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Abstract

In machine learning we can emphasize models based on the such as supervised learning and unsupervised learning. Mainly
algorithms based on learning without teacher are used to clustering process. This algorithms are used to split ours data to
smaller groups, clusters with similar and comparable attributes. Guided learning is utilized to create many classifiers. On the
basis of previously prepared training data, the classifier learns certain relations and dependencies so that it can correctly
predict target values later. In our paper we will look at two rule-based models that use decision rules to classify data samples.
Examples of models are Decision Tree and Random Forest which are created for different hyperparameters. We will also
show how the reduction of dimensionality affects to effectiveness and efficiency our models by using PCA technique and

correlation analysis to select the most relevant features.
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1. Introduction

Artificial intelligence is used in many areas. In image
processing for example is applied in feature correction
and encryption [1]. In the financial and economic sector
Al is used to predict housing prices or even prices of
products on the food market. We can also find applica-
tions in recommendation systems, ie. [2] proposed crop
recommender for agriculture by the use of XAl-driven
model. There are many types of models in machine learn-
ing, they are for example: Linear Regression, Gaussian
Naive Bayes Classifier, Decision Tree, Random Forest,
Support Vector Machine or model based on neural net-
works [3, 4, 5]. Every classifier has another method to de-
termine the predicted values which means that not every
model will have high effectiveness for each dataset. Better
accuracy for image classification is achieved by models
such as CNN [6], but for simple and low-dimensional
data, where distance between points is important in clas-
sification using KNN is a good idea. We should always
choose a model after the initial analysis of the data. Every
model is equipped with many hyperparameters that we
can adjust and self-change.

In the case of KNN model we can establish number of
nearest neighbors. However, often the problem is to de-
termine the optimal value k-nearest neighbors, in [7]
described the K-Tree method that solves this problem.
In a Random Forest, we specify the number of Decision
Trees during training. Additionally, an important aspect
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before training the algorithm is preparing data. This
preparing is based on standardization or normalization
our dataset. In the case of high dimensionality of the
data, various dimensionality reduction techniques are
often used [8, 9, 10] to reduce computational complex-
ity and speed up the model training process. We can
also find various applications to data classification and
recommendation systems by using models of machine
learning. In [11] was proposed model of neural network
for imbalanced data collection on the input of classifier.
Very often computation models are used for positioning,
ie. power electric systems [12, 13], or for human behavior
understanding [14, 15]

In this paper, we will compare two rule-based models:
Decision Tree and Random Forest, which were built for
three different dataset:

« model uses PCA to reduce the dimensionality of
the data

« model uses two features selected after data anal-
ysis

- model uses all the features

We will also check the effectiveness of above, our models.
In the case of Decision Tree for different measure: en-
tropy and gini, and for various depths. For the Random
Forest, we will test the performance of the algorithm for
a different number of decision trees. At the end, we will
make a summary, whether the reduction of dimensions
contributed to the high accuracy of our models.
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count mean std min 25% 50% 75% max
Area 2600 88990430769 38636150809 33565000000 59882000000 80557500000 106344000000 210923.000000
MajorAxisLength 260.0 435.388159 120.321657 232.427848 347.601332 411.642944 487.505925 997.291941
MinorAxisLength 2600 256.284315 49 537517 166.593550 223149982 249 690935 282422182 413.927473
Eccentricity 260.0 0.778573 0.100741 0.348730 0.737558 0.798880 0.846740 0.962124
ConvexArea 2600 92544450000 41061.736096 35794000000 62205250000 82975000000 109537000000 278217.000000
Extent 260.0 0.699682 0.055917 0.379856 0.674124 0.708812 0.735178 0.835455
Perimeter 2600 1177927077 279192105 734.102000 976.925000 1129.236000 1308.205750 2697.753000

Figure 1: Raisin dataset information

2. Raisin database

The database that we used to build various classifiers
contains samples that were described by 7 morphological
features. These features were obtained after previously
processing the photos.Values are continuous and we can
see that each feature has value from different ranges.
There are also high values of standard deviations for
example, for Area and ConvexArea features, indicating
that the values for these features are highly dispersed
from their mean. The Fig. 1 shows a table containing the
statistics of our attributes.
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Figure 2: Raisin dataset graphs

