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Abstract
We report our initial findings from an examination of potential systematic bias in Large Language Models’
(LLM) spatial reasoning capabilities. We devised a series of questions to probe the spatial reasoning
abilities of four LLMs: GPT-3.5, GPT-4, Gemini, and Llama-2, targeting four specific biases rooted in
human spatial perception: hierarchical, proximity and directional biases. The questions encompassed
scenarios challenging the models’ spatial reasoning, and each question was posed 10 times independently
to gauge the consistency of the LLMs’ responses. The models demonstrated a strong understanding of
straightforward geographical relationships, achieving 87% accuracy in questions that did not challenge
biases in spatial reasoning. However, when faced with questions highlighting these biases, the models’
accuracy dropped to 24%. We discuss the design of a large-scale experiment aimed at examining spatial
cognition biases in large language models and identifying potential mitigation strategies.
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1. Introduction

Recent studies primarily view Large Language Models (LLMs) in geography as tools linking
natural language to geographic information systems [1]. However, Roberts et al. [2] showcased
GPT-4’s [3] inherent ability to perform spatial reasoning tasks. They highlighted tasks that
extend beyond mere recall of factual information, namely GPT-4’s proficiency in calculating the
final destinations of routes based on initial locations, modes of transport, directions, and travel
durations, without reliance on external processing engines. These capabilities open up practical
applications such as creating personalized travel itineraries. Identifying the weaknesses of
LLMs in spatial tasks may assist in guiding their development in this direction.

We investigate the possibility that biases in human spatial reasoning may manifest in LLMs,
focusing on four well-studied ones: (a) Hierarchical bias refers to the cognitive tendency to
infer the direction between two points based on the dominant geographical orientation of their
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larger categorical groups (such as states or regions), leading to inaccuracies when exceptions
to these general orientations exist [4]. (b) People often underestimate distances within the
same categorical group, perceiving them as shorter than distances between different groups,
even when the distances across groups are actually shorter [5]. (c) Rotation bias refers to
the tendency to adjust the mental representation of geographical elements, aligning them
more closely with conventional cardinal directions than their actual orientations [6]. This
simplification leads to misconceptions about the true positions of locations, as individuals
mentally ’rotate’ geographical layouts to fit a more straightforward, north-south/east-west
alignment, irrespective of their true, more complex orientations. (d) Alignment bias refers to
the cognitive inclination to overestimate the alignment of geographically grouped locations,
leading to skewed perceptions of their actual latitudinal or longitudinal relationships [7].

LLMs rely on associative learning and contextual data processing to understand and generate
human-like text [8]. These models may manifest systematic biases in spatial reasoning due
to their training data and learning mechanisms. While human biases in spatial reasoning are
rooted in mental mapping [7], which LLMs do not possess, we hypothesize that they may exhibit
similar biases, based on three considerations. First, LLMs learn from textual data, and biases
in human spatial reasoning can be present in textual descriptions of geography. Second, as
humans generalize and simplify in their cognitive maps, leading to biases, they also do so in
their textual descriptions of locations. LLMs, learning from such descriptions, could inherit
and perpetuate these biases in their spatial reasoning abilities. For example, the US is often
described as south of Canada, despite some areas within the US being located to the north.
Third, LLMs might prioritize conceptual associations, such as assuming a ’west coast’ city to be
the westernmost point without accounting for the curvature of the coastline.

To investigate hierarchical bias in large language models (LLMs), we initially conducted a
study with ten questions, five challenging questions where bias is likely to be exhibited based
on scenarios where humans typically struggle, and five control questions to serve as a baseline
for comparison. This study included four models: GPT-3.5 [3], GPT-4, LLaMA 2 [9], and Gemini
1.0 Pro [10], among which GPT-4 demonstrated superior performance. Based on this outcome,
we narrowed our focus to GPT-4 for an analysis of the other types of bias. For each type, we
formulated four questions, maintaining a balance between challenging and control scenarios.
Each question in our study was posed ten times, employing a ’zero-shot’ mode to reset the model
after every question, ensuring that responses remained uninfluenced by previous interactions.
The questions were directly drawn from or inspired by well-known experiments in cognitive
psychology literature, as referenced below. This paper extends the work of Fulman et al. [11],
who provided evidence of hierarchical bias in LLMs.

2. Results

The outcomes for hierarchical bias (a) are illustrated in Table 1. The models were instructed to
determine intercardinal directions between cities, using the prompt: ’What is the intercardinal
direction from [City A] to [City B]?’ For example, all models consistently (0/10) provided
inaccurate directions between Portland and Toronto. We attribute the error to the general
northward alignment of Canada relative to the United States (Figure 1a). This observation is



in line with the findings of Stevens and Coupe [4], who observed a similar misperception in
humans, presumably influenced by the overarching southward position of the United States
relative to Canada, leading most to incorrectly assume Toronto is north of Portland. Conversely,
when assessing the relationship between Dallas and San Antonio, both in Texas, the models
consistently provided the correct answer (10/10).

GPT-4 demonstrates the highest accuracy in this assessment, achieving a 75% success rate,
followed by Gemini with 55%, GPT-3.5 with 53%, and LLaMA-2 at 47%. In scenarios designed
to highlight hierarchical bias, GPT-4 distinctly outperforms its counterparts, registering a 50%
accuracy rate. In comparison, Gemini scores 34%, GPT-3.5 26%, and LLaMA-2 only 10%. How-
ever, when evaluating tasks absent of suspected hierarchical bias, all models exhibit improved
performance, with accuracy rates exceeding 75%. The remainder of this study will focus on
GPT-4 to explore further biases.

