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Abstract
Detecting and delineating brain tumors from MRI images using artificial intelligence presents a complex challenge in medical
AI. Recent progress has seen a variety of techniques employed to assist medical professionals in this task. Despite the
effectiveness of machine learning algorithms in segmenting tumors, their lack of transparency in decision-making hinders
trust and validation. In our project, we constructed an interpretable U-Net Model specifically tailored for brain tumor
segmentation, leveraging both the Gradient-weighted Class Activation Mapping (Grad-CAM) Algorithm and the SHapley
Additive exPlanations (SHAP) library. We relied on the BraTS2020 benchmark dataset for training and evaluation purposes.
The U-Net model we employed yielded promising results. We then utilized Grad-CAM to visualize the crucial features
attended to by the model within an image. Additionally, we enhanced interpretability by utilizing the SHAP library to
elucidate the predictions made by various models (including Random Forest, KNN, SVC, and MLP) utilized for predicting
patient survival days.
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1. Introduction
Brain tumors represent a significant challenge in health-
care, affecting millions of individuals worldwide with
their life-threatening implications. Accurate delineation
of these tumors is paramount for effective treatment
strategies and ongoing monitoring of disease progres-
sion. Over the past few years, deep learning techniques
have emerged as promising tools for brain tumor segmen-
tation, with the U-Net architecture gaining popularity
for its ability to capture intricate details within medical
images. However, the inherent opacity of deep learning
models presents a hurdle, as it limits their interpretabil-
ity and makes it difficult for clinicians to comprehend
the rationale behind their decisions. Explainable Arti-
ficial Intelligence (XAI) has garnered increasing impor-
tance, particularly in the medical domain, where precise
tumor segmentation plays a crucial role. Tumor seg-
mentation involves the identification and localization of
tumors within medical imaging data, such as MRI scans,
CT scans, or X-rays. This process is indispensable in can-
cer diagnosis, treatment planning, and progress tracking.
XAI holds significance in tumor segmentation for several
reasons. Firstly, AI models often operate as "black boxes,"
meaning their decision-making processes are not readily
transparent [1].

In the context of medical imaging, the lack of trans-
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parency inherent in deep learning models poses a sig-
nificant challenge. This opacity is problematic as doc-
tors need to understand how the model arrives at its
conclusions to make informed decisions about patient
care[2, 3]. Additionally, explainable artificial intelligence
(XAI) plays a crucial role in mitigating biases within AI
models. Biases may arise if the model is trained on data
that doesn’t adequately represent the population it will
serve, leading to incorrect or skewed predictions. XAI
can help identify and rectify these biases, thereby en-
hancing the model’s reliability. Moreover, XAI fosters
trust in AI systems by elucidating the decision-making
process [4], thereby increasing the willingness of doctors
and patients to rely on these models [5, 6].

In our project, we utilize the Gradient-weighted Class
Activation Mapping (Grad-CAM) technique to imbue our
segmentation UNET model with explainability. Grad-
CAM generates heatmaps highlighting the crucial re-
gions of input images that the model focuses on when
making predictions. By visualizing these heatmaps, we
gain insights into the features guiding the model’s deci-
sions, facilitating better understanding of its behavior.

Furthermore, our project incorporates the SHAP
(SHapley Additive exPlanations) approach, particularly
relevant for tasks like predicting patient survival based
on medical imaging data in datasets like BRATS. SHAP
values elucidate the contributions of individual features
to the model’s output, shedding light on the mecha-
nisms underlying predictions. This transparency is vital
in the medical context, where accurate predictions pro-
foundly impact patient outcomes. Our system is trained
on BRATS2020 data using a standard UNET model for
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segmentation, augmented by Grad-CAM for heatmap
visualization and SHAP for survival prediction analysis.
The segmentation accuracy stands at an impressive 99
percent, with specific dice scores for necrotic, edema, and
enhancing regions. This comprehensive approach not
only yields accurate predictions but also enhances inter-
pretability, trust, and confidence in AI-assisted medical
decision-making.