2.1. Standardization

To improve the effectiveness and efficiency of the model,
data normalization or standardization is used. However
rule-based models don’t require transformations to a
single scale, because this classifiers make predictions

based on specific rules. Nevertheless, in our case, we
have standardized for:

+ models that were built from lower dimensionality
data using the PCA technique. When using this
technique, it is recommended to before standard-
ize the data.

models that were based on two features that
we chose. Standardization data contributed to
changes in values to a similar range which helped
in the creation of decision boundary charts.

In our classifiers, we used standardization that transforms
the data in such a way that its mean is equal to 0 and the
standard deviation is equal to 1. First for every attribute
we calculated its mean and standard deviation. Later,
we used the obtained results to compute the new values
using the below formula:

T —p
g

@

Tnew =

2.2. Model based on PCA

One of the popular dimensionality reduction techniques
is PCA. The task of PCA is to return n-features that we
can create a model with high accuracy. PCA model can
be improved for sophisticated data on the input, [16]
presented denoising of the input for improved process-
ing. In our models were used PCA, which returns to us
new training and test data reduced from seven to two
dimensions.

2.3. Model based on two features

Another way to prepare data for the model is to reduce
dimensionality based on correlation analysis. Correlation
defines the relation between two variables. Correlation
value close to 1 or -1 mean a strong correlation, but value
close to 0 mean weak correlation. The Extent feature
was removed from our training and testing data, because
its correlation value with our target feature was only
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0.28. Additionally, the following features were elimi-
nated: ConvexArea, Perimeter, Area, MinorAxisLength,
because these attributes had strong relation with other
features and didn’t contribute relevant information to the
classification models. Finally, our classifiers were built
on other two features: MajorAxisLength and Eccentricity.
The Fig. 3 shows correlation plots between two features.
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Figure 3: Correlation graphs of two features

2.4. Model based on all features

For each classifier, we also built a model based on all
seven features. Sometimes training a model on the basis
of all attributes can be a disadvantage, because this ap-
proach lead to slower learning of our classifier. However,
the advantage of including all features is that in some
cases it can lead to very high efficiency of our machine
learning algorithm, because we don’t lose any relevant
information. Fig. 2 illustrates our feature and correlation
graphs.

3. Methods

3.1. Decision Tree

3.1.1. Formulas

Entropy:
= " pi-log,(p:) )
i=1
Entropy after:
— 2": %Entrapy(si) (3)

i=1

9-14
Information gain:
Entropypetore — ENtropyasier 4)
Gini coefficient:
2
= pi-p; )
i=1
Gini coefficient age;:
S
— Z — Gini(S;) (6)
‘S
=1
Information gain:
Ginibefore - Giniafter (7)

3.1.2. Algorithm

A Decision Tree is a directed model that consists of a root,
nodes, leaves and edges. Root is top of the tree, passing
through the edges, we come to the nodes and finally to
the leaves, to the lowest layer of the tree. Leaves contain
the answers, predictions of our model, to which class our
data sample is classified. Nodes contain rules that are
used to make decisions during testing. Rules are created
using impurity measures. These are: entropy and gini co-
efficient. Our classifiers will create rules that will divide
our sets into more pure subsets. The final conditions are
those for which the information gain is the greatest. The
Decision Tree has a tendency to overfitting, so we used
the following as regularization parameters: number of
max depth is 2 and 3, and the minimum amount of data
in the set before the division can not be less than 2.