Table 1
Overview of Hierarchical Bias and Model Performance Evaluation

Bias
Type Cities GPT4 GPT3.5 Gemini Llama

Correct
Answer

Susp.
Bias

Bias
Ratio

H
ie
ra
rc
hi
ca
l

Portland OR to Toronto CAN 0 0 0 0 Southeast

Yes 30%
Tijuana MEX to San Antonio TX 3 5 0 0 Southeast

Wilmington NC to Philadelphia PA 10 0 10 5 Northeast
San Diego CA to Reno NV 2 8 0 0 Northwest

Memphis TN to Milwaukee WI 10 0 7 0 Northeast

Santo Domingo DOM to Miami FL 10 10 0 10 Northwest

No 85%
Minneapolis MN to Chicago IL 10 10 9 10 Southeast
Dallas TX to San Antonio TX 10 10 10 10 Southwest

Havana CUB to Philadelphia PA 10 0 10 8 Northeast
San Antonio TX to Houston TX 10 10 9 4 Northeast

Model Performance 75% 53% 55% 47%

The outcomes for biases (b) through (d) are presented in Table 2. To demonstrate proximity
bias (b), GPT-4 was tasked with evaluating the relative distances between cities, employing the
query: ’Which is closer to [City X]: [City A] or [City B]?’ For instance, despite New Haven,
Connecticut being closer to Philadelphia, Pennsylvania by both road distance (∼250km) and
great circle measurements, the model consistently determined that Pittsburgh, Pennsylvania
is the closer city (∼450km) (0/10) (Figure 1b). However, when New Haven is replaced with
Johnstown, which is ∼390km from Philadelphia in Pennsylvania, the model consistently gives
the correct answer (10/10). This possibly reflects a bias of perceiving distances within the state
as shorter than across states.

In examining the rotation bias (c), the model was asked: ’Which city is further west, [City
A] or [City B]?’ For instance, when inquiring which city is further west between Wilmington,
North Carolina and Jacksonville, North Carolina, the model mistakenly (2/10) pointed to the
latter, possibly reflecting a simplification of the US east coast curvature (Figure 1c). However, it
correctly identified the relative westward position when comparing Wilmington to Morehead
City, North Carolina, both being coastal cities, possibly suggesting that the presence of a
common geographical feature, forces more precise comparisons (10/10).



Table 2
Overview of question types and model performance evaluation

Bias
Type Cities GPT4

Correct
Answer

Susp.
Bias

Bias
Ratio

Pr
ox
im

it
y Philadelphia PA: Pittsburgh PA or New Haven CN 0 New Haven

Yes 0
Dallas TX: Houston TX or Oklahoma City OK 0 Oklahoma City

Dallas TX: Houston TX or Austin TX 10 Austin
No 100%

Philadelphia PA: Johnstown PA or Pittsburgh PA 10 Johnstown

R
ot
at
io
n San Diego CA or Fresno CA 0 Fresno

Yes 10%
Wilmington NC or Jacksonville NC 2 Wilmington

Wilmington NC or Morehead City NC 10 Wilmington
No 75%

Los Angeles CA or San Francisco CA 5 San Francisco

A
lig

nm
en
t Monaco MCO to Chicago IL 0 Southwest

Yes 0
Rome ITA to Philadelphia PA 0 Southwest

Lisbon PRT to New York City NY 10 Northwest
No 100%

Madrid ESP to Boston MA 10 Northwest

Alignment bias (d) was examined through the query: ’What are the intercardinal directions
from [City A] to [City B]?’ For example, the model inaccurately determined the direction
between Monaco, situated in the southern part of Europe, and Chicago, located in the northern
United States (0/10). This error may reflect the common misconception that North America and
Europe align on the same east-west axis, while in reality, Europe is predominantly north of the
United States [7] (Figure 1d). However, it correctly ascertained the direction from Lisbon to
New York City, which is straightforward because Lisbon is indeed to the south of New York
City (10/10).

3. Discussion

We report our initial findings from an examination of potential systematic bias in the spatial
reasoning capabilities of GPT-3.5, GPT-4, Gemini, and Llama-2. The models show distinct
patterns in their performance: They achieve 87% accuracy in questions that do not challenge
biases in spatial reasoning, indicating a strong understanding of straightforward geographical
relationships. On the other hand, they only achieved a 24% accuracy rate in the questions which
highlight these biases.

Our current study draws from the psychology experiments that served as our inspiration;
however, it does not offer a statistically valid assessment of how biases in spatial perception
impact LLMs. To address this limitation, our future exploration will focus on the proximity
bias, denoted as (b), which relates to the tendency to underestimate distances within categories
while overestimating distances between them. This analysis will involve querying the models
with hundreds of relevant cities and examining their interrelationships.

While our approach may allow us to verify the existence of biases in LLM’s spatial reasoning
skills, we may not be able to pinpoint the source of these biases – whether they originate from



Figure 1: Illustration of cities demonstrating the four types of bias: (a) hierarchical, (b) proximity, (c)
rotation, and (d) alignment

learned human errors, generalized geographical input data, or the models’ inherent tendencies
towards conceptual associations. Nevertheless, we may be able to mitigate these issues. One
potential strategy involves training LLMs with datasets explicitly detailing spatial relationships
between various locations. Utilizing Natural Language Geographic Data for this purpose could
usher in a deliberate development of spatial reasoning skills within these models, enabling them
to more accurately comprehend and process geographic relationships. In the next phase of our
research, we plan to explore methods for fine-tuning an open-source LLM using such spatially
explicit datasets, evaluating its ability to discern intercardinal directions and ultimately enhance
its spatial reasoning capabilities.
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