2. Related Works
Brain tumors are among the most perilous types of tu-
mors globally, with gliomas emerging as the predominant
primary brain tumors. Gliomas stem from the aberrant
proliferation of glial cells in the brain and spinal cord,
exhibiting varying degrees of malignancy and histologi-
cal classifications. Individuals diagnosed with glioblas-
toma, the most aggressive form of glioma, typically face
a survival prognosis of fewer than 14 months on aver-
age. Medical professionals frequently utilize Magnetic
Resonance Imaging (MRI), a non-invasive technique, to
diagnose brain tumors because of its capability to gen-
erate a wide variety of tissue contrasts in each imaging
mode [7]. However, analyzing and segmenting structural
MRI images of brain tumors is a challenging and time-
consuming task that typically requires the expertise of
professional neuroradiologists. Therefore, an automated
and dependable brain tumor segmentation method would
greatly facilitate the diagnosis and treatment of brain tu-
mors.

[8] An alternative approach is suggested to focus solely
on a small region of the image rather than processing the
entire image, reducing computational time and address-
ing overfitting issues in a Cascade Deep Learning model.
Additionally, a Cascade Convolutional Neural Network
(C-ConvNet/C-CNN) is introduced, which extracts both
local and global features through separate pathways.
Moreover, to enhance the accuracy of brain tumor seg-
mentation beyond existing models, a new Distance-Wise
Attention (DWA) mechanism is employed.

In another work [9], a novel design relying on a 3D
U-Net model was developed, incorporating numerous
skip connections alongside cost-effective pre-trained 3D
MobileNetV2 blocks and attention modules. These pre-
trained MobileNetV2 blocks aid the architecture by offer-
ing fewer parameters, ensuring a manageable model size
within our computational capacity, and facilitating faster
convergence. Furthermore, additional skip connections
were introduced between the encoder and decoder blocks
to facilitate the transfer of extracted features, while at-
tention modules were employed to filter out irrelevant
features transmitted through the skip connections.

Further existing works on interpretable CNNs were
examined during the execution of our project, One of

the most interesting ones was [10]. The author imple-
mented a prototypical part network (ProtoPNet), which
dissects images by identifying prototypical parts and
amalgamating evidence from these prototypes to derive
a final classification. The operational principle of this
ProtoPNet involves comparing the latent features of f(x)
with the learned prototypes. Specifically, for each class k,
the network seeks evidence for x belonging to class k by
assessing its latent patch representations against every
learned prototype p(j) associated with class k.

In another study focusing on interpretable machine
learning, researchers introduced a method for "Classifi-
cation of Mass Lesions in Digital Mammography" [11].
They employed a pixel-wise annotation technique to pre-
cisely segment affected lesions, and the outcomes were
subsequently depicted using GradCam and GradCam++
heatmaps. The findings demonstrated that pixel-wise
annotation improved the segmentation and localization
of the affected area, with the generated heatmaps main-
taining focus on the impacted part of the skin, rather
than encompassing all image pixels.

The concept of utilizing GradCam for visual interpre-
tation and explanation of model results originated from a
related study, which utilized GradCam for visual explana-
tions across a wide range of CNN-based models. This ap-
proach combines Grad-CAM with fine-grained visualiza-
tions to produce high-resolution, class-discriminative vi-
sualizations. It was applied to various off-the-shelf image
classification, captioning, and visual question-answering
(VQA) models, including those based on ResNet architec-
tures [12].

The domain of explainable Artificial Intelligence (xAI)
is relatively new but evolving rapidly, with the introduc-
tion of numerous libraries designed to elucidate the out-
puts of opaque deep learning models. One such notable
library is the SHAP (SHapley Additive exPlanations) li-
brary. SHAP assigns an importance value to each feature
for a specific prediction. In their work [13], SHAP was
applied to the brats dataset. For each input feature, SHAP
calculates the importance value, offering various calcu-
lation methods, including two model-agnostic methods
applicable regardless of the trained network type, and
four specific model methods, one of which is DeepEx-
plainer.