3.2. Random Forest

Random Forest algorithm creates a forest in a random
manner. This “forest” you can think of as an ensemble of
Decision Trees, most of the time trained with the “bag-
ging” method. The general idea of the bagging method
is that a combination of learning models increases the
overall result. The Random Forest starts by selecting
random samples from the given dataset. It selects these
random subsets with replacement, meaning that some
samples may be used multiple times in a single subset. e
features at each split in the tree. This randomness in fea-
ture selection is what gives the Random Forest its name.
The Random Forest consist of many decision trees. Test
data is classified by decision trees. Next, voting takes
place and we look at which class/forecast occurs most
frequently. Random Forest is better option than Decision
Tree, because this classifier has not a tendency to overfit-
ting to training data. Our models include several dozen
decision trees, where each of them has been trained for
different training data that has been previously random-
ized from the main dataset intended for training.
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4. Experiments

4.1. Decision Tree

precision  recall fl-score support precision  recall fi-score support

Besni 9.93 e.72 9.81 20 Besni 8.88 a.77 8.82 39
Kecimen e.77 9.95 9.85 39 Kecimen 8.8e 8.9 8.84 39
accuracy 0.83 78 accuracy .83 78
macro avg 0.85 0.83 0.83 78 macro avg 8.84 e.83 0.83 78
weighted avg 0.35 0.83 6.83 78 weighted avg a.84 8.83 8.83 78

Figure 4: Classification reports for Decision Tree with PCA for depth equal to 2. The results are shown in order for the
measures: entropy and gini

precision  recall fl-score support precision  recall fl-score  support
Besni 8.76 0.74 8.75 39 K Besni g';g g';z g';z ;Z
Kecimen .75 0.77 0.76 39 ecimen . .
accuracy 0.77 78
0.76 78
aceuracy macro avg 0.77 0.77 0.77 78
macro avg .76 0.76 0.76 78 veiahied oo hoptd poptd pogsd i
weighted avg 0.76 0.76 0.76 78 g g - -

Figure 5: Classification reports for Decision Tree with PCA for depth equal to 3. The results are shown in order for the
measures: entropy and gini

. precision  recall fl-score support
precision  recall fl-score support

. Besni .55 .85 39

Besni .85 0.85 a.35 38 Kocinen g g b
Kecimen 8.85 8.85 8.85 39

accuracy .85 78

accuracy 8.85 78 macro avg .85 8.85 8.85 78

macro avg .85 .85 8.85 78 weighted avg .85 8.85 8.85 78
weighted avg 6.85 8.85 @.85 78

Figure 6: Classification reports for Decision Tree with two features for depth equal to 2. The results are shown in order for the
measures: entropy and gini

precision recall fl-score support precision recall fl-score support

Besni 8.79 8.79 8.79 39 Besni 8.79 e.79 0.79 39
Kecimen @.70 .79 8.70 30 Kecimen .79 .79 0.79 EL]
accuracy 8.70 78 accuracy 0.79 73
macro avg 8.79 8.79 e.79 78 _macro avg 8.79 8.79 @.79 78
weighted avg a.79 0.79 8.79 78 welghted avg @.79 8.79 8.79 78

Figure 7: Classification reports for Decision Tree with two features for depth equal to 3. The results are shown in order for the
measures: entropy and gini

precision  recall fi-score  support precision  recall fi-score  support

Besni o8 0.8 0.8 39 Besni 0.67 0.10 0.18 39
Kecimen °-8 o8 o8 39 Kecimen a.51 0.95 0.67 39
accuracy @.85 78 accuracy @.53 78
macro avg e.85 a.85 e.85 78 nore ove 0.50 o.53 oo b
weighted avg e.85 a.85 e.85 78 weighted o o0 oo o i

Figure 8: Classification reports for Decision Tree with all features for depth equal to 2. The results are shown in order for the
measures: entropy and gini

precision  recall fl-score support precision  recall fi-score  support

Besni .85 .87 .86 39 Besni @.87 .85 .86 39
Kecimen 0.87 .85 .26 20 Kecimen @.85 @.87 .86 39
accuracy .86 78 accuracy .86 78
macro avg 8.86 9.86 8.86 78 macro avg 8.86 8.86 0.86 78
weighted avg 8.86 0.86 8.36 73 weighted avg @.86 8.86 8.86 78

Figure 9: Classification reports for Decision Tree with all features for depth equal to 3. The results are shown in order for the
measures: entropy and gini
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Decision Tree, max depth=2 Decision Tree, max depth=2 Decision Tree, max depth=3 Decision Tree, max depth=3
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Figure 10: Decision boundaries for a Decision Tree with two features. The results are presented in order for depths equal to 2
and 3, where for each depth for the measure of entropy and gini

