonable GPU memory requirement of 14 GB.
Future research will aim to investigate a broader range of open-source LLMs for this task and
conduct extensive comparative analyses with existing methods across a more diverse array of
test datasets. Furthermore, efforts will be directed towards augmenting the models’ geographical
knowledge during the inference process by incorporating a toponym’ candidates retrieved from
gazetteers, aiming to enhance accuracy and performance further.

Declaration of generative AI in manuscript preparation

The authors employed ChatGPT to polish the language. Following this, the manuscript under-
went a thorough review and necessary modifications by the authors, who assume complete
responsibility for the final content.
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