In this study, DeepExplainer was utilized to determine
the importance values for a given combination of 3D MRI
voxel and age values. DeepExplainer efficiently approxi-
mates SHAP values for a deep neural network model by
recursively propagating DeepLIFT multipliers, thereby
deriving an effective linearization technique from the
SHAP values. By inputting an example data point into
DeepExplainer, importance values for every pixel in the
3D voxel, as well as for the age value, are determined.
These important values can then be visually represented
by integrating them into a background image, which
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Figure 1: These images show a set of brain scans from the dataset and the corresponding mask. From left to right: Flair, T1,
T1ce, the T2, and the mask that emphasizes important regions.

represents the input.

3. Dataset
In this project, we utilized the BRATS2020 Dataset, a
commonly employed medical imaging dataset utilized for
both brain tumor segmentation and classification tasks.
It represents an enhanced iteration of the BRATS2015
dataset and is made available by the Multimodal Brain
Tumor Segmentation Challenge (BRATS).

The dataset comprises MRI scans of the brain obtained
from patients diagnosed with diverse types of brain tu-
mors, including gliomas, meningiomas, and pituitary
adenomas. These scans encompass four distinct modali-
ties: T1-weighted (T1), T1-weighted contrast-enhanced
(T1ce), T2-weighted (T2), and fluid-attenuated inversion
recovery (FLAIR) images 1. Accompanying each MRI
scan is a ground truth segmentation map delineating the
tumor’s location and extent. Containing a total of 369
MRI scans, the BRATS2020 dataset designates 335 scans
for training and 34 for testing. These scans were sourced
from various medical institutions and meticulously an-
notated by multiple experts. Furthermore, the dataset
provides additional patient-related information such as
age, gender, and tumor subtype. Widely recognized as
a benchmark dataset, BRATS2020 serves as a standard
for assessing the efficacy of algorithms in brain tumor
segmentation and classification. Researchers leverage
this dataset to innovate and validate new approaches
for automating these processes, aiming to enhance the
accuracy and efficiency of diagnosis and treatment for
individuals afflicted with brain tumors.

3.1. Data Preprocessing
The dataset utilized in our project comprises MRI scans
of patients with various types of brain tumors, encom-
passing four modalities: T1-weighted (T1), T1-weighted
contrast-enhanced (T1ce), T2-weighted (T2), and Flair
Images, alongside corresponding ground truth segmenta-
tion masks. Each MRI image contains 155 slices, of which
we selected slices ranging from 22 to 100, capturing the

most pertinent tumor data after rigorous experimenta-
tion.

During data preprocessing, we identified irregular pat-
terns in file 355, prompting its removal from the dataset to
ensure the integrity of our results and model training. Ad-
ditionally, we standardized the image size to 128*128 for
training purposes. Our training data comprises stacked
Flair and T1 images, while the model receives segmen-
tation masks as labels, which are subsequently one-hot
encoded for compatibility.

4. Our Methodology
In this project, our approach is delineated into the fol-
lowing steps:

• Employing the Unet model for intricate segmen-
tation tasks, adept at delineating tumor contours
within MRI scans.

• Enacting an array of Machine Learning Algo-
rithms to prognosticate patient survival, harness-
ing extracted features from segmented tumor re-
gions alongside ancillary clinical data.

• Deploying SHAP (SHapley Additive exPlana-
tions) to furnish comprehensive elucidations of
predictions rendered by machine learning mod-
els, facilitating an enhanced understanding of the
underlying determinants contributing to patient
survival prognostications.