4.2. Random Forest

precision recall fl-score support precision recall fil-score  support

Besni @.80 1.08 0.89 39 Besni 8.88 8.92 8.9 39
Kecimen 1.08 8.74 0.85 30 Kecimen 8.92 0.87 .89 39
accuracy e.87 78 accuracy 9.%0 78
macro avg 8.00 0.87 0.87 78 _nacr‘o avg 8.90 9.9 8.90 78
weighted avg 0.98 0.87 0.87 78 weighted avg 8.9 2.9 2.9 78

Figure 11: Classification reports for Random Forest with PCA. The results are shown in order for the number of Decision
Trees: 50 and 100

precision recall fl-score support precision recall fi-score  support

Besni 8.84 8.92 8.88 39 Besni 8.79 8.95 8.86 39
Kecimen 8.01 8.82 @.86 39 Kecimen @.04 .74 0.83 39
accuracy @.87 78 accuracy @.85 78
macro avg 8.88 8.87 0.87 78 macro avg @.86 0.85 @.84 78
weighted avg 6.88 8.87 @.87 78 weighted avg 8.86 0.85 0.84 78

Figure 12: Classification reports for Random Forest with two features. The results are shown in order for the number of
Decision Trees: 50 and 100

precision  recall fl-score support precision  recall fi-score  support

Besni 8.79 @.95 0.86 39 " Besni g-gg g-;§ g.zg ;g
Kecimen 8.94 e.74 8.83 39 ecimen . . )

accuracy @.85 78

oo o o.85 8 macro avg 8.85 9.85 8.85 78

macro avg 9.86 .85 a.84 78 ighted ot paped paped ”
weighted avg 0.86 @.85 2.84 7g  Welghted avg . - .

Figure 13: Classification reports for Random Forest with all features. The results are shown in order for the number of
Decision Trees: 50 and 100

Random Forest, number of decision trees=50 Random Forest, number of decision trees=100

Eccentricity
Eccentricity

T H 3 ;
MajorAxisLength MajorAxisLength

Figure 14: Decision boundaries for Random Forest with two features. The results are presented for the entropy measure
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5. Conclusions

After an in-depth analysis carried out on Decision tree
and Random Forest models, it can be concluded that us-
ing PCA to reduce dimensionality for our dataset is good
idea. Presented models of decision trees achieve high
accuracies for a depth equal of 2 at level 83 %, which
were trained on a training dataset using PCA. In addition,
after analyzing the correlation, we were able to find two
features for which the models made predictions as good
as the models for which PCA were used. Random Forest
is the model which make even more effective predictions.
Classifier of this type achieved an accuracy of 90 % using
100 decision trees. Additionally, an important element
turned out the right choice of impurity measure, our
research confirm that classifiers using the entropy mea-
sure gave better accuracy results than models that used
the gini coefficient. To sum up, the use of PCA for our
database allowed us to achieve equally high accuracies,
while reducing computational complexity.

References

[1] W.Feng,]. Zhang, Y. Chen, Z. Qin, Y. Zhang, M. Ah-
mad, M. Wozniak, Exploiting robust quadratic poly-
nomial hyperchaotic map and pixel fusion strategy
for efficient image encryption, Expert Systems with
Applications 246 (2024) 123190.

P. Naga Srinivasu, M. F. [jaz, M. Wozniak, Xai-
driven model for crop recommender system for
use in precision agriculture, Computational Intelli-
gence 40 (2024) e12629.

V. Ponzi, S. Russo, V. Bianco, C. Napoli, A. Wa-
jda, Psychoeducative social robots for an healthier
lifestyle using artificial intelligence: a case-study,
volume 3118, 2021, pp. 26 — 33.

G. De Magistris, R. Caprari, G. Castro, S. Russo,
L. Tocchi, D. Nardi, C. Napoli, Vision-based holis-
tic scene understanding for context-aware human-
robot interaction 13196 LNAI (2022) 310 - 325.
doi:10.1007/978-3-031-08421-8\_21.