4.1. UNET for Tumour Segmentation
The U-Net architecture is a convolutional neural network
initially devised for biomedical image segmentation but
widely applicable across various computer vision seg-
mentation tasks. It comprises a contracting path and an
expanding path, forming a "U" shape. The contracting
path functions akin to a traditional convolutional neural
network, capturing image context through successive
convolutional and max-pooling layers. These layers re-
duce spatial resolution while augmenting channel depth
to extract broader image features. Conversely, the ex-
panding path reconstructs spatial resolution and yields
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the final segmentation map. It employs convolutional
and up-sampling layers to enhance spatial resolution
while reducing channel depth. Up-sampling methods
like bilinear interpolation or transposed convolution are
commonly used.

Moreover, the U-Net incorporates skip connections
between corresponding layers of the contracting and ex-
panding paths. These connections enable the network
to circumvent spatial information loss from pooling op-
erations and merge local and global image features ef-
fectively. Skip connections concatenate feature maps
from corresponding layers, followed by a 1x1 convolu-
tional layer to decrease channel depth. The concatenated
feature maps then feed subsequent convolutional and up-
sampling layers in the expanding path. Training the U-
Net model involves end-to-end optimization using pixel-
wise cross-entropy loss. This loss function compares
predicted segmentation maps with ground truth maps,
guiding parameter adjustments of convolutional filters
to minimize the loss and generate accurate segmentation
maps [14].

Our UNET architecture operates on input images with
dimensions of (128, 128, 2). Initially, a convolutional layer
with 64 filters, a 3x3 kernel size, and "same" padding is
employed, followed by batch normalization and ReLU
activation. Subsequently, the encoder phase comprises
multiple down-sampling blocks, each featuring two 3x3
convolutional layers with 64 filters, followed by batch
normalization and ReLU activation. After each block, the
filter count doubles, and spatial resolution is halved via
max-pooling. The bottleneck layer is characterized by
four 3x3 convolutional layers with 1024 filters, alongside
batch normalization and ReLU activation. Conversely,
the decoder phase involves up-sampling blocks, consist-
ing of 2x2 transpose convolutional layers with 512 filters.
These layers are concatenated with corresponding fea-
ture maps from the encoder part, followed by two 3x3
convolutional layers with 64 filters, batch normalization,
and ReLU activation. Finally, a 1x1 convolutional layer
with 4 filters is employed in the final layer, succeeded
by a softmax activation function to yield a probability
distribution across the four segmentation classes.

4.2. GradCam Algorithm
GradCam, short for Gradient-weighted Class Activation
Mapping, serves as a valuable tool in enhancing the in-
terpretability of complex neural network models, par-
ticularly in medical imaging tasks such as brain tumor
segmentation using MRI images. To utilize GradCam ef-
fectively for brain tumor segmentation, we first embark
on training a UNET Model using BRATS Data, a well-
known dataset extensively used in the field for brain
tumor segmentation tasks. This initial step is crucial as
it lays the foundation for the subsequent interpretability

analysis.
Once the UNET Model is trained, the next phase in-

volves the practical application of GradCam for expla-
nation generation. We start by selecting an input MRI
image containing a brain tumor, which serves as the
subject for interpretation. This MRI image is then fed
through the trained UNET Model to obtain the output
segmentation map, which delineates the tumor region
within the image.

To delve deeper into understanding the model’s
decision-making process, we employ the concept of gradi-
ent computation. Specifically, we compute the gradients
of the output segmentation map concerning the feature
maps of the last convolutional layer. These gradients
provide valuable information regarding the importance
of different regions within the input image in influenc-
ing the model’s segmentation decision. Leveraging these
gradients, we proceed to compute the GradCam heatmap
for the input MRI image. This heatmap effectively high-
lights the regions within the image that exert the most
significant influence on the segmentation decision made
by the UNET Model. By overlaying this heatmap onto
the input MRI image, we create a visually intuitive repre-
sentation that facilitates the interpretation of the model’s
decision-making process.