N. Brandizzi, S. Russo, G. Galati, C. Napoli, Address-
ing vehicle sharing through behavioral analysis: A
solution to user clustering using recency-frequency-
monetary and vehicle relocation based on neigh-
borhood splits, Information (Switzerland) 13 (2022).
doi:10.3390/inf013110511.

K. Huang, Image classification using the method of
convolutional neural networks, 2022 IEEE Confer-
ence on Telecommunications, Optics and Computer
Science (TOCS) (2022) 827-832.

S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient
knn classification with different numbers of nearest

(2]

(3]

(7]

(8]

(11]

neighbors, IEEE Transactions on Neural Networks
and Learning Systems (2018) 1774-1785.

G. D. Magistris, C. Rametta, G. Capizzi, C. Napoli,
Fpga implementation of a parallel dds for wide-band
applications, volume 3092, 2021, pp. 12 - 16.

H. S. Parmar, S. Mitra, B. Nutter, R. Long, S. An-
tani, Visualization and detection of changes in brain
states using t-sne, 2020 IEEE Southwest Symposium
on Image Analysis and Interpretation (SSIAI) (2020)
14-17.

C. Napoli, G. Pappalardo, E. Tramontana, A hy-
brid neuro-wavelet predictor for qos control and
stability 8249 LNAI (2013) 527 — 538. doi:10. 1007/
978-3-319-03524-6\_45.

M. Wozniak, M. Wieczorek, J. Sitka, Bilstm deep
neural network model for imbalanced medical data
of iot systems, Future Generation Computer Sys-
tems 141 (2023) 489-499.

F. Bonanno, G. Capizzi, G. L. Sciuto, C. Napoli,
G. Pappalardo, E. Tramontana, A novel cloud-
distributed toolbox for optimal energy dispatch
management from renewables in igss by using wrnn
predictors and gpu parallel solutions, 2014, pp. 1077
—1084. doi:10.1109/SPEEDAM. 2014 .6872127.
A. Sikora, A. Zielonka, M. F. Jjaz, M. Wozniak, Dig-
ital twin heuristic positioning of insulation in mul-
timodal electric systems, IEEE Transactions on
Consumer Electronics (2024).

S. Pepe, S. Tedeschi, N. Brandizzi, S. Russo, L. Ioc-
chi, C. Napoli, Human attention assessment us-
ing a machine learning approach with gan-based
data augmentation technique trained using a cus-
tom dataset, OBM Neurobiology 6 (2022). doi:10.
21926/obm.neurobiol.2204139.

A. Alfarano, G. De Magistris, L. Mongelli, S. Russo,
J. Starczewski, C. Napoli, A novel convmixer trans-
former based architecture for violent behavior de-
tection 14126 LNAI (2023) 3 — 16. doi:10.1007/
978-3-031-42508-0\_1.

W. Dong, M. Wozniak, J. Wu, W. Li, Z. Bai, Denois-
ing aggregation of graph neural networks by using
principal component analysis, IEEE Transactions
on Industrial Informatics 19 (2022) 2385-2394.


http://dx.doi.org/10.1007/978-3-031-08421-8_21
http://dx.doi.org/10.3390/info13110511
http://dx.doi.org/10.1007/978-3-319-03524-6_45
http://dx.doi.org/10.1007/978-3-319-03524-6_45
http://dx.doi.org/10.1109/SPEEDAM.2014.6872127
http://dx.doi.org/10.21926/obm.neurobiol.2204139
http://dx.doi.org/10.21926/obm.neurobiol.2204139
http://dx.doi.org/10.1007/978-3-031-42508-0_1
http://dx.doi.org/10.1007/978-3-031-42508-0_1

	1 Introduction
	2 Raisin database
	2.1 Standardization
	2.2 Model based on PCA
	2.3 Model based on two features
	2.4 Model based on all features

	3 Methods
	3.1 Decision Tree
	3.1.1 Formulas
	3.1.2 Algorithm

	3.2 Random Forest

	4 Experiments
	4.1 Decision Tree
	4.2 Random Forest

	5 Conclusions