Through this approach, we gain valuable insights into
the inner workings of the UNET Model for brain tumor
segmentation. By visualizing the regions of the input
image that contribute most significantly to the model’s
predictions, we enhance the interpretability of our model,
thereby fostering greater trust and understanding among
stakeholders in the medical domain.

In summary, by integrating GradCam into our work-
flow for brain tumor segmentation, we not only improve
the transparency and interpretability of our model but
also empower clinicians and researchers with actionable
insights into the diagnostic process, ultimately leading
to more informed decision-making and better patient
outcomes [12].

4.3. SHAP Explanations
SHAP (SHapley Additive exPlanations) is a model-
agnostic method for interpreting the predictions of ma-
chine learning models. It can help to identify which
features in the input data contributed the most to a par-
ticular prediction [15].

In this project, we use SHAP to determine a patient
survival. The patient survival data is already provided in
the survival info CSV file, which contains the following
columns Brats20ID, Age, Survival days, Extent of Resec-
tion. We preprocess the data and determine whether the
extension of the tumor was short, medium, or large. Then
the data is trained and tested using the various classifica-
tion algorithms including KNN, Random Forest, etc. The
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results of KNN, SVC, MLP, and Random Forest are then
explained through the SHAP library. We used SHAP Ker-
nel explainer and Tree Explainer to get the SHAP values
and visualize them using the SHAP summary plot and
SHAP force plot.

5. Results
The results section includes the results obtained on the
UNET Model train and test data, Visualizations using the
GradCam Algorithm, and Results obtained on survival
predictions data, and its explanations using SHAP.

5.1. Results on UNET Model
Figure 2 shows the training and validation data results
of our model. On the test data, the model achieved the
following results accuracy score: 0.9912, mean you score:
0.8250, dice coefficient: 0.6590, precision: 0.9930, sensi-
tivity: 0.9923, specificity: 0.9952, dice coefficient necrotic:
0.3912, dice coefficient edema: 0.71, dice coefficient en-
hancing: 0.68

Figure 2: Unet Model Results. The first plot represents the
Loss chart, while the second is the Accuracy chart. The third
is related to the Dice coefficient. This coefficient is a common
metric used to evaluate the similarity between two sets of data.
In the context of image segmentation, it is often used to mea-
sure the accuracy of a segmentation algorithm by comparing
the segmentation output with a ground truth segmentation.
[16, 17]

Our model was then validated on the test images to
visualize the output segmentations made by the model.
Figure 3 and figure 4 shows the results of the model. It
perfectly segments all three classes namely "Neurotic/-
core", "Edema", and "Enhancing". The area comprising
the tumour was perfectly identified by the model hence
giving us perfect segmentations.

5.2. GradCam Heatmaps
To interpret the model predictions, we use the GradCam
technique. Our GradCam visualization function builds
the gradient model using Unet model inputs, the last con-
volution layer of the model, and model outputs. The gra-
dient model is then provided with a test image for which
it computes the gradients of the output segmentation
relating to the last convolution layer. These gradients are
then used to compute the Heatmap, By visualizing the
heatmap generated by Grad-CAM, we can gain insights
into which parts of the input image are most important
for the interpretable model to make its segmentation.
Figure 5 shows the original and the GradCam heatmaps
generated on that MRI Image by the model, we can see
that the model focuses more on the Tumour area to pre-
dict the correct segmentation mask.

5.3. Patient Survival Prediction
For predicting patient survival various ML algorithms
were used. Initially, we used a Random Forest Classifier
with 3 trees to predict the extent of survival. The sur-
vival extent was categorized into three categories, small,
medium, or long. For further experiments, we used the
KNN classifier. Next, we used a Support Vector classifier
on the same data in the context of getting better accuracy
scores. Lastly, we experimented by training and testing
the model using a Multi-Layer Perceptron (MLP) classi-
fier. The results of all those algorithms are included in
the Table 1.

Algorithm Name Accuracy Precision F1
RFC 0.64 0.64 0.66
KNN 0.61 0.62 0.61
SVC 0.55 0.58 0.55
MLP 0.50 0.59 0.56

Table 1
Survival Prediction Results.

5.4. SHAP for Patient Survival Predictions
For interpreting and explaining the predictions of the
above-mentioned models for the task of patient survival,
we used the SHAP library. SHAP provides us with the
ability to explain the predictions of our machine learning
and deep learning models via its various built-in explain-
ers. For this task, we used SHAP’s kernel explainer and
tree explainer. The SHAP Kernel Explainer interprets
machine learning models by calculating the contribu-
tion of each feature using Shapley values. It provides
explanations by evaluating the impact of including or
excluding features on the model’s predictions, helping
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Figure 3: Segmentation Results 1

Figure 4: Segmentation Results 2

Figure 5: GradCam Heatmap Image, shows that the model
focuses more on the Tumour area to predict the correct seg-
mentation mask

understand feature importance and model behavior. The
SHAP Tree Explainer is a method designed for interpret-
ing tree-based machine learning models, such as decision
trees or random forests. It computes the Shapley val-
ues by approximating the model with a set of additive
tree-based models, enabling the attribution of feature con-
tributions to individual predictions made by tree models.
Figure 6 and Figure 7 display the results of our SHAP
explanations.

As we can notice from the above table, the results are

Figure 6: SHAP Summary Plot for Random Forest Classifier

Figure 7: SHAP Summary Plot for KNN

not quite promising, with KNN and Random Forest being
slightly better than our other experimented models. In
future work, we would try to achieve better scores by
trying various ensembles of models on the data.

6. Conclusion and Future Works
Brain tumor segmentation through machine learning has
significantly assisted medical professionals in efficiently
locating and resecting tumors. Various techniques have
been explored to accurately segment tumors from MRI im-
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ages, including the utilization of the UNET Model in this
project. Recent advancements in semantic segmentation
have introduced several notable models: Mask R-CNN:
This CNN architecture extends the Faster R-CNN object
detection model to include a mask prediction branch,
allowing it to perform object detection and instance seg-
mentation simultaneously. DeepLab V3+: Designed for
semantic segmentation of images, DeepLab V3+ employs
dilated convolution to capture multi-scale context with-
out increasing the number of parameters. PSPNet: Utiliz-
ing a pyramid pooling module, PSPNet captures global
context at multiple scales, facilitating accurate predic-
tions for objects of various sizes [18, 19]. FCN: Fully
Convolutional Networks perform dense pixel-wise pre-
diction of image labels, accommodating input images of
arbitrary size and producing output images of the same
size with predicted labels for each pixel [20]. Segment
Anything Model (SAM): Facebook’s SAM, an open-source
state-of-the-art computer vision model, is designed for
image segmentation tasks [21]. These models, alongside
UNET, have showcased state-of-the-art results in segmen-
tation tasks. Our objective is to collaborate with these
models on our data and visualize their outcomes on the
BRATS2020 dataset.

In addition to tumor segmentation, we aimed to en-
hance the interpretability of the UNET model by em-
ploying GradCam. However, with advancements in the
eXplainable Artificial Intelligence (XAI) field, several
other visual interpretation techniques have emerged. We
plan to explore these techniques, including GradCam++,
SmoothGradCam++, Guided GradCam, and Score-CAM,
to provide more precise and insightful model interpreta-
tions.

Moreover, in the realm of patient survival prediction,
current models exhibit low accuracy and struggle with
generalization. To address this, our future work will
involve experimenting with sequential neural network
models to achieve better results. Additionally, we will
focus on tuning hyperparameters and exploring differ-
ent parameter sets to improve model performance on
both training and test data. These efforts aim to enhance
the accuracy and reliability of patient survival predic-
tions, thus advancing the impact of medical AI in clinical
settings.